
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 32, 2008, 151–164

SHADOWING AND INVERSE SHADOWING
IN SET-VALUED DYNAMICAL SYSTEMS.

HYPERBOLIC CASE

Sergei Yu. Pilyugin — Janosch Rieger

Abstract. We introduce a new hyperbolicity condition for set-valued dy-

namical systems and show that this condition implies the shadowing and

inverse shadowing properties.

1. Introduction

The shadowing property of classical dynamical systems (diffeomorphisms or
flows) is now well-studied (see, for example, the monographs [13] and [14]). This
property means that, near approximate trajectories (so-called pseudotrajecto-
ries), there exist exact trajectories of the system.

Another type of shadowing properties (inverse shadowing properties) is re-
lated to the following problem: given a family of mappings that approximate the
defining mapping for the dynamical system considered, can we find, for a chosen
exact trajectory, a close pseudotrajectory generated by the given family? Such
properties were considered by various authors (let us mention, for example, the
papers [3], [5], [6] and [10]).

Clearly, the study of such properties is important for the theory of pertur-
bations of dynamical systems.
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In this paper, we work with shadowing properties of set-valued dynamical
systems.

Recently, it was shown that so-called contractive set-valued dynamical sys-
tems possess shadowing properties (see, for example, [8], [9] and [15]). We discuss
contractive systems in Section 4 of this paper.

The main goal of the present paper is to introduce a new hyperbolicity
property of set-valued dynamical systems and to show that this property (in
its “global” and “local” variants) implies the shadowing and inverse shadowing
properties.

In the literature, one can find two kinds of hyperbolicity properties for set-
valued dynamical systems (to be exact, these properties were introduced for
systems defined by relations, but on the level of definitions these two classes of
objects do not differ significantly).

One of the definitions was given by Akin in the monoghaph [1]. In fact, this
definition is “inner” (i.e. it is formulated not in terms of the mapping generating
the system but in terms of behavior of trajectories): the author calls a set
hyperbolic if this set is expansive and the system has the shadowing property
on it.

A different approach was used by Sander in [12] and [16], where hyperbol-
icity was defined for smooth relations. The Sander hyperbolicity condition is
designed to study features of classical dynamical systems such as stable and
unstable manifolds in the framework of non-invertible maps, and it implies the
shadowing property. Due to the nature of the analyzed objects, this hyperbolic-
ity condition does not allow the graph of a relation to have nonempty interior,
which is generically the case in the set-up discussed in the present paper.

It is important to note that both hyperbolicity conditions of Akin and Sander
imply the uniqueness of a shadowing trajectory, which is quite unnatural for set-
valued dynamical systems (it was shown in [15] that even contractive set-valued
systems may fail to have the property of uniqueness of a shadowing trajectory).
Since contractive systems in the sense of [15] satisfy our condition of hyperbolicity
(see Section 4), the latter condition does not imply the uniqueness of a shadowing
trajectory (and hence, this condition differs qualitatively from conditions of Akin
and Sander).

Let us pass to basic notation. Consider a metric space (M,dist) and denote
by C(M) the set of closed subsets of M.

A set-valued dynamical system on M is determined by a set-valued mapping
F :M→ C(M) \ {∅} and its iterates. In what follows, we identify the mapping
F and the corresponding dynamical system.

A sequence η = {pk} is a trajectory of the system F if

pk+1 ∈ F (pk) for any k ∈ Z.
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A sequence ξ = {xk} is called a d-pseudotrajectory of F if an error of size d > 0
is allowed in every step, i.e. if

dist(xk+1, F (xk)) ≤ d for any k ∈ Z.

We say that the system F has the shadowing property if given ε > 0 there
exists d > 0 such that for any d-pseudotrajectory ξ = {xk} of F there exists
a trajectory η = {pk} with

dist(xk, pk) ≤ ε for any k ∈ Z.

We specify the shadowing properties which we study in the statements of our
theorems.

The distance between two nonempty compact subsets A and B of Rm is
measured by the deviation

dev(A,B) = sup
a∈A

inf
b∈B

|a− b|

or by the Hausdorff distance

distH(A,B) = max{dev(A,B),dev(B,A)}.

