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ON STEADY NON-NEWTONIAN FLUIDS
WITH GROWTH CONDITIONS

IN GENERALIZED ORLICZ SPACES

Piotr Gwiazda — Agnieszka Świerczewska-Gwiazda

Abstract. We are interested in the existence of weak solutions to steady

non-Newtonian fluids with nonstandard growth conditions of the Cauchy
stress tensor. Since the Lp framework is not suitable to capture the de-

scription of strongly inhomogeneous fluids, we formulate the problem in
generalized Orlicz spaces. The existence proof consists in showing that for

Galerkin approximations the sequence of symmetric gradients of the flow

velocity converges modularly. As an example of motivation for considering
non-Newtonian fluids in generalized Orlicz spaces we recall the smart fluids.

1. Introduction

Our considerations concentrate on the existence of weak solutions to steady
flows of non-Newtonian incompressible fluids described by the equations

(1.1)

v · ∇v − div T (x,Dv) +∇p = f in Ω,

div v = 0 in Ω,

v(x) = 0 on ∂Ω,

where v: Ω → Rd denotes the velocity field, p: Ω → R the pressure, T the stress
tensor, f body forces, Ω ⊂ Rd is a bounded domain with a Lipschitz bounary
and we mean by Dv = (∇v + ∇T v)/2. Since we are interested in the fluids of
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strongly inhomogeneous behavior with the rapid increase in the viscosity, we as-
sume non-standard growth conditions for the Cauchy stress tensor. An example
of such fluids are the smart fluids (in particular electrorheological and magne-
torheological fluids, e.g. [3], [14]). We allow the growth faster than polynomial
and spatially inhomogeneous, hence the Lp-framework cannot capture the de-
scribed situation. The growth conditions are formulated with help of a convex
function, so-called N -function. Before stating the assumptions on T and the
existence result we define an N -function and its complementary function.

Definition 1.1. We call a function M : Ω × Rd×d
sym → R an N -function if it

satisfies the following conditions

(a) M is a Carathéodory function (i.e. measurable function of x for all
ξ ∈ Rd×d

sym and continuous function of ξ for almost all x ∈ Ω) such that
M(x, 0) = 0 and M(x, ξ) = M(x,−ξ) almost everywhere in Ω and for
all ξ ∈ Rd×d

sym .
(b) M(x, ξ) is a convex function of ξ a.e. in Ω.
(c) lim|ξ|→0 supx∈Ω M(x, ξ)/|ξ| = 0.
(d) lim|ξ|→∞ infx∈Ω M(x, ξ)/|ξ| = ∞.

Definition 1.2. The complementary function M∗ to a function M is defined
by

M∗(x, η) = sup
ξ∈Rd×d

sym

(ξ · η −M(x, ξ))

for η ∈ Rd×d
sym and almost all x ∈ Ω.

Remark 1.3. The complementary function M∗ is again an N -function.

Contrary to the usual consideration, e.g. [11], we consider an N -function M

depending not only on |ξ|, but on the whole vector ξ. This recalls to the fact,
that the stress tensor may differ in different directions.

Let us assume that the Cauchy stress tensor T : Ω × Rd×d
sym → Rd×d

sym satisfies
the following conditions:

(T1) T (x, ξ) is a Carathéodory function and T (x, 0) = 0.
(T2) There exist a positive constant cT and an N -function M such that for

all ξ ∈ Rd×d
sym and almost all x ∈ Ω it holds

(1.2) T (x, ξ) · ξ ≥ cT [M(x, ξ) + M∗(x, T (x, ξ))].

(T3) T is strictly monotone, i.e. for all ξ1, ξ2 ∈ Rd×d
sym , ξ1 6= ξ2 and almost all

x ∈ Ω

[T (x, ξ1)− T (x, ξ2)] · [ξ1 − ξ2] > 0.
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(T4) For all ξ ∈ Rd×d
sym , almost all x ∈ Ω, some c > 0 and q > 3d/(d + 2) the

N -function M satisfies

(1.3) M(x, ξ) ≥ c|ξ|q.

Before defining the solutions and stating the main result we need to introduce
the proper spaces to capture the formulated problem. The generalized Orlicz
class LM (Ω) is the set of all measurable functions ξ: Ω → Rd×d

sym such that∫
Ω

M(x, ξ) dx < ∞.

By LM (Ω) we denote the generalized Orlicz space which is the set of all measur-
able functions ξ: Ω → Rd×d

sym which satisfy∫
Ω

M(x, λξ(x)) dx → 0 as λ → 0.

