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NODAL SOLUTIONS OF A PERTURBED ELLIPTIC PROBLEM

Yi Li — Zhaoli Liu — Chunshan Zhao

Abstract. Multiple nodal solutions are obtained for the elliptic problem

−∆u = f(x, u) + εg(x, u) in Ω,

u = 0 on ∂Ω,

where ε is a parameter, Ω is a smooth bounded domain in RN , f ∈ C(Ω×R),

and g ∈ C(Ω× R). For a superlinear C1 function f which is odd in u and

for any C1 function g, we prove that for any j ∈ N there exists εj > 0
such that if |ε| ≤ εj then the above problem possesses at least j distinct

nodal solutions. Except C1 continuity no further condition is needed for g.

We also prove a similar result for a continuous sublinear function f and for
any continuous function g. Results obtained here refine earlier results of

S. J. Li and Z. L. Liu in which the nodal property of the solutions was not

considered.

1. Introduction

In this paper, we consider the perturbed elliptic boundary value problem

(1.1)ε

−∆u = f(x, u) + εg(x, u) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, ε is a parameter,
f, g ∈ C(Ω × R), and f(x, t) is odd in t. Based on the idea of essential values
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developed in [14] and [15], existence of multiple solutions was studied in [19].
However, the nodal property of the solutions was not considered there. In the
present paper, we shall refine the results in [19] and show that the solutions
obtained there could be nodal solutions. A solution u ∈ C(Ω) is said to be
a nodal solution if the set {x ∈ Ω : u(x) 6= 0} has at least two connected
components.

For various elliptic problems, symmetry of the nonlinearity usually results in
existence of multiple solutions. In some cases, problems with perturbations from
symmetry also have multiple solutions; see [3]–[5], [22] and [24] for instance. But
only for problems which are invariant under various symmetry groups, multiple
nodal solutions were obtained in the past. (Please refer to [2], [6], [9], [10], [17],
[20] and references therein.) In this paper the perturbation problem (1.1)ε does
not have any symmetry and no known results on existence of multiple nodal
solutions can be applied to it.

We shall present two kinds of results on existence of multiple nodal solutions
for (1.1)ε. To state our first result, we need the following assumptions.

(g0) g ∈ C1(Ω× R).
(f0) f ∈ C1(Ω× R).
(f1) f(x,−t) = −f(x, t) for all x ∈ Ω and t ∈ R.
(f2) lim|t|→+∞ |f ′t(x, t)||t|−p = 0 uniformly in x if N ≥ 3, where p ∈ (0, 4/

(N − 2));
lim|t|→+∞ ln(|f ′t(x, t)|+ 1)|t|−2 = 0 uniformly in x if N = 2;
and no assumption if N = 1.

(f3) There exist constants M > 0 and µ > 2 such that

0 < F (x, t) :=
∫ t

0

f(x, s) ds ≤ 1
µ

tf(x, t), for all x ∈ Ω, |t| ≥ M.

Theorem 1.1. Suppose that (g0) and (f0)–(f3) are satisfied. Then for any
j ∈ N, there exists εj > 0 such that if |ε| ≤ εj problem (1.1)ε possesses at least
j distinct nodal solutions corresponding to positive critical values. That is, for
such a solution u,

1
2

∫
Ω

|∇u|2 −
∫

Ω

F (x, u)− ε

∫
Ω

G(x, u) > 0

where G(x, t) =
∫ t

0
g(x, s) ds.

Remark 1.2. The solutions obtained in Theorem 1.1 are classical solutions
and are in C2,α for any 0 < α < 1.

The case we deal with in Theorem 1.1 is called the superlinear case because
of condition (f3). Next we consider the sublinear case. For the sublinear case,
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we just need to impose conditions on f and g for t near 0. We assume that there
exists δ > 0 such that the following assumptions hold.

(g′0) g ∈ C(Ω× (−δ, δ)).
(f′0) f ∈ C(Ω× (−δ, δ)).
(f′1) f(x,−t) = −f(x, t) for all x ∈ Ω and t ∈ (−δ, δ).
(f′2) lim|t|→0 F (x, t)t−2 = +∞.
(f′3) 2F (x, t) > tf(x, t) > 0 for all x ∈ Ω and 0 < |t| < δ.

Theorem 1.3. Suppose that (g′0) and (f′0)–(f′3) are satisfied. Then for any
j ∈ N, there exists εj > 0 such that if |ε| ≤ εj then problem (1.1)ε possesses at
least j distinct nodal solutions corresponding to negative critical values. That is,

1
2

∫
Ω

|∇u|2 −
∫

Ω

F (x, u)− ε

∫
Ω

G(x, u) < 0

for such a solution u.