If A and B are nonempty compact sets, there exists a (possibly not unique) vector
Dev(A,B) ∈ Rm such that Dev(A,B) = b − a for some a ∈ A and b ∈ B with
|b− a| = dev(A,B). Let us note that if A is a point and B is a convex set, then
the vector Dev(A,B) is defined uniquely. In addition, if B(t) is a continuous
(w.r.t. distH) family of convex sets, then the vector-function Dev(A,B(t)) is
continuous in t as well (cf. Theorem 1.7.1 of [4]).

The collection of nonempty, compact, and convex subsets of Rm will be
denoted by CC(Rm). As usual, for a sequence η = {ηk} ∈ (Rm)Z,

||η||∞ = sup
k∈Z

|ηk|.

Let us formulate hyperbolicity conditions under which we establish the shad-
owing result. We consider a set-valued mapping F of the form

(1.1) F (x) = L(x) + M(x),

where L: Rm → Rm is a continuous single-valued mapping and M : Rm → CC(Rm)
is a set-valued mapping with compact and convex images. We say that a mapping
(1.1) is hyperbolic in Rm if there exist constants N ≥ 1, a, κ, l > 0, and λ ∈ (0, 1)
such that the following conditions hold:

(P1) For any point x ∈ Rm there exist linear subspaces U(x), S(x) ⊂ Rm

such that
S(x)⊕ U(x) = Rm,
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and if P (x) and Q(x) are the corresponding complementary projections
from Rm to U(x) and S(x), then

(1.2) ‖P (x)‖, ‖Q(x)‖ ≤ N.

Below, the spaces U(x) and S(x) are called the unstable and stable
subspaces, respectively.

(P2) If x, y, v ∈ Rm satisfy the inequalities |v| ≤ a and dist(y, F (x)) ≤ a,
then we can represent L(x + v) as

L(x + v) = L(x) + A(x)v + B(x, v),

where A(x): Rm → Rm is a linear mapping that is continuous with
respect to x and such that

|Q(y)A(x)v| ≤ λ|v| for v ∈ S(x),(1.3)

|Q(y)A(x)v| ≤ κ|v| for v ∈ U(x),(1.4)

|P (y)A(x)v| ≤ κ|v| for v ∈ S(x),(1.5)

and the restriction P (y)A(x)|U(x):U(x) → U(y) is a linear isomorphism
satisfying

(1.6) |P (y)A(x)v| ≥ 1
λ
|v| for v ∈ U(x).

Note that since L(x) and A(x) are assumed to be continuous, B(x, v)
is continuous for any x and v with |v| ≤ a.

(P3) If v ∈ Rm satisfies the inequality |v| ≤ a, then

|B(x, v)| ≤ l|v|,(1.7)

distH(M(x),M(x + v)) ≤ l|v| for x ∈ Rm.(1.8)

Note that condition (1.8) implies the continuity of M w.r.t. the Haus-
dorff distance.

Of course, one can give a similar definition of hyperbolicity not on the whole
space but on a compact subset. This will not change the essence of our Theo-
rem 2.1 below.

A simple example of a set-valued hyperbolic mapping is as follows. Assume
that A is an m×m hyperbolic matrix (this means that the eigenvalues λj of A

satisfy the inequalities |λj | 6= 1). Let S and U be the invariant subspaces of A

that correspond to the parts of its spectrum inside and outside the unit disk,
respectively.

Let M be a fixed compact convex subset of Rm. Then the set-valued mapping
F (x) = Ax + M is hyperbolic (in this case, the spaces S(x) and U(x) coincide
with S and U , respectively, for any x).
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The structure of the paper is as follows. In Section 2, we prove a shadowing
result while Section 3 is devoted to inverse shadowing. Our proofs are based on
ideas close to those used in [2] and [11]. In Section 4, we study relations between
hyperbolic and contractive set-valued system and prove a general shadowing
theorem for contractive systems.

