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SHADOWING AND INVERSE SHADOWING
IN SET-VALUED DYNAMICAL SYSTEMS.

CONTRACTIVE CASE

Sergei Yu. Pilyugin — Janosch Rieger

Abstract. We obtain several results on shadowing and inverse shadowing

for set-valued dynamical systems that have a contractive property. Appli-

cations to T -flows of differential inclusions are discussed.

1. Introduction and basic notation

The shadowing property for classical dynamical systems (with discrete or
continuous time) is now well-studied (see, for example, the monographs [13],
[12]). This property means that, near approximate trajectories, there exist exact
trajectories of the system considered. If a dynamical system has the shadowing
property, then, for example, results of numerical modeling reflect the global
structure of trajectories of the system.

Another type of shadowing properties is related to the following question:
Given a (large enough) family of approximate trajectories, can we find, for a cho-
sen exact trajectory, a close approximate trajectory from the given family? The
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corresponding property is called the inverse shadowing property. It was in-
troduced in [6] and studied intensively by various authors (see, for example,
[14], [2]).

Let us also mention that from results of W.-J. Beyn [4] it follows that an
autonomous system of differential equations has an analog of the inverse shad-
owing property in a neighbourhood of a hyperbolic rest point with respect to
pseudotrajectories generated by numerical one-step methods.

In this paper, we study the shadowing and inverse shadowing properties for
set-valued dynamical systems. One of the main objects to which our results are
applicable are T -flows of differential inclusions (very important, for example, in
control theory [5], [16]).

We introduce a contractive property (stability condition) for set-valued dy-
namical systems and show that any system satisfying this condition has both
shadowing and inverse shadowing properties (and the distance between the cor-
responding exact and approximate trajectories is estimated linearly in terms of
the error).

Let us pass to basic notation. A set-valued dynamical system on a metric
space (M,dist) is determined by a set-valued mapping F :M → 2M \ {∅} and
its iterates. In what follows, we identify the mapping F and the corresponding
dynamical system.

A sequence η = {pk} is a trajectory of the system F if

(1.1) pk+1 ∈ F (pk) for any k ∈ Z.

A sequence ξ = {xk} is called a d-pseudotrajectory of F if an error of size d > 0
is allowed in every step, i.e. if

dist(xk+1, F (xk)) ≤ d for any k ∈ Z.

The distance between two subsets A and B of Rm is measured by the devi-
ation

dev(A,B) = sup
a∈A

inf
b∈B

|a− b|

or by the Hausdorff distance

distH(A,B) = max{dev(A,B),dev(B,A)}.

If A, B are compact sets, there exists a (possibly not unique) vector Dev(A,B)
∈ Rm such that Dev(A,B) = b − a for some a ∈ A and b ∈ B with |b − a| =
dev(A,B). Let us note that if A is a point and B is a convex set, then the vector
Dev(A,B) is defined uniquely. In addition, if B(t) is a continuous (w.r.t. distH)
family of convex sets, then the vector-function Dev(A,B(t)) is continuous in t

as well (cf. [3, Theorem 1.7.1]).
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The collection of compact subsets of Rm will be denoted by C(Rm), while
the class of compact and convex subsets of Rm will be denoted by CC(Rm). As
usual, for a sequence η = {ηk} ∈ (Rm)Z,

||η||∞ = sup
k∈Z

|ηk|.

In Section 2, we establish several shadowing results (for convex-valued dy-
namical systems and for dynamical systems with sufficiently large “continuous
convex kernels”). In Section 3, similar inverse shadowing results are proved.

2. Shadowing

We begin with a result on shadowing for set-valued dynamical systems.

Theorem 2.1. Let F : Rm → CC(Rm) be a set-valued mapping for which
there exist numbers a > 0 and λ ∈ (0, 1) such that F satisfies the following
stability condition:

(2.1) distH(F (x), F (x + v)) ≤ λ|v| for any x ∈ Rm and |v| ≤ a.

If ξ = {xk} ∈ (Rm)Z is a d-pseudotrajectory for some d < (1 − λ)a, then
there exists a solution η ∈ (Rm)Z of (1.1) such that

||ξ − η||∞ ≤ d

1− λ
.

Proof. Define the sets Hd := {v ∈ Rn : |v| ≤ d/(1− λ)} and H∞
d := (Hd)Z.