The Orlicz space is a Banach space with respect to the Luxemburg norm

‖u‖ = inf
{

λ > 0:
∫

Ω

M

(
x,

u

λ

)
dx ≤ 1

}
.

By EM (Ω) we denote the closure of all bounded functions in LM (Ω). The space
LM∗(Ω) is the dual space of EM (Ω). We are interested in the case of rapidly
growing N -functions where the so-called ∆2-condition is not satisfied. We say
that an N -function M satisfies ∆2-condition if for some nonnegative, integrable
in Ω function h and a constant k > 0 it holds

M(x, 2ξ) ≤ kM(x, ξ) + h(x) for all ξ ∈ Rd×d
sym and a.a. x ∈ Ω.

If this condition fails we lose numerous properties of the spaces, in particular we
only know EM  LM  LM and LM is neither separable nor reflexive. These
properties of Orlicz spaces with a vector-valued argument of an N -function are
proved in [15]. The proofs essentially follow the same lines as the ones for classical
Orlicz spaces, see e.g. [1, Chapter 8], [7, Chapter II, Theorem 10.2].

We are interested in the existence of weak solutions to problem (1.1). By
D(Ω) we understand the space of all C∞−functions with compact support. Let
V(Ω) be the set of all functions which belong to D(Ω) and are divergence-free.
Moreover, by Lq,W 1,q, we mean the standard Lebesgue and Sobolev spaces,
by L2

div the closure of V w.r.t. the ‖ · ‖L2-norm. By q′ we mean the conjugate
exponent to q, namely 1/q+1/q′ = 1. We mean by 〈 · , · 〉M the dual pair between
LM (Ω) and LM∗(Ω) and by ( · , · ) the scalar product in L2(Ω). Finally, Rd×d

sym

stands for the space of symmetric d× d-matrices.
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Definition 1.4. Let f be in the form f = div F with F ∈ Rd×d
sym and F ∈

LM∗(Ω). We call v a weak solution to (1.1) if v ∈ L2
div (Ω), Dv ∈ LM (Ω) and

the following is satisfied for all ϕ ∈ V(Ω)∫
Ω

(v · ∇v · ϕ + T (x, Dv) ·Dϕ) dx = −〈F,Dϕ〉M .

Theorem 1.5. Let f be in the form f = divF with F ∈ Rd×d
sym and F ∈

LM∗(Ω). Moreover, let T satisfy (T1)–(T4). Then there exists a weak solution
to (1.1).

Remark 1.6. For any N -functions M1, M2 with complementary functions
M∗

1 and M∗
2 respectively, we have

M1(x, ξ) ≤ cM2(x, ξ) ⇒ M∗
2 (x, ξ) ≤ 1

c
M∗

1 (x, cξ)

for some constant c > 0, almost all x ∈ Ω and all ξ ∈ Rd×d
sym . Hence condition

(1.3) provides

(1.4) M∗(x, ξ) ≤ c(q′−1)|ξ|q
′

for a.a. x ∈ Ω and all ξ ∈ Rd×d
sym .

Consequently, LM∗ = LM∗ = EM∗ is a separable space.

Abstract elliptic equations with rapidly growing coefficients were widely stud-
ied, e.g. [4], [6]. Contrary to those results on elliptic equation we consider the
system of equations containing the divergence-free condition. This imposes dif-
ferent definition of the spaces for existence of solutions and the characterization
of the dual spaces to Orlicz and Orlicz–Sobolev spaces is not straightforward.
Contrary to [4], [6] we do not use the generalization of the monotonicity methods
to non reflexive and non separable Orlicz spaces.

The proof presented here provides that the mapping T is of class (Sm). The
notion was introduced in the overview paper [12], nevertheless we recall it and
adapt to the considered problem.

Definition 1.7. A mapping T : Dom(T ) ⊂ LM → LM∗ is of class (Sm) if

(1.5)


{Dun} ⊂ Dom(T ),

Dun ∗
⇀ Du in LM ,

T (Dun) ∗
⇀ χ in LM∗ ,

lim sup〈Dun, T (Dun)〉M ≤ 〈Du,χ〉M ,

imply

(1.6)


Du ∈ Dom(T ),

χ = T (Du),

〈Dun, T (Dun)〉M → 〈Du, χ〉M ,

Dun → Du modularly in LM .
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Mustonen and Tienari [12], using partial results of Landes [8] presented that
the operator T satisfying certain set of conditions including the growth conditions
formulated in Orlicz spaces, is of class (Sm). In the present paper we allow an
N -function to be more general than in [8], [12] (namely, dependent on x and on
the whole vector ξ) and using more advanced tools of Young measures, provide
the proof much shorter to the one presented in [12].