2. Shadowing

Theorem 2.1. Let F be a set-valued hyperbolic mapping as described above.
If

(2.1) λ + κ + 4lN < 1,

then F has the Lipschitz shadowing property: there exists a constant d0 > 0
such that if {xk} is a d-pseudotrajectory of F with d ≤ d0, then there exists
a trajectory {pk} of F such that

‖{xk} − {pk}‖∞ ≤ Ld,

where
L−1 =

1
2N

(1− λ− κ− 4lN).

Remark 2.2. Note that condition (2.1) implies the inequality

λ(1 + κ + 4lN) < 1.

In addition,

(2.2) L−1 ≤ 1
2N

(
1
λ
− 1− κ− 4lN

)
.

Proof of Theorem 2.1. Set d0 = a/L and consider a d-pseudotrajectory
{xk} of F with d ≤ d0. Note that d ≤ a since N ≥ 1. Our goal is to find
a sequence V = {vk ∈ Rm: k ∈ Z} such that

(2.3) xk+1 + vk+1 ∈ F (xk + vk)

and ‖V ‖∞ ≤ Ld; in this case, {pk = xk + vk} is the desired trajectory of F .
By (1.1), relations (2.3) take the form

(2.4) xk+1 + vk+1 ∈ L(xk + vk) + M(xk + vk).

If |vk| ≤ a, it follows from property (P2) that we can represent

L(xk + vk) = L(xk) + A(xk)vk + B(xk, vk).

Thus, relation (2.4) takes the form

xk+1 + vk+1 ∈ L(xk) + A(xk)vk + B(xk, vk) + M(xk + vk),



156 S. Yu. Pilyugin — J. Rieger

or
vk+1 ∈ L(xk) + A(xk)vk + B(xk, vk) + M(xk + vk)− xk+1.

Consider the vector

σk = Dev(xk+1, L(xk) + B(xk, vk) + M(xk + vk)).

The compact and convex set L(xk)+B(xk, vk)+M(xk+vk) depends continuously
on vk w.r.t. the Hausdorff distance for |vk| ≤ a (see the definition of F and
properties (P2) and (P3)). By (1.7),

|B(xk, vk)| ≤ l|vk|;

by (1.8),
distH(M(xk),M(xk + vk)) ≤ l|vk|.

Since
dist(xk+1, L(xk) + M(xk)) < d,

we conclude that

(2.5) |σk| = dist(xk+1, L(xk) + B(xk, vk) + M(xk + vk)) ≤ d + 2l|vk|.

If

(2.6) σk = vk+1 −A(xk)vk,

then the inclusion

xk+1 + σk ∈ L(xk) + B(xk, vk) + M(xk + vk)

implies that

xk+1 + vk+1 −A(xk)vk ∈ L(xk) + B(xk, vk) + M(xk + vk),

which is equivalent to the desired inclusion (2.3). Thus, a solution V = {vk} of
(2.6) gives us a shadowing trajectory.

Let us project equality (2.6) to S(xk+1) and U(xk+1), respectively:

Q(xk+1)vk+1 = Q(xk+1)A(xk)vk + Q(xk+1)σk,(2.7)

P (xk+1)vk+1 = P (xk+1)A(xk)vk + P (xk+1)σk(2.8)

(let us note that in the case of classical dynamical systems, a similar method of
projecting an equation to stable and unstable subspaces has been used in [3]).

Denote b := dL/2 and let

Hk = {vk ∈ Rm : |P (xk)vk|, |Q(xk)vk| ≤ b}

and

(2.9) H =
∏
k∈Z

Hk.
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Obviously, each Hk is compact and convex; hence, H is compact and convex
w.r.t. the Tikhonov product topology.

If V = {vk} ∈ H, then

(2.10) |vk| ≤ |P (xk)vk|+ |Q(xk)vk| ≤ 2b = Ld ≤ a;

hence, all the terms in (2.7) and (2.8) are defined. We define an operator T that
maps a sequence V = {vk ∈ Rm} to a sequence W = {wk ∈ Rm} as follows: the
stable components of wk are defined by

(2.11) Q(xk+1)wk+1 = Q(xk+1)A(xk)vk + Q(xk+1)σk.