Then Hd ⊂ Rn is compact w.r.t. the Euclidean topology and H∞
d ⊂ (Rm)Z is

compact w.r.t. the Tikhonov topology.
Take some V = {vk} ∈ H∞

d and define a sequence W = {wk} by

wk+1 = Dev(xk+1, F (xk + vk)).

Such a sequence W is unique since the sets F (xk + vk) are convex.
Condition (2.1) implies that the mapping F is continuous w.r.t. distH . Hence,

the mapping vk 7→ wk+1 is continuous by [3, Theorem 1.7.1] mentioned in the
introduction. Furthermore,

|wk+1| ≤dist(xk+1, F (xk)) + dist(F (xk), F (xk + vk))

≤ d + λ|vk| ≤ d + λ
d

1− λ
=

d

1− λ
.

Hence, W ∈ H∞
d . Thus, the operator σ defined by σ(V ) = W maps the compact

convex set H∞
d into itself.
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Since the (k + 1)th element of σ(V ) depends on the k th element of V only,
the operator σ is continuous w.r.t. the Tikhonov topology. By the Tikhonov-
Schauder fixed point theorem, there is a sequence V = {vk} ∈ H∞

d such that
σ(V ) = V . Thus,

xk+1 + vk+1 = xk+1 + Dev(xk+1, F (xk + vk)) ∈ F (xk + vk),

and the trajectory η = {pk} ∈ (Rm)Z given by pk := xk +vk is a solution of (1.1)
with

||η − ξ||∞ = ||V ||∞ ≤ d

1− λ
. �

Remark 2.2. A more general shadowing result for contractive multi-valued
mappings was announced in [11, Theorem 4.1]. Let us note that Theorem 4.1
of [11] is a corollary of Theorem 3.1 in the same paper, and that the proof of the
latter theorem contains an error.

Remark 2.3. Let us note that the problem of shadowing for set-valued
dynamical systems has been considered by E. Akin (see [1, Appendix 11]). In [1],
the author defines hyperbolic sets for set-valued dynamical systems. According
to the definition of [1], on a hyperbolic set, a pseudotrajectory with a small error
is shadowed by a unique real trajectory.

The following example shows that, in contrast to the case studied by Akin, in
the conditions of Theorem 2.1 the shadowing trajectory is not necessarily unique.

Consider the plane R2 with coordinates x = (x1, x2) and the segment I =
{x : x1 = 0, 0 ≤ x2 ≤ 1}.

Define a set-valued dynamical system generated by the constant mapping
F (x) = I, x ∈ R2. Obviously, the mapping F satisfies the stability condition of
Theorem 2.1 with any a > 0 and λ ∈ (0, 1).

It is easy to see that the conclusion of Theorem 2.1 holds in the following
form: If ξ is a d-pseudotrajectory with any d > 0, then there exists an exact
trajectory η such that

(2.2) ||ξ − η||∞ ≤ d

(indeed, it is enough to repeat the proof of Theorem 2.1 taking into account the
obvious inequality |wk+1| ≤ d).

Let us show that the corresponding shadowing trajectory is not necessarily
unique. Indeed, fix d > 0 and consider the sequence ξ = {zk} with zk =
(d(1 − 2−|k|), 0). Clearly, ξ is a d-pseudotrajectory of F (and at the same time,
ξ is not a δ-pseudotrajectory with δ < d).

A sequence η = {pk} is a trajectory of F if and only if pk ∈ I for all k. Note
that we cannot find an exact trajectory η for which an analog of (2.2) holds with
a smaller constant on the right.
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Now it is easy to understand that inequality (2.2) holds for any sequence
η = {rk}, where rk belongs to the vertical side of the triangle with vertices
(0, 0), zk, and (0, d

√
1− (1− 2−|k|)2).

The following theorem states that a shadowing result can still be obtained if
F is not convex-valued itself but contains a sufficiently large “continuous convex
kernel” G.

Theorem 2.4. Let F : Rm → 2Rm \ {∅} be a set-valued mapping for which
there exist numbers a > 0 and λ ∈ (0, 1) such that F satisfies the stability
condition (2.1). Fix d < (1− λ)a/2 and assume that there exists a set-valued
mapping G: Rm → CC(Rm) which is continuous w.r.t. distH and satisfies the
following conditions:

G(x) ⊂ F (x) and distH(F (x), G(x)) < d for any x ∈ Rm.