The paper is organized as follows: we start in Section 2 with short prelimi-
naries on generalized Orlicz spaces and Young measures, which are included in
the paper for completeness. Section 3 is devoted to the proof of the main result
Theorem 1.5. The proof essentially consists in showing that the mapping T is of
class (Sm).

2. Preliminaries

2.1. Generalized Orlicz spaces. The functional

ξ 7→
∫

Ω

M(x, ξ(x)) dx

is a modular in LM (Ω). A sequence {zj} converges modularly to z in LM (Ω) if
there exists λ > 0 such that∫

Ω

M

(
x,

zj − z

λ

)
dx → 0.

We will use the notation zj M−→ z for the modular convergence in LM (Ω).
Next, we recall an analogue to the Vitali’s lemma, however for the modular

convergence instead of the strong convergence in Lq.

Lemma 2.1. Let zj : Ω → Rd×d
sym be a measurable sequence. Then zj M−→ z in

LM (Ω) modularly if and only if zj → z in measure and there exist some λ > 0
such that the sequence {M( · , λzj)} is uniformly integrable, i.e.

lim
R→∞

(
sup
j∈N

∫
{x:|M(x,λzj)|≥R}

M(x, λzj) dx

)
= 0.

Proof. Note that zj → z in measure if and only if M( · , (zj − z)/λ) → 0
in measure for all λ > 0. Moreover the convergence zj → z in measure implies
that for all measurable sets A ⊂ Ω it holds

lim inf
j→∞

∫
A

M(x, zj) dx ≥
∫

A

M(x, z) dx.

Note also that the convexity of M implies∫
A

M

(
x,

zj − z

λ

)
dx ≤

∫
A

M

(
x,

zj

2λ

)
dx +

∫
A

M

(
x,

z

2λ

)
dx.
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Hence by the classical Vitali’s lemma for f j(x) = M(x, (zj − z)/λ) we obtain
that f j → 0 strongly in L1(Ω). �

For the proof of the following elementary estimate see e.g. [11].

Proposition 2.2 (Fenchel–Young inequality). Let M be an N -function and
M∗ a complementary to M , then the following inequality is satisfied

|ξ · η| ≤ M(x, ξ) + M∗(x, η)

for all ξ, η ∈ Rd×d
sym and a.a. x ∈ Ω.

2.2. Young measures. In the last step of the existence proof we use the
Young measures properties. For the reader not familiar with the theory of
measure-valued solutions we recall the useful notions. The proofs of the fol-
lowing facts can be found in [13, Corollaries 3.2–3.4], [2], [10]. In the following1

C0(Rd×d
sym) denotes the closure of the space of continuous functions on Rd×d

sym with
compact support with respect to the ‖ · ‖∞-norm. Its dual space can be identi-
fied with M(Rd×d

sym), the space of signed Radon measures with finite mass. The
related duality pairing is given by

〈µ, f〉 =
∫

Rd×d
sym

f(λ) dµ(λ).

Definition 2.3. A map µ: Ω → M(Rd×d
sym) is called weakly* measurable if

the functions x 7→ 〈µ(x), f〉 are measurable for all f ∈ C0(Rd×d
sym).

Theorem 2.4 (Fundamental theorem on Young measures). Let Ω ⊂ Rd be
a measurable set of finite measure and let zj : Ω → Rd×d be a sequence of mea-
surable functions. Then there exists a subsequence zjk and a weakly* measurable
map ν: Ω →M(Rd×d

sym) such that the following holds:

(a) νx ≥ 0, ‖νx‖M(Rd×d
sym ) =

∫
Rd×d

sym
dνx ≤ 1 for almost all x ∈ Ω.

(b) For all g ∈ C0(Rd×d
sym)

g(zjk) ∗⇀g in L∞(Ω)

where g(x) = 〈νx, g〉.
(c) Let K ⊂ Rd×d

sym be compact. Then supp νx ⊂ K if dist(zjk ,K) → 0 in
measure.

(d) Additionally ‖νx‖M(Rd×d
sym ) = 1 for almost all x ∈ Ω if and only if the

“tightness condition” is satisfied, i.e.

lim
M→∞

sup
k
|{|zjk | ≥ M}| = 0.