Remark 1.4. (a) The solutions obtained in Theorem 1.3 are weak solutions
and are in C1,α for any 0 < α < 1. Because of (f′2) and (f′3), f can not be a C1

function. But if f and g are Cα functions for some 0 < α < 1 then the solutions
in Theorem 1.3 are classical solutions in C2,α.

(b) To make the arguments more transparent, we do not seek maximum
generality of the assumptions in Theorem 1.1 or Theorem 1.3. The conditions
listed above are a little bit stronger than those in [19, Theorem 1].

Remark 1.5. (a) For the unperturbed problem (that is, ε = 0), the existence
of infinitely many nodal solutions has been studied by several authors. If f

satisfies (f0)–(f3), infinitely many nodal solutions for Dirichlet boundary value
problems were first proved to exist by Bartsch in [6]. The result in [6] was
improved by Li and Wang in [20], where results on nodal solutions were presented
in several interesting cases. Infinitely many nodal solutions for equations on the
whole space RN were obtained in [7]. Again for the unperturbed problem (that
is, ε = 0), if f satisfies (f′0)–(f′3), infinitely many nodal solutions of Dirichlet
boundary value problems were also obtained in [20] and [25]. It seems that the
approaches developed in [6], [7], [20] and [25] for the unperturbed problem do
not suit the perturbed case.

(b) Multiple solutions of the perturbed problem have been obtained by many
authors, without nodal properties of the solutions being considered. Results in
this direction are mainly obtained through variational approaches. Similar prob-
lems to the one considered here were recently studied by Chambers and Ghous-
soub in [11] where more references on related results can be found. Degiovanni
and Radulescu studied a perturbation eigenvalue problem in [15] and obtained
multiple solutions by using the idea of essential value, which was initiated and
developed by Degiovanni and Lancelotti in [14]. The method devised in [14]
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has also been successfully used in [19]. In all the references mentioned here on
perturbation problems, the authors were mainly interested in obtaining multiple
solutions, leaving nodal properties of the solutions unconsidered.

(c) We would like to emphasize that, except for being of class C1 or C, no
further condition is imposed on g in Theorem 1.1 or Theorem 1.3. This brings
three major difficulties. First, since we do not assume g(x, 0) = 0, at least one
of the two cones PE = {u ∈ H1

0 (Ω) : u ≥ 0} and −PE is not invariant for any
descending flow associated with problem (1.1)ε. But the methods for finding
nodal solutions developed in the literature were essentially based on invariance
of P and −P . Thus we must adjust the reliance on invariance of P and −P .
Second, the functional associated with problem (1.1)ε is not even and genus
can not be used in a direct way; instead, we shall construct essential values via
genus for the unperturbed problem. Third, problem (1.1)ε itself does not have
a variational setting and it must be modified in order for a variational argument
to be effective. For example

∫
Ω

G(x, u) is not well-defined in H1
0 (Ω).

In the following, we use Ci to stand for a constant.

2. Preliminaries

In their study of existence of multiple solutions for a perturbed elliptic eigen-
value problem in [14], Degiovanni and Lancelotti introduced the notion of essen-
tial value for a functional of class C . It turns out that an essential value c is
a critical value if the functional is in C1 and satisfies the (PS)c condition. The
most important property of this notion is that if c is an essential value of I then
in any neighbourhood of c any small perturbation of I must also have an es-
sential value. This approach has been successfully applied in obtaining multiple
solutions in several interesting cases. In this paper, we shall follow the idea of
Degiovanni and Lancelotti, but we shall define essential value in quite a different
way, so that it can be applied to problem (1.1)ε.

Assume that E is a Banach space, D is a closed subset of E, and I ∈
C1(E, R). For b ∈ R, we set Ib = {u ∈ E : I(u) ≤ b} and call Ib a level
set of I.

Definition 2.1. Let a, b ∈ R with a < b. The pair (Ib, Ia) is said to be
trivial with respect to D if for any ε > 0, any compact topological space Y , and
any h ∈ C(Y, Ib ∪ D), there exists h̃ ∈ C(Y, Ia ∪ D) such that h̃(x) = h(x) for
any x ∈ Y with h(x) ∈ Ia−ε ∪ D.

Definition 2.2. A real number c is said to be an essential value of I with
respect to D if for any ε > 0 there exist a, b ∈ (c− ε, c + ε) with a < b such that
the pair (Ib, Ia) is not trivial with respect to D.
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The following theorem is similar to [14, Theorem 2.5] and we include a proof
here for completeness.