To obtain the unstable components, we transform equation (2.8). Consider the
mapping

(2.12) G(w) = P (xk+1)A(xk)w, w ∈ U(xk).

Clearly, G(0) = 0. It follows from (1.6) that

(2.13) |G(w)−G(w′)| ≥ 1
λ
|w − w′|, w, w′ ∈ U(xk).

Since the restriction of P (xk+1)A(xk) to U(xk) is assumed to be a linear isomor-
phism,

(2.14) G(D(b, xk)) ⊃ D(b′, xk+1),

where b′ = b/λ,

D(b, xk) = {z ∈ U(xk) : |z| ≤ b} and D(b′, xk+1) = {z ∈ U(xk+1) : |z| ≤ b′}.

By (2.13) and (2.14), the inverse Γ of G is defined on D(b′, xk+1). By (2.13),

(2.15) |Γ(z)− Γ(z′)| ≤ λ|z − z′|, z, z′ ∈ D(b′, xk+1).

Now we define the unstable components of wk by

(2.16) P (xk)wk = Γ{P (xk+1)[vk+1 − σk −A(xk)Q(xk)vk]}.

Lemma 2.3. The operator T maps H to itself.

Proof. Let us estimate

|Q(xk+1)wk+1| ≤ |Q(xk+1)A(xk)vk|+ |Q(xk+1)σk|
≤ |Q(xk+1)A(xk)P (xk)vk|

+ |Q(xk+1)A(xk)Q(xk)vk|+ |Q(xk+1)σk|
≤κ|P (xk)vk|+ λ|Q(xk)vk|+ N(d + 2l|vk|)

(we refer to (1.2)–(1.4), and (2.5)). Since |vk| ≤ 2b (see (2.10)),

(2.17) |Q(xk+1)wk+1| ≤ (λ + κ + 4lN)b + Nd =
(

λ + κ + 4lN +
2N

L

)
b ≤ b
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by the definition of b and L. Let us estimate the argument of Γ on the right in
(2.16). Since vk+1 ∈ Hk+1,

(2.18) |P (xk+1)vk+1| ≤ b.

By (1.2) and (2.5),

(2.19) |P (xk+1)σk| ≤ N(d + 2l|vk|) ≤ N(d + 4lb).

By (1.5),

(2.20) |P (xk+1)A(xk)Q(xk)vk| ≤ κ|Q(xk)vk| ≤ κb.

Adding (2.18)–(2.20), we see that the argument of Γ is estimated by

(2.21) |P (xk+1)[vk+1 − σk −A(xk)Q(xk)vk]|

≤ (1 + κ + 4lN)b + Nd =
(

1 + κ + 4lN +
2N

L

)
b ≤ b

λ
= b′

by inequality (2.2) and the definition of b. Thus, Γ{. . . } is defined, and it follows
from (2.21) and (2.15) that

(2.22) |P (xk)wk| ≤ b.

Inequalities (2.17) and (2.22) show that if V ∈ H and W = T (V ), then W ∈ H.�

Proof of Theorem 2.1 (continuation). Since σk depends on vk only, for-
mulas (2.11) and (2.16) show that (T (V ))k depends on vk−1, vk, vk+1. Hence,
the operator is continuous w.r.t. the Tikhonov topology on H.

The Tikhonov–Schauder fixed point theorem implies that T has a fixed point
in H. To complete the proof of Theorem 2.1, it remains to show that if T (V ) = V ,
then V solves equation (2.6). By (2.11),

(2.23) Q(xk+1)vk+1 = Q(xk+1)A(xk)vk + Q(xk+1)σk

if T (V ) = V . Let us apply G to the equality

P (xk)vk = Γ{P (xk+1)[vk+1 − σk −A(xk)Q(xk)vk]}

to show that

P (xk+1)A(xk)P (xk)vk = G(P (xk)vk) = P (xk+1)[vk+1 − σk −A(xk)Q(xk)vk].