If ξ = {xk} ∈ (Rm)Z is a d-pseudotrajectory of F , then there exists a solution
η ∈ (Rm)Z of (1.1) such that

||ξ − η||∞ ≤ 2d

1− λ
.

Proof. The proof follows the same lines as that of Theorem 2.1. Define the
sets Hd := {v ∈ Rn : |v| ≤ 2d/(1− λ)} and H∞

d := (Hd)Z.
Take some V = {vk} ∈ H∞

d and define a sequence W = {wk} by

wk+1 = Dev(xk+1, G(xk + vk)).

Since the sets G(xk + vk) are convex, the above relations define an operator σ

by σ(V ) = W . This operator is continuous w.r.t. the Tikhonov topology.
The inequalities

|wk+1| ≤dist(xk+1, F (xk)) + dist(F (xk), F (xk + vk))

+ dist(F (xk + vk), G(xk + vk))

≤ d + λ|vk|+ d ≤ 2d + λ
2d

1− λ
=

2d

1− λ

imply that if V ∈ H∞
d , then W ∈ H∞

d . By the Tikhonov–Schauder fixed point
theorem, there is a sequence V = {vk} ∈ H∞

d such that σ(V ) = V . Thus,

xk+1 + vk+1 = xk+1 + Dev(xk+1, G(xk + vk)) ∈ F (xk + vk),

and the trajectory η = {pk} ∈ (Rm)Z given by pk := xk +vk is a solution of (1.1)
with

||η − ξ||∞ = ||V ||∞ ≤ 2d

1− λ
. �

Remark 2.5. At first glance it seems that, for a continuous mapping F : Rm

→ C(Rm) with connected images and with the property that for every x ∈ Rm
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there exists a convex set F̃ (x) ⊂ F (x) such that distH(F̃ (x), F (x)) < ϑ, there
must exist a “continuous convex kernel” G: Rm → CC(Rm) such that G(x) ⊂
F (x) and distH(G(x), F (x)) < ϑ. Simple counterexamples show that this is not
the case.

The aim of the following reasoning is to prove a shadowing result for the
(usually not convex) T -flow of a differential inclusion. Consider a differential
inclusion

(2.3) ẋ(t) ∈ F (x(t)) almost everywhere.

We fix a point x0 and denote by

SF (x0, [0, T ]) := {ϕ ∈ AC([0, T ], Rd) : ϕ is a solution of (2.3), ϕ(0) = x0}

the set of all solutions of the differential inclusion with the initial condition x(0) =
x0, where AC([0, T ], Rd) is the space of all absolutely continuous functions. For
0 ≤ t ≤ T let

SF (x0, t) := {ϕ(t) : ϕ ∈ SF (x0, [0, T ])}
be the reachable set at time t and set BP (0) = {x ∈ Rm : |x| ≤ P}.

Lemma 2.6. Let F : Rm → CC(Rm) be Lipschitz continuous and let F (x) ⊂
BP (0) for some P > 0 and all x ∈ Rm. For every T > 0 there exists a Lipschitz
continuous selection of SF ( · , T ).

Proof. According to [3, Theorem 1.9.1], there exists a Lipschitz continuous
selection f : Rm → Rm of F ; let L > 0 be a Lipschitz constant of f . If ϕ(t, x0) is
the unique solution of

ẋ(t) = f(x(t)), x(0) = x0, 0 ≤ t ≤ T,

then ϕ(t, x0) ∈ SF (x0, [0, T ]) and ϕ(T, x0) ∈ SF (x0, T ). The inequalities

|ϕ(T, x0)− ϕ(T, x1)| ≤ |x0 − x1|+
∫ T

0

|f(ϕ(t, x0))− f(ϕ(t, x1))| dt

≤ |x0 − x1|+ L

∫ T

0

|ϕ(t, x0)− ϕ(t, x1)| dt

and the Gronwall lemma imply that

|ϕ(T, x0)− ϕ(T, x1)| ≤ |x0 − x1|eLT ,

and ϕ(T, · ) is a Lipschitz continuous selection. �

Moreover, every solution x(t) of the differential inclusion (2.3) with x(0) = x0

satisfies the inequality

|x(T )− x(0)| ≤
∫ T

0

|ẋ(s)| ds ≤ PT,
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and

(2.4) diam(SF (x0, T )) ≤ 2PT.