Theorem 2.3. Let a, b ∈ R with a < b. Let us assume that I has no essential
value in [a, b] with respect to D. Then the pair (Ib, Ia) is trivial with respect to D.

Proof. Since I has no essential value with respect to D in [a, b], there exist
a finite number of open intervals {(ai, bi)}k

i=1 such that [a, b] ⊂
⋃k

i=1(ai, bi) and
(Id, Ic) is trivial with respect to D for any ai ≤ c < d ≤ bi and i = 1, . . . , k.
Without loss of generality, we assume that

ai < bi−1 < ai+1 < bi for i = 2, . . . , k − 1,(2.1)

a1 < a < a2,(2.2)

bk−1 < b < bk.(2.3)

Assume ε > 0, Y a compact topological space, and h ∈ C(Y, Ib ∪ D). Then
increasing a1 if necessary, we have, in addition to (2.2), a− ε < a1. Thus we can
choose ε∗ > 0 such that

(2.4) a− a1 < ε− ε∗.

By (2.3), h ∈ C(Y, Ibk ∪ D). Since (Ibk , Iak) is trivial with respect to D, there
exists h1 ∈ C(Y, Iak ∪ D) such that h1(x) = h(x) for x ∈ Y with h(x) ∈
Iak−ε∗∪D. Now by (2.1), h1 ∈ C(Y, Ibk−1∪D). Since (Ibk−1 , Iak−1) is trivial with
respect to D, there exists h2 ∈ C(Y, Iak−1 ∪ D) such that h2(x) = h1(x) = h(x)
for x ∈ Y with h1(x) = h(x) ∈ Iak−1−ε∗ ∪ D. After k steps in this way, we
find hk ∈ C(Y, Ia1 ∪ D) such that hk(x) = . . . = h1(x) = h(x) for x ∈ Y with
hk−1(x) = . . . = h1(x) = h(x) ∈ Ia1−ε∗ ∪D. But (2.2) implies hk ∈ C(Y, Ia∪D)
while (2.4) yields hk(x) = h(x) for x ∈ Y with h(x) ∈ Ia−ε ∪D. Therefore, the
pair (Ib, Ia) is trivial with respect to D. �

3. Proof of Theorem 1.1

By (f0)–(f3), there exists a constant L∗ > 0 such that

(3.1) t(f(x, t) + L∗t) > 0 for t 6= 0.

Denote E = H1
0 (Ω). Except the usual norm ‖u‖ of E induced by the inner

product (u, v) =
∫
Ω
(∇u · ∇v) we shall make use of the equivalent norm ‖u‖∗

induced by the inner product

(3.2) (u, v)∗ =
∫

Ω

(∇u · ∇v + L∗uv).
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And apart from E, the space X := C1
0 (Ω) will also be used. Weak solutions of

the unperturbed problem (1.1)0 are precisely critical points of

I(u) =
1
2

∫
Ω

|∇u|2 −
∫

Ω

F (x, u), u ∈ E,

which is a C2 functional, by (f0) and (f2). Since there is no growth condition
imposed on g near |t| = ∞, in order for the perturbed problem to have a varia-
tional structure the function g should be cut off. For any k ∈ N, choose a smooth
function βk(t) such that βk(t) = 1 if |t| ≤ k, that βk(t) = 0 if |t| ≥ k + 1,
and that 0 < βk(t) < 1 if k < |t| < k + 1. Let gk(x, t) = βk(t)g(x, t) and
Gk(x, t) =

∫ t

0
gk(x, s) ds. For any k ∈ N, choose ε1(k) > 0 such that for all x ∈ Ω

and t ∈ R,

(3.3) ε1(k)|gk(x, t)| < 1, ε1(k)|Gk(x, t)| < 1, ε1(k)|tgk(x, t)| < 1.

For k ∈ N and |ε| ≤ ε1(k), set

Iε,k(u) =
1
2

∫
Ω

|∇u|2 −
∫

Ω

[F (x, u) + εGk(x, u)], u ∈ E.

Note that Iε,k is a C2 functional and critical points of Iε,k are solutions of

(3.4)
−∆u = f(x, u) + εgk(x, u) in Ω,

u = 0 on ∂Ω.

Any solution of (3.4) with L∞ norm less than k is a solution of problem (1.1)ε.
The positive cone P and the negative cone −P in the space X are very

important in obtaining nodal solutions. They are defined by

±P = {u ∈ X : ±u ≥ 0}.