Hence,

(2.24) P (xk+1)vk+1

= P (xk+1)σk + P (xk+1)A(xk)Q(xk)vk + P (xk+1)A(xk)P (xk)vk

= P (xk+1)[σk + A(xk)vk].

Adding (2.23) and (2.24), we see that vk+1 = σk+A(xk)vk, i.e. V solves equation
(2.6). Since ‖V ‖∞ ≤ Ld by (2.10), the proof is complete. �
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3. Inverse shadowing

Our result on inverse shadowing is, in a sense, local (in contrast to the case
of shadowing) — we consider a fixed trajectory of the set-valued mapping F and
look for close trajectories of sequences of mappings that approximate F .

Thus, let us fix a sequence of points pk ∈ Rm such that pk+1 ∈ F (pk).
We assume that the mapping F is hyperbolic at the trajectory η = {pk}

in the following sense: there exist constants N ≥ 1, a, κ, l > 0, and λ ∈ (0, 1)
such that condition (P1) holds for points x = pk, condition (P2) holds for points
x = pk, y = pk+1, and vectors v with |v| ≤ a, and, finally, condition (P3) holds
for points x = pk and vectors v with |v| ≤ a.

We also fix a number d > 0 and a sequence of mappings

Φ = {Φk: Rm → CC(Rm)}

such that each Φk is continuous w.r.t. distH and

(3.1) distH(F (pk + v),Φk(pk + v)) ≤ d for k ∈ Z and |v| ≤ a.

We say that a sequence of points xk ∈ Rm is a trajectory of the sequence Φ if
xk+1 ∈ Φk(xk).

Theorem 3.1. Assume that a trajectory η = {pk} of F is hyperbolic in the
above sense. If λ + κ + 4lN < 1, then F has the inverse Lipschitz shadowing
property: there exists a constant d0 > 0 such that if a family of mappings Φ
satisfies inequalities (3.1), where d < d0, then there exists a trajectory {xk} of Φ
such that

‖{xk} − {pk}‖∞ ≤ Ld,

where
L−1 =

1
2N

(1− λ− κ− 4lN).

Proof. The line of argument is very similar to the proof of Theorem 2.1.
Here, we construct a trajectory {xk} of Φ by proving the existence of a sequence
{vk} such that pk+1 + vk+1 ∈ Φk(pk + vk) and

(3.2) ‖V ‖∞ ≤ Ld.

We represent

Φk(pk + v) = L(pk) + A(pk)v + B(pk, v) + M̃k(pk + v)

for small v, where each M̃k: Rm → CC(Rm) is a continuous mapping w.r.t. distH

such that
distH(M(pk + v), M̃k(pk + v)) ≤ d;

here we take into account that

F (pk + v) = L(pk) + A(pk)v + B(pk, v) + M(pk + v),
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inequalities (3.1) hold, and the Hausdorff distance between the sets Φk(pk + v)
and F (pk +v) is preserved when we shift these sets by the same vector −(L(pk)+
A(pk)v + B(pk, v)).

We must prove that there is a sequence {vk} such that

pk+1 + vk+1 ∈ L(pk) + A(pk)vk + B(pk, vk) + M̃k(pk + vk), k ∈ Z.

Similarly to the reasoning of the previous proof, we define vectors

σ̃k = Dev(pk+1, L(pk) + B(pk, vk) + M̃k(pk + vk)).

Our goal is to find a sequence of vectors V = {vk} such that

(3.3) σ̃k = vk+1 −A(pk)vk

and inequality (3.2) holds.
Indeed, it follows from (3.3) that

pk+1 + vk+1 = pk+1 + σ̃k + A(pk)vk

∈ L(pk) + B(pk, vk) + A(pk)vk + M̃k(pk + vk) = Φk(pk + vk).

Now we estimate (for |vk| ≤ a)

|σ̃k| =dist(pk+1, L(pk) + B(pk, vk) + M̃k(pk + vk))

≤dist(pk+1, F (pk))

+ distH(L(pk) + M(pk), L(pk) + B(pk, vk) + M̃k(pk + vk))

=distH(M(pk), B(pk + vk) + M̃k(pk + vk))

(we note that dist(pk+1, F (pk)) = 0 and shift the sets in the second term by
−L(pk))

≤ |B(pk + vk)|+ distH(M(pk),M(pk + vk))

+ distH(M(pk + vk), M̃kk(pk + vk)) ≤ d + 2l|vk|.