(1) We adapt the statement of most of the facts to the considered problem, however in
general all the recalled theorems hold for any Rn.
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(e) If the tightness condition is satisfied and moreover if A ⊂ Ω is mea-
surable, g ∈ C(Rd×d

sym) and g(zjk) is relatively weakly compact in L1(A),
then

g(zjk) ⇀ g in L1(A), g(x) = 〈νx, g〉.
(f) If the tightness condition is satisfied, then in (c) one can replace “if”

by “if and only if”.

Remark 2.5. The map ν: Ω →M(Rd×d
sym) is called the Young measure gener-

ated by the sequence {zjk}. Every (weakly* measurable map) ν: Ω →M(Rd×d
sym)

that satisfies (a) is generated by some sequence {zk}.
Remark 2.6. If, for some s > 0 and all j ∈ N holds

∫
Ω
|zj |s ≤ k, then the

tightness condition is satisfied.

We recall the following lemmas

Lemma 2.7. Suppose that the sequence of maps zj : Ω → Rd×d
sym generates the

Young measure ν. Let F : Ω × Rd×d
sym → R be a Carathéodory function. Let also

assume that the negative part F−(x, zj(x)) is weakly relatively compact in L1(Ω).
Then

lim inf
j→∞

∫
Ω

F (x, zj(x)) dx ≥
∫

Ω

∫
Rd×d

sym

F (x, λ) dνx(λ) dx.

If, in addition, the sequence of functions x 7→ |F |(x, zj(x)) is weakly relatively
compact in L1(Ω) then

F ( · , zj( · )) ⇀

∫
Rd×d

sym

F (x, λ) dνx(λ) in L1(Ω)

Lemma 2.8. Suppose that a sequence {zj} of measurable functions from Ω
to Rd×d

sym generates the Young measure ν: Ω →M(Rd×d
sym). Then

zj → z in measure if and only if νx = δz(x) a.e.

3. Existence of solutions. Proof of Theorem 1.5

We define an operator induced by T , which we denote in the same way, with
a domain Dom(T ) = LM (Ω). For the proof of Theorem 1.5 we use the Galerkin
method to construct approximate solutions. From the energy estimates we con-
clude the boundedness and weak precompactness of the sequence of approximate
solutions. The appropriate compact embedding provides the weak convergence
of the term {vn · ∇vn}. For details we refer to e.g. [5], [9]. The main dif-
ficulty resolves to characterizing the limit of the highest order nonlinear term
{T (x,Dvn)}. This follows once we show that T is of class (Sm). Thus we divide
this section into two lemmas showing first that T satisfies (1.5), which in the
second step leads to conditions (1.6).
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Lemma 3.1. Let T satisfy (T1)–(T4). Then T and the sequence {Dvn},
where {vn} are the Galerkin approximations to (1.1), satisfy (1.5).

Proof. We construct the Galerkin approximations to (1.1). Let {ωi}∞i=1

be the set of eigenvectors of the Stokes operator. Then ωi are smooth and
divergence-free functions for all i ∈ N. We define vn =

∑n
i=1 αn

i ωi, αn
i ∈ R

(vn · ∇vn, ωi) + (T (x, Dvn), Dωi) = −〈F,Dωi〉M

Multiplying by αn
i and summing over i = 1, . . . , j with j ≤ n yields

(3.1)
∫

Ω

vn · ∇vn · vj dx +
∫

Ω

T (x, Dvn) ·Dvj dx = −〈F,Dωi〉M

hence for j = n it holds

(3.2)
∫

Ω

T (x,Dvn) ·Dvn dx = −〈F,Dωi〉M .

We estimate the right-hand side of the above

|〈F,Dωi〉M | ≤
∫

Ω

∣∣∣∣ 2
cT

F · cT

2
Dvn

∣∣∣∣ dx

F−Y
≤

∫
Ω

M∗
(

x,
2
cT

F

)
dx +

∫
Ω

M

(
x,

cT

2
Dvn

)
dx

≤
∫

Ω

M∗
(

x,
2
cT

F

)
dx +

cT

2

∫
Ω

M

(
x, Dvn

)
dx.

Using then coercivity condition (1.2) on T we obtain

(3.3)
cT

2

∫
Ω

M(x,Dvn) dx+cT

∫
Ω

M∗(x, T (x,Dvn)) dx ≤
∫

Ω

M∗
(

x,
2
cT

F

)
dx.

Since (1.4) holds, then F ∈ LM∗(Ω) and the right-hand side is finite. Condition
(1.3) provides that {Dvn} is uniformly bounded in the space Lq(Ω) for q >

3d/(d + 2). Since W 1,q(Ω) is compactly embedded in L2(Ω), we conclude the
following

Dvn ⇀ Dv weakly in Lq(Ω)

and

vn → v strongly in L2(Ω).