Denote D = P ∪ (−P ). Then any solution of (1.1)ε in X \D is a nodal solution.
Clearly, the interior int(D) of D in X is nonempty. This property plays an
important role in obtaining solutions of (3.4) in X \ D, and this is why we have
taken the space X into consideration. The positive cone PE and the negative
cone −PE in the space E do not have this property.

Now we plan to prove the existence of an unbounded increasing sequence of
essential values of I with respect of D. We follow an argument in [19]. Denote
by λ1 < λ2 ≤ λ3 ≤ · · · all the eigenvalues of −∆ with Dirichlet boundary
condition and by e1, e2, e3, . . . the corresponding eigenfunctions, with the explicit
meaning that each λi is counted as many times as its multiplicity. Denote Ek =
span{e1, . . . , ek} and use E⊥

k to represent the orthogonal complement of Ek in E.
By (f2) and (f3), there exists an increasing sequence of positive numbers {Rk}
(see [1], [23]) such that Rk →∞ and

I(u) ≤ 0, for all u ∈ Ek, ‖u‖ ≥ Rk.
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Let Bk = {u : u ∈ Ek, ‖u‖ ≤ Rk} and ∂Bk be the boundary of Bk in Ek. Define
a sequence {Φk} of sets of functions inductively as

Φ1 = {h : h ∈ C(B1, X), h is odd, and h|∂B1 = id}

and, for k = 1, 2, . . . ,

Φk+1 = {h : h ∈ C(Bk+1, X), h is odd, h|∂Bk+1 = id, and h|Bk
∈ Φk}.

Note that unlike [19], here we use the space X instead of E in constructing Φk.
This is important for obtaining nodal solutions. Define, for k = 1, 2, . . . ,

bk = inf
h∈Φk

sup
u∈h(Bk)\D

I(u).

It is obvious that b1 ≤ b2 ≤ b3 ≤ . . .

We are going to prove bk → ∞. Here we adopt a direct argument; the
argument in [19] is indirect. For this we first have

Lemma 3.2. For any R > 0 and r > 0, there exists n0 ∈ N such that if
n ≥ n0 then

sup
u∈E⊥

n ,‖u‖≤R

∫
Ω

|F (x, u)| ≤ r.

Proof. We first consider the case N ≥ 3. For any δ > 0 the condition (f2)
implies the existence of two constants Kδ and Cδ depending on δ such that∫

Ω

|F (x, u)| ≤ δ

∫
|u|≥Kδ

|u|2
∗

+ Cδ

∫
|u|<Kδ

|u|2 ≤ C1δ‖u‖2
∗

+ Cδ‖u‖2L2(Ω),

where 2∗ = 2N/(N − 2). Thus if u ∈ E⊥
n and ‖u‖ ≤ R, then∫

Ω

|F (x, u)| ≤ C1δ‖u‖2
∗

+
Cδ

λn+1
‖u‖2 ≤ C1δR

2∗ +
CδR

2

λn+1
.

First choosing δ > 0 sufficient small and then n0 sufficiently large, we obtain
the result. Now we consider the case N = 2. By [16, Theorem 7.15], there are
positive constants C2 and C3 depending on R such that for u ∈ E and ‖u‖ ≤ R,∫

Ω

exp(C2u
2) ≤ C3.

For C2 in the last inequality, the condition (f2) yields K > 0 such that∫
Ω

|F (x, u)| ≤
∫
|u|≥K

exp
(

1
2
C2u

2

)
|u|+ C4

∫
|u|<K

|u|.

Therefore, Hölder inequality yields for u ∈ E⊥
n and ‖u‖ ≤ R,∫

Ω

|F (x, u)| ≤ C5‖u‖L2(Ω) ≤ C5Rλ
−1/2
n+1 .

The constants K, C4, and C5 may depend on R. The last inequality implies the
result. The case N = 1 is trivial. �
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Now we have

Lemma 3.3. bk →∞.

Proof. For any G > 0, by Lemma 3.2 there exists n ∈ N such that Rn+1 >

2
√

G and

sup
u∈E⊥

n ,‖u‖≤2
√

G

∫
Ω

|F (x, u)| ≤ G.

Then for u ∈ E⊥
n and ‖u‖ = 2

√
G,

I(u) =
1
2

∫
Ω

|∇u|2 −
∫

Ω

F (x, u) ≥ G.

We claim that for any h ∈ Φn+1,

(3.5) (h(Bn+1) \ D) ∩ E⊥
n ∩ S2

√
G 6= ∅.