This estimate is similar to (2.5).
Now the operator T̃ :H → H is defined by

Q(pk+1)wk+1 = Q(pk+1)A(pk)vk + Q(pk+1)σ̃k,

P (pk)wk = Γ(P (pk+1)[vk+1 − σ̃k −A(pk)Q(pk)vk])

with H and Γ defined in (2.9) and via (2.12). (Of course, we replace P (xk) by
P (pk) etc. in these definitions.) Since we have the same estimates of |σk| and
|σ̃k| and the operators A(pk) have the same properties as the operators A(xk) in
Theorem 2.1, the rest of the proof is identical with that of Theorem 2.1, and all
the constants are the same. �
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4. Contractive case

Various authors studied shadowing properties of set-valued dynamical sys-
tems with contractive properties ([8], [12], [15], [16] etc.).

A set-valued dynamical system on a metric space (M,dist) determined by
a set-valued mapping F :M → C(M) \ {∅} is called contractive if there exist
constants a > 0 and l ∈ (0, 1) such that if p, q ∈M and dist(p, q) ≤ a, then

(4.1) distH(F (p), F (q)) ≤ l dist(p, q)

(this is one possible variant of the definition).
Shadowing results for contractive set-valued dynamical systems were estab-

lished in [15] (for the case of mappings of Rm whose images are either convex
or have “large continuous convex kernels”) and in [8] (without the convexity as-
sumption; unfortunately, the proof in [8] contains an error). Inverse shadowing
results for contractive set-valued dynamical systems were also obtained in [15].

Let us note that in the case of M = Rm, a contractive set-valued dy-
namical system with convex and compact images F (x) is a particular case
of a system defined by a hyperbolic mapping (in the sense of the definition
given in the Introduction). Indeed, in this case we may take any λ ∈ (0, 1),
S(x) = Rm, U(x) = {0}, and L(x) = 0 (thus, A = 0) for any x ∈ Rm. Then con-
ditions (P1), (P2), and (1.7) hold with N = 1 and any l, κ > 0, while inequalities
(1.8) are a reformulation of (4.1).

It was shown in [15] (see Remark 3) that there exist contractive set-valued
dynamical systems such that, for pseudotrajectories with arbitrarily small er-
rors, the shadowing trajectories are not necessarily unique. This means that our
definition of hyperbolicity for set-valued dynamical systems does not imply the
uniqueness of shadowing trajectories (this fact was mentioned in the Introduc-
tion).

Let us explain how to establish shadowing results for set-valued dynamical
systems not assuming convexity of the images of the generating set-valued map-
pings (the authors were informed about the fixed point theorem 3.1 of [7] by
V. Glavan and V. Gutu in a private communication). We include this proof into
the present paper due to the absence of such a proof in the literature.

In what follows, we assume that (M,dist) is a complete metric space.
Let X be the space of sequences ξ = {ξk ∈M : k ∈ Z} with the metric

Dist(ξ, η) = sup
k

dist(ξk, ηk).

Clearly, (X ,Dist) is a complete metric space.
Let DistH be the Hausdorff metric on X generated by Dist.
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Consider a set-valued mapping F :M → C(M) \ {∅}. To this mapping, we
relate a mapping T :X → C(X ) by the following rule:

T (ξ) = {η ∈ X : ηk+1 ∈ F (ξk) for all k ∈ Z}.

A point ξ ∈ X (a sequence ξ = {ξk ∈ M}) is called a fixed point of T if
ξ ∈ T (ξ) (i.e. if ξk+1 ∈ F (ξk)).

Now we formulate a fixed point theorem for T proved by Frigon and Granas
in [7]. We denote elements of X by x, y etc. and the closed a-neighbourhood of
x ∈ X by N(a, x).