Theorem 2.7. Assume that the mapping F in the differential inclusion (2.3)
satisfies the conditions of Lemma 2.6. Assume, in addition, that there exist
numbers a > 0 and λ ∈ (0, 1) such that the T -flow SF ( · , T ) satisfies the stability
condition

(2.5) distH(SF (x, T ), SF (x + v, T )) ≤ λ|v| for any x ∈ Rm and |v| ≤ a.

If

T ≤ d

2P
and d <

1− λ

2
a,

then for any d-pseudotrajectory ξ = {xk ∈ Rm} of the set-valued dynamical
system

(2.6) zn+1 ∈ SF (zn, T )

there exists a solution η of (2.6) such that

||ξ − η||∞ ≤ 2d

1− λ
.

Proof. Lemma 2.6 guarantees the existence of a Lipschitz continuous se-
lection g of SF ( · , T ). By (2.4),

distH(g(x), SF (x, T )) ≤ 2PT ≤ d,

and Theorem 2.4 applies. �

The stability condition (2.5) is a reasonable generalization of the classical
concept of a contraction. Consider the T -flow of (2.3) with the following proper-
ty:

Definition 2.8. A set-valued mapping F : Rd → 2Rd

satisfies the relaxed
one-sided Lipschitz condition (ROSL) with a constant µ ∈ R if for any x′, x′′ ∈ Rd

and y′ ∈ F (x′) there exists a y′′ ∈ F (x′′) such that

〈y′′ − y′, x′′ − x′〉 ≤ µ|x′′ − x′|2.

Set-valued mappings that satisfy the ROSL condition or related dissipativity
concepts have been thoroughly investigated in [8]–[10]. The results displayed
there indicate that, if µ < 0, then the T -flow of such a mapping is a contrac-
tion in the sense of the stability condition (2.5). For completeness, let us give
a proof of the above-mentioned statement. The following results show that our
stability condition is valid for a reasonably large class of differential inclusions.
Theorem 2.9 was established in [17], for a more elementary proof see [15].
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Theorem 2.9. Let F : Rd → CC(Rd) be Lipschitz continuous. Then the con-
tinuously differentiable solutions of the initial value problem

(2.7) ẋ(t) ∈ F (x(t)) a.e. in [0, T ], x(0) = x0

are dense in the set of all solutions with respect to the maximum norm.

Corollary 2.10. Let F : Rd → CC(Rd) be Lipschitz continuous with Lip-
schitz constant L > 0 and ROSL with constant µ < 0. Then the T -flow of the
differential inclusion (2.7) is a contraction w.r.t. the Hausdorff metric.

Proof. Let x be any solution of (2.7). Without loss of generality we can
assume that x(0) = 0. Let v ∈ Rd be given. By Theorem 2.9, for every ε > 0
there exists a solution xε ∈ C1([0, T ], Rd) of (2.7) such that xε(0) = 0 and
||xε − x||∞ < ε.

The mapping

G(t, x) := {y ∈ Rd : 〈y − ẋε(t), x− xε(t)〉 ≤ −µ|x− xε(t)|2}

has a closed graph, because xε, ẋε, and the inner product are continuous. As F

is ROSL, the right hand side of the time dependent differential inclusion

(2.8) ẏ(t) ∈ F (y(t)) ∩G(t, y(t))

is nonempty, and it is obviously convex and compact. By Theorem 1.1.1 in [3],
it is upper semicontinuous in (t, x). Hence there exists a solution xv,ε of (2.8)
with xv,ε(0) = v according to Theorem 5.1 in [7].

Now

d

dt
|xε(t)− xv,ε(t)|2 = 2〈ẋε(t)− ẋv,ε(t), xε(t)− xv,ε(t)〉 ≤ −2µ|xε(t)− xv,ε(t)|2

implies that

|xε(T )− xv,ε(T )| ≤ |xε(0)− xv,ε(0)|e−µT = e−µT |v|,
|x(T )− xv,ε(T )| ≤ ε + e−µT |v|.