Here S2
√

G is the sphere in (E, ‖ · ‖) centered at 0 and with radius 2
√

G. To
prove (3.5) it is sufficient to show

(3.6) (h(Bn+1)) ∩ E⊥
n ∩ S2

√
G 6= ∅,

since D ∩E⊥
n ∩ S2

√
G = ∅. To prove (3.6), we define O1 = {u ∈ Bn+1 : ‖h(u)‖ <

2
√

G}, which is a bounded open neighbourhood of 0 in En+1. Let O be the
connected component ofO1 containing 0. Then the genus of ∂O is γ(∂O) = n+1;
see [23] for the definition and properties of genus. If (3.6) is not true, then
h(∂O) ⊂ S2

√
G\E⊥

n . Let Pn:E → En be the orthogonal projection operator. The
operator Qn: ∂O → En \ {0} defined by Qn(u) = Pnh(u) is odd and continuous,
and then γ(∂O) ≤ n. But this is a contradiction. Equation (3.5) implies for any
h ∈ Φn+1,

sup
u∈h(Bn+1)\D

I(u) ≥ inf
u∈E⊥

n ∩S2
√

G

I(u) ≥ G.

This implies bk ≥ G for k ≥ n + 1. Then the result follows. �

We are ready to prove the existence of a sequence of essential values of I

with respect to D so that the sequence converges to ∞.

Lemma 3.4. Define Λ = { c ∈ R : c is an essential value of I with respect to
D}. Then Λ 6= ∅ and supΛ = ∞.

Proof. If this statement were false then by Lemma 3.3 there would exist
k ∈ N such that 0 < bk < bk+1 and [bk,∞) ∩ Λ = ∅. Choose real numbers d and
a such that

(3.7) bk < d < a < bk+1.

Let h ∈ Φk be such that
sup

u∈h(Bk)\D
I(u) < d.
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For k ∈ N, define B+
k+1 = {u : u = v + tek+1, v ∈ Ek, t ≥ 0, ‖u‖ ≤ Rk+1}

and let ∂B+
k+1 be the boundary of B+

k+1 in Ek+1. Extend h to a function h1 ∈
C(∂B+

k+1, X) as

h1(u) =

{
h(u) if u ∈ Bk,

u if u ∈ ∂B+
k+1 \Bk.

Clearly, h1 is well defined and continuous and h1(∂B+
k+1) ⊂ Îd ∪D. Here and in

what follows, for any c ∈ R, Îc is the level set of Î = I|X . That is Îc = {u ∈ X :
I(u) ≤ c}. Extend h1 to a function h2 ∈ C(B+

k+1, X) and let b = sup{I(h2(u)) :
u ∈ B+

k+1}. Then h2 ∈ C(B+
k+1, Î

b ∪ D). As a consequence of the density of X

in E, Î and I have the same essential values. By Theorem 2.3, the pair (Îb, Îa)
is trivial with respect to D. So there exists h3 ∈ C(B+

k+1, Î
a ∪ D) such that

h3(x) = h2(x) for all x ∈ B+
k+1 with h2(x) ∈ Îd ∪ D. Then h3 satisfies

h3(B+
k+1) ⊂ Îa ∪ D,(3.8)

h3 is odd on B+
k+1 ∩ Ek,(3.9)

h3 = id on ∂B+
k+1 ∩ ∂Bk+1,(3.10)

h3|Bk
= h.(3.11)

Define h4 ∈ C(Bk+1, X) as

h4(u) =

{
h3(u) if u ∈ B+

k+1,

−h3(−u) if u ∈ Bk+1 \B+
k+1.

Then, (3.9) implies that h4 is odd, (3.10) implies h4|∂Bk+1 = id, and (3.11)
implies h4|Bk

∈ Φk. So h4 ∈ Φk+1, which is a contradiction since by (3.7) and
(3.8) we have

bk+1 ≤ sup
u∈h4(Bk+1)\D

I(u) = sup
u∈h3(B

+
k+1)\D

I(u) ≤ a < bk+1.

Therefore Λ 6= ∅ and sup Λ = ∞. �

According to Lemma 3.4, we can choose a strictly increasing sequence of
positive numbers {dk} ⊂ Λ such that d1 > 2 and dk+1 > dk+3 for all k = 1, 2, . . .

Now we fix j ∈ N and want to find j nodal solutions for (1.1)ε for |ε| small enough.
For this we are going to prove that for any k if |ε| is small enough then Iε,k has
a critical point in X \ D with critical value in (di − 1, di + 1) for all i = 1, . . . , j

and then prove that these solutions have an L∞ bound independent of k.
We need a series of lemmas.

Lemma 3.5. For ε1(k) defined in (3.3), there exists ε2(k) ∈ (0, ε1(k)) such
that if |ε| ≤ ε2(k), u ∈ ∂D, and Iε,k(u) ∈ [d1 − 1, dj + 1], then I ′ε,k(u) 6= 0. Here
∂D is the boundary of D in X.