Theorem 4.1. Assume that there exist numbers r > 0 and κ ∈ (0, 1) and
an element x0 ∈ X such that

(4.2) DistH(T (x), T (y)) ≤ κDist(x, y), x, y ∈ N(r, x0),

and
Dist(x0, T (x0)) ≤ (1− κ)r.

Then T has a fixed point in N(r, x0).

We deduce from this statement the following shadowing result.

Theorem 4.2. Let (M,dist) be a complete metric space. Assume that for
a set-valued mapping F :M → C(M) \ {∅} there exist constants a > 0 and l ∈
(0, 1) such that if p, q ∈ M and dist(p, q) ≤ a, then inequality (4.1) holds. Then
F has the Lipschitz shadowing property: there exists a constant d0 > 0 such that
if {xk} is a d-pseudotrajectory of F with d ≤ d0, then there exists a trajectory
{pk} of F such that

Dist({xk}, {pk}) ≤ Ld, where L−1 = 1− l.

Proof of Theorem 4.1. Take d0 = a/(2L) and let x0 = {x0
k ∈ M} be

a d-pseudotrajectory of F with d ≤ d0.
We claim that for r = Ld, the mapping T :N(r, x0) → C(X ) has property

(4.2) with κ = l. Indeed, if x, y ∈ N(r, x0), then Dist(x, y) ≤ 2r ≤ a.
Thus, if ξ ∈ T (x), then

Dist(ξ, T (y)) ≤ sup
k

dist(ξk+1, F (yk))

≤ sup
k

distH(F (xk), F (yk)) ≤ sup
k

l dist(xk, yk) = l Dist(x, y),

and property (4.2) with κ = l follows. In addition,

Dist(x0, T (x0)) ≤ sup
k

dist(x0
k+1, F (x0

k)) ≤ d = (1− l)Ld = (1− l)r.

By the Frigon–Granas theorem, there is a fixed point x of T such that

Dist(x, x0) ≤ r = Ld.
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It remains to note that the definition of a fixed point x of T implies that x is
a trajectory of F . �

It is natural to try to apply a similar idea to a hyperbolic set-valued dynam-
ical system in Rm that is not contractive. Analyzing the proofs of Theorems 4.1
and 4.2, one can see that in this case, one has to impose the following condition
on the sets F (xk + vk):

F (xk + vk) = P (xk+1)F (xk + vk) + Q(xk+1)F (xk + vk)

(i.e. to consider sets that are “products” of their projections to stable and un-
stable subspaces). In our opinion, such a class of sets is of significantly less
importance for applications (for example, to set-valued dynamical systems gen-
erated by differential inclusions) than the class of convex sets studied in this
paper.
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condensing operators, and neutral delay equations, J. Differential Equations 137 (1997),

320–339.

[3] A. A. Al-Nayef et al., Bi-shadowing and delay equations, Dynam. Stability Systems

11 (1996), 121–134.

[4] J. P. Aubin and A. Cellina, Differential Inclusions, Grundlehren der Mathematischen

Wissenschaften, vol. 264, Springer, Berlin, 1984.

[5] W.-J. Beyn, On the numerical approximation of phase portraits near stationary points,

SIAM J. Numer. Anal. 24 (1987), 1095–1113.

[6] R. M. Corless and S. Yu. Pilyugin, Approximate and real trajectories for generic

dynamical systems, J. Math. Anal. Appl. 189 (1995), 409–423.

[7] M. Frigon and A. Granas, Résultats du type de Leray–Schauder pour des contractions

multivoques, Topol. Methods Nonlinear Anal. 4 (1994), 197–208.

[8] V. Glavan and V. Gutu, On the dynamics of contracting relations, Analysis and

Optimization of Differential Systems, Kluwer Acad. Publ., Boston, MA, 2003, pp. 179–

188.

[9] , Attractors and fixed points of weakly contracting relations, Fixed Point Theory

5 (2004), 265–284.

[10] P. E. Kloeden and J. Ombach, Hyperbolic homeomorphisms are bishadowing, Ann.

Polon. Math. 65 (1997), 171–177.
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