Since this estimate holds for every ε > 0, e−µT is a Lipschitz constant for the
T -flow w.r.t. the Hausdorff distance. �

3. Inverse shadowing

The next two theorems provide some results on inverse shadowing in the
stable case considered above.
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Theorem 3.1. Let η = {pk} ∈ (Rm)Z be a trajectory of a set-valued dy-
namical system generated by a mapping F : Rm → 2Rm \ {∅}. Assume that there
exist numbers a > 0 and λ ∈ (0, 1) such that F satisfies the following stability
condition:

(3.1) distH(F (pk), F (pk + v)) ≤ λ|v| for any k ∈ Z and |v| ≤ a

at the trajectory η. If Φk: Rm → CC(Rm) is a family of mappings such that any
Φk is continuous w.r.t. distH and d-close to F in the a-neighbourhood of η, i.e.

(3.2) distH(F (pk + v),Φk(pk + v)) < d for any k ∈ Z and |v| ≤ a,

where d < (1 − λ)a, then there exists a solution ξ = {xk} ∈ (Rm)Z of the
inclusions

(3.3) xk+1 ∈ Φk(xk), k ∈ Z,

such that
||η − ξ||∞ ≤ d

1− λ
.

Proof. Let Hd and H∞
d be as in the proof of Theorem 2.1. Take some

V = {vk} ∈ H∞
d and define a sequence W = {wk} by

wk+1 = Dev(pk+1,Φk(pk + vk)).

By our conditions on the mappings Φk, the operator defined by σ(V ) := W

is continuous w.r.t. the Tikhonov topology. Furthermore,

|wk+1| ≤ dist(pk+1, F (pk)) + distH(F (pk), F (pk + vk))

+ distH(F (pk + vk),Φk(pk + vk)) ≤ λ|vk|+ d ≤ d

1− λ

hence W ∈ H∞
d .

By the Tikhonov–Schauder theorem, there exists a sequence V = {vk} ∈ H∞
d

such that σ(V ) = V . Thus,

pk+1 + vk+1 = pk+1 + Dev(pk+1,Φk(pk + vk)) ∈ Φk(pk + vk),

and ξ = {xk} ∈ (Rm)Z given by xk := pk + vk is a solution of (3.3) such that

||η − ξ||∞ = ||V ||∞ ≤ d

1− λ
. �

Remark 3.2. Note again that the T -flow of the differential inclusion (2.3)
satisfies the stability condition (3.1) if its right hand side is ROSL with a constant
µ < 0. Hence, every trajectory of the T -flow is shadowed by an approximate
trajectory.

Similarly to the case of shadowing, Theorem 3.1 can be generalized to map-
pings which contain sufficiently large “continuous convex kernels”.
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Theorem 3.3. Let η = {pk} ∈ (Rm)Z be a trajectory of a set-valued dy-
namical system generated by a mapping F : Rm → 2Rm \ {∅} that satisfies the
stability condition (3.1) at the trajectory η. Let {Φk} be a family of mappings
Φk: Rm → 2Rm \ {∅} that are d-close to F in the a-neighbourhood of η, i.e. con-
ditions (3.2) are satisfied, where d < (1− λ)a. Finally, let Γk: Rm → CC(Rm) be
another family of mappings such that any mapping Γk is continuous w.r.t. distH

and satisfies the following assumptions:

Γk(x) ⊂ Φk(x) and distH(Γk(x),Φk(x)) < d.

Then there exists a solution ξ = {xk} ∈ (Rm)Z of (3.3) such that

||η − ξ||∞ ≤ 2d

1− λ
.

Proof. Now we take the same Hd and H∞
d as in the proof of Theorem 2.4.

Take V = {vk} ∈ H∞
d and define a sequence W = {wk} by

wk+1 = Dev(pk+1,Γk(pk + vk)).

Again, the operator defined by σ(V ) := W is continuous w.r.t. the Tikhonov
topology. Furthermore,

|wk+1| ≤dist(pk+1, F (pk)) + distH(F (pk), F (pk + vk))

+ distH(F (pk + vk),Φk(pk + vk)) + distH(Φk(pk + vk),Γk(pk + vk))

≤λ|vk|+ 2d ≤ 2d

1− λ
,

hence W ∈ H∞
d . By the Tikhonov–Schauder theorem, there exists a sequence

V = {vk} ∈ H∞
d such that σ(V ) = V . Thus,

pk+1 + vk+1 = pk+1 + Dev(pk+1,Φk(pk + vk)) ∈ Φk(pk + vk),

and ξ = {xk} ∈ (Rm)Z given by xk := pk + vk is a solution of (3.3) such that

||η − ξ||∞ = ||V ||∞ ≤ 2d

1− λ
. �
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