58 Y. Li — Zh. Liu — Ch. Zhao

Proof. If the result were not true, then there would exist εn for n = 1, 2, . . .

with |εn| ≤ ε1(k) and εn → 0 and un ∈ ∂D such that Iεn,k(un) ∈ [d1 − 1, dj + 1]
and I ′εn,k(un) = 0 for n = 1, 2, . . . . Then un satisfy

(3.12) d1 − 1 ≤ 1
2

∫
Ω

|∇un|2 −
∫

Ω

[F (x, un) + εnGk(x, un)] ≤ dj + 1

and

(3.13)
−∆un = f(x, un) + εngk(x, un) in Ω,

un = 0 on ∂Ω.

By (f3), (3.3), (3.12) and (3.13), a standard calculation shows that {un} is
bounded in E. Then a result of Brézis and Kato [8] implies that {un} is bounded
in L∞ and hence in C2(Ω). Passing to a subsequence if necessary, we can assume
that un → u in X. Taking the limit in (3.12) and (3.13) as n →∞ gives

(3.14) d1 − 1 ≤ 1
2

∫
Ω

|∇u|2 −
∫

Ω

F (x, u) ≤ dj + 1

and

(3.15) −∆u = f(x, u) in Ω and u = 0 on ∂Ω.

Since un ∈ ∂D and un → u in X, u ∈ ∂D. The bound (3.14) with d1 > 2
implies u 6= 0. Then using (3.1) and (3.12), the strong maximum principle yields
u ∈ int(D), a contradiction. �

With respect to the inner product defined in (3.2), the gradient of Iε,k takes
the form I ′ε,k(u) = u−Aε,k(u), where Aε,k:E → E is defined by

Aε,k(u) = (−∆ + L∗)−1(f(x, u) + εgk(x, u) + L∗u).

Clearly, Aε,k(X) ⊂ X and Aε,k is a C1 operator from X to X. We also denote
A = A0,k. The strong maximum principle together with (3.1) implies that
A(±P \ {0}) ⊂ int(±P ).

Let u ∈ E and consider the initial value problem in E

(3.16)

{
φ′(t) = −φ(t) + Aε,k(φ(t)) for t ≥ 0,

φ(0) = u.

This defines a descending flow of Iε,k. The solution is denoted by φε,k(t, u) with
[0, ηε,k(u)) the maximal interval of existence. It is well known that if u ∈ X

then φε,k(t, u) stays in X for all t ∈ [0, ηε,k(u)) and φε,k(t, u) is continuously
dependent on t and u with respect to the X norm. That is, for any u ∈ X,
any T ∈ [0, ηε,k(u)), and any δ > 0, there exists δ1 > 0 such that if v ∈ X

and ‖v − u‖X < δ1 then φε,k(t, v) exists for all t ∈ [0, T ] and in this interval
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‖φε,k(t, v) − φε,k(t, u)‖X < δ. For a < b two real numbers, G a subset of E,
k ∈ N, and |ε| ≤ ε2(k), we define a set

M(a, b, G, k, ε) = {φε,k(t, u) : t ∈ [0, ηε,k(u)), u ∈ G, φε,k(t, u) ∈ Ib
ε,k \ int(Ia

ε,k)}.

We also define
M(a, b, G, k) =

⋃
|ε|≤ε2(k)

M(a, b, G, k, ε).

Lemma 3.6. If a < b are two real numbers, k ∈ N, and G is a bounded subset
of E, then M(a, b, G, k) is a bounded subset of E.

Proof. Since G is a bounded subset of E, we may assume that G ⊂ Ib
ε,k

for all |ε| ≤ ε2(k) by enlarging b if necessary. If the result were false, for each
n ∈ N there would exist |εn| ≤ ε2(k), un ∈ G, and tn ∈ [0, ηεn,k(un)) such
that φεn,k(tn, un) ∈ Ib

εn,k \ int(Ia
εn,k) and ‖φεn,k(tn, un)‖∗ ≥ 2n. Since G is a

bounded subset of Ib
εn,k, for each n large enough there exists t′n ∈ (0, tn) such

that ‖φεn,k(t′n, un)‖∗ = n and

(3.17) ‖φεn,k(t, un)‖∗ > n for t′n < t < tn.