Moreover, there exists a χ ∈ LM∗(Ω) such that

T ( · , Dvn) ∗
⇀ χ weakly* in LM∗(Ω).

Letting n →∞ in (3.1) provides

(3.4)
∫

Ω

v · ∇v · vj dx +
∫

Ω

χ ·Dvj dx = −〈F,Dvj〉M .
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The first term vanishes, see e.g. [10, Lemma 2.44, p. 216]. Since (1.4) holds, then
LM∗ = LM∗ = EM∗ is a separable space. Recalling that (EM∗)∗ = LM we let
j →∞ in (3.4) and using Banach–Alaoglu theorem obtain

(3.5)
∫

Ω

χ ·Dv dx = −〈F,Dv〉M .

For later use we observe that letting n →∞ in (3.2) gives

lim sup
n→∞

∫
Ω

T (x,Dvn) ·Dvn dx = −〈F,Dv〉M

which together with (3.5) provides

(3.6) lim sup
n→∞

∫
Ω

T (x, Dvn) ·Dvn dx =
∫

Ω

χ ·Dv dx. �

Lemma 3.2. Let T satisfy (T1)–(T4) and Dom(T ) = LM (Ω). Then T is of
class (Sm).

Proof. Since T is monotone and T (x, 0) = 0, then trivially the negative
part is weakly relatively compact in L1(Ω). Hence due to Lemma 2.7

lim inf
n→∞

∫
Ω

T (x,Dvn(x)) ·Dvn dx ≥
∫

Ω

∫
Rd×d

sym

T (x, ξ) · ξ dνx(ξ) dx

where νx is the Young measure generated by the sequence {Dvn}. Combining it
with (3.6) we obtain that

(3.7)
∫

Ω

∫
Rd×d

sym

T (x, ξ) · ξ dνx(ξ) dx ≤
∫

Ω

χ ·Dv dx.

The monotonicity of T provides that

(3.8)
∫

Ω

∫
Rd×d

sym

h(x, ξ) dνx(ξ) dx ≥ 0,

where h is defined by

h(x, ξ) := [T (x, ξ)− T (x,Dv)] · [ξ −Dv].

Since {Dvn} and {T (·, Dvn)} are weakly relatively compact in L1(Ω) and T is
a Carathéodory function, then

Dv =
∫

Rd×d
sym

ξ dνx(ξ) a.e. in Ω

and

(3.9) χ =
∫

Rd×d
sym

T (x, ξ) dνx(ξ) a.e. in Ω
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by the second part of Lemma 2.7. Then

(3.10)
∫

Ω

∫
Rd×d

sym

h(x, ξ) dνx(ξ) dx =
∫

Ω

∫
Rd×d

sym

T (x, ξ) · ξ dνx(ξ) dx−
∫

Ω

χ ·Dv dx

which is nonpositive due to (3.7). Combining (3.7), (3.8) and (3.10) implies
that

∫
Rd×d

sym
h(x, ξ) dνx(ξ) = 0 for almost all x ∈ Ω. Moreover, since νx ≥ 0 is

a probability measure and T (x, · ) is strongly monotone, we conclude that

supp{νx} = {Dv(x)} a.e. in Ω.

Finally, we obtain that νx = δDv(x) almost everywhere, which inserted to (3.9)
provides

χ = T (x,Dv) a.e. in Ω.

To show that Dvn M−→ Dv in LM (Ω), observe that the direct application of
Lemma 2.8 implies that Dvn → Dv in measure. To apply Lemma 2.1 we recall
(1.2) and establish the convergence in L1(Ω) of the term T (x, Dvn) ·Dvn.

We can set an = T (x,Dvn) ·Dvn, a = T (x,Dv) ·Dv and claim that

an ≥ 0, a ∈ L1(Ω),
∫

Ω

an dx →
∫

Ω

a dx, an → a a.e. in Ω.

Noticing that∫
Ω

|an − a| dx =
∫

Ω

(an − a) dx + 2
∫
{x:an≤a}

(a− an) dx

we conclude by Lebesgue’s Dominated Convergence Theorem that

T (x, Dvn) ·Dvn → T (x,Dv) ·Dv in L1(Ω).

This implies the uniform integrability, which together with coercivity conditions
(1.2) provides the uniform integrability of the sequence {M(x, Dvn)} and com-
pletes the proof.2 �
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