Using (3.16), we estimate as follows:

n ≤ ‖φεn,k(tn, un)− φεn,k(t′n, un)‖∗(3.18)

≤
∫ tn

t′n

‖I ′εn,k(φεn,k(s, un))‖∗ ds

≤
( ∫ tn

t′n

‖I ′εn,k(φεn,k(s, un))‖2∗ ds

)1/2

(tn − t′n)1/2

≤ (b− a)1/2(tn − t′n)1/2.

Also from (3.16), there exists t′′n ∈ (t′n, tn) such that

(3.19)
a− b

tn − t′n
≤ Iεn,k(φεn,k(tn, un))− Iεn,k(φεn,k(t′n, un))

tn − t′n

= −‖I ′εn,k(φεn,k(t′′n, un))‖2∗.

As a consequence of (3.18) and (3.19) I ′εn,k(φεn,k(t′′n, un)) → 0 as n → ∞. This
together with a ≤ Iεn,k(φεn,k(t′′n, un)) ≤ b implies that φεn,k(t′′n, un) is bounded
in E. But this contradicts (3.17). �

Lemma 3.7. If a < b are two real numbers, k ∈ N, and G is a compact
subset of X, then closXM(a, b, G, k) is a compact subset of X.

Proof. As in [21] (cf. [6], [12], [13], [18], [20]), we can choose a finite se-
quence of Banach spaces {Zi}n

i=0 such that the embeddings E ↪→ Z0 and

X = Zn ↪→ Zn−1 ↪→ · · · ↪→ Z1 ↪→ Z0



60 Y. Li — Zh. Liu — Ch. Zhao

are continuous, Aε,k:Zi−1 → Zi is continuous and compact, and for any bounded
subset M of Zi−1, Aε,k(M) has a bound in Zi independent of ε. Starting from
the result of Lemma 3.6 and using the above fact and the expression

φε,k(t, u) = e−tu + e−t

∫ t

0

esAε,k(φε,k(s, u)) ds

n times, it is easy to see that the set{
e−t

∫ t

0

esAε,k(φε,k(s, u)) ds : t ∈ [0, ηε,k(u)), u ∈ G,

|ε| ≤ ε2(k), φε,k(t, u) ∈ Ib
ε,k \ int(Ia

ε,k)
}

is bounded in Zn and hence is precompact in X. Thus closXM(a, b, G, k) is
a compact subset of X. �

Lemma 3.8. Let 0 < a < b be two real numbers, k ∈ N, and G a compact
subset of X. There exists ε3(k) ∈ (0, ε2(k)) such that if 0 < t1 < t2, u ∈ G, |ε| ≤
ε3(k), φε,k(t1, u) ∈ ∂D, and φε,k(t2, u) ∈ Ib

ε,k \ Ia
ε,k, then φε,k(t2, u) ∈ int(D).

Proof. By Lemma 3.7, closXM(a, b, G, k) is a compact subset of X. Since
A

(
closXM(a, b, G, k) ∩ ∂(±P )

)
is a compact subset of int(±P ), there exists

ε3(k) ∈ (0, ε2(k)) such that if |ε| ≤ ε3(k) then

Aε,k(closXM(a, b, G, k) ∩ ∂(±P )) ⊂ int(±P ).

Thus if 0 < t1, u ∈ G, |ε| ≤ ε3(k), and φε,k(t1, u) ∈ (Ib
ε,k \ Ia

ε,k)∩ ∂P , then there
exists δ > 0 such that Aε,k(φε,k(t, u)) ∈ int(P ) for t1 ≤ t ≤ t1 + δ and thus by
the convexity of int(P ),

ξε,k(t, u) :=
1

et − et1

∫ t

t1

esAε,k(φε,k(s, u)) ds ∈ int(P )

for t1 ≤ t ≤ t1 + δ. This together with

φε,k(t, u) = e−(t−t1)φε,k(t1, u) + (1− e−(t−t1))ξε,k(t, u)

implies φε,k(t, u) ∈ int(P ) for t1 < t ≤ t1 + δ. The same argument is valid if P

is replaced with −P .
Now assume that 0 < t1 < t2, u ∈ G, |ε| ≤ ε3(k), φε,k(t1, u) ∈ ∂D, and

φε,k(t2, u) ∈ Ib
ε,k \ Ia

ε,k. If φε,k(t2, u) 6∈ int(D), then according to the above dis-
cussion we may assume that φε,k(t2, u) ∈ ∂D and φε,k(t, u) ∈

(
Ib
ε,k \Ia

ε,k

)
∩ int(D)

for t ∈ (t1, t2). But then Aε,k(φε,k(t, u)) ∈ int(D) and thus ξε,k(t, u) ∈ int(D)
for t ∈ [t1, t2]. This implies φε,k(t, u) ∈ int(D) for t ∈ (t1, t2], a contradiction. �
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Lemma 3.9. Let a and b be two real numbers with d1 − 1 < a < b < dj + 1,
k ∈ N, |ε| ≤ ε3(k), and G a compact subset of X. If Iε,k has no critical
point in Îb

ε,k \ (int(Îa
ε,k) ∪ D) then there exists σ = σ(a, b, G, k, ε) such that

‖I ′ε,k(φε,k(t, u))‖∗ ≥ σ for all φε,k(t, u) ∈M(a, b, G, k, ε).

Proof. First recall that Î = I|X . If not, then for each n ∈ N there would
exist un ∈ G and tn ∈ [0, ηε,k(un)) with φε,k(tn, un) ∈ Îb

ε,k \
(
int(Îa

ε,k) ∪D
)

such
that I ′ε,k(φε,k(tn, un)) → 0 as n → ∞. By Lemma 3.7, we can assume that
φε,k(tn, un) → u∗ in E as n → ∞ for some u∗ ∈ X which satisfies I ′ε,k(u∗) = 0.
Since φε,k(tn, un) 6∈ D the convergence of φε,k(tn, un) in X implies u∗ 6∈ int(D).
Then by Lemma 3.5, u∗ 6∈ D. Thus u∗ is a critical point of Iε,k in Îb

ε,k\(int(Îa
ε,k)∪

D), which contradicts the condition of the lemma. �

Lemma 3.10. For any k ∈ N, there exists ε4(k) ∈ (0, ε3(k)) such that if
|ε| ≤ ε4(k) then for any i ∈ {1, . . . , j}, Iε,k has at least one critical point in
Îdi+1
ε,k \ (int(Îdi−1

ε,k ) ∪ D).

Proof. If the result were not true, then for any n ∈ N there would exist εn

with εn → 0 such that Iεn,k has no critical value in Îdi+1
ε,k \ (int(Îdi−1

ε,k ) ∪ D) for
some i ∈ {1, . . . , j}. Fix such an i. In order to obtain a contradiction, it suffices
to show that di is not an essential value of I. For this we assume that a, b are any
numbers satisfying di−1 < a < b < di +1, δ is a number with δ ∈ (0, a−di +1),
Y is a compact topological space, and h ∈ C(Y, Îb ∪D). Choose a1, b1 such that

di − 1 < a− δ < a1 < a < b < b1 < di + 1.

We fix an εn such that |εn| ≤ ε3(k) and

Îa−δ ⊂ Îa1
εn,k ⊂ Îa ⊂ Îb ⊂ Îb1

εn,k ⊂ Îdi+1.

For any u ∈ Îb1
εn,k ∩ h(Y ) \ (Îa1

εn,k ∪ D), consider φεn,k(t, u). Let 0 < t1 < t2 <

ηεn,k(u). If φεn,k(t, u) ∈ Îb1
εn,k \ (Îa1

εn,k ∪ D) for t ∈ [t1, t2], then by (3.16) and
Lemma 3.9, a simple computation shows that

‖φεn,k(t2, u)− φεn,k(t1, u)‖∗ ≤
1
σ

(Iεn,k(φεn,k(t1, u))− Iεn,k(φεn,k(t2, u)))

and
t2 − t1 ≤

1
σ2

(Iεn,k(φεn,k(t1, u))− Iεn,k(φεn,k(t2, u))).

From these inequalities we see that if φεn,k(t, u) ∈ Îb1
εn,k \ (Îa1

εn,k ∪ D) for all
t ∈ [0, ηεn,k(u)) then the limit limt→ηεn,k(u)− φεn,k(t, u) exists in E and φεn,k(t, u)
can be extended beyond ηεn,k(u), which is a contradiction to the maximality of
[0, ηεn,k(u)). Thus φεn,k(t, u) must reach Îa1

εn,k ∪ D at some t ∈ [0, ηεn,k(u)).
Then as a consequence of Lemma 3.8, for any u ∈ Îb1

εn,k∩h(Y )\(Îa1
εn,k∪D), there

exists τεn,k(u) > 0 such that φεn,k(t, u) ∈ Îb1
εn,k \ (Îa1

εn,k ∪D) for 0 ≤ t < τεn,k(u),
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φεn,k(t, u) ∈ ∂(Îa1
εn,k ∪ D) for t = τεn,k(u), and φεn,k(t, u) ∈ int(Îa1

εn,k ∪ D) for
τεn,k(u) < t < ηεn,k(u). Here ∂ means the boundary in X. Since φεn,k(t, u) is
continuously dependent on t and u, τεn,k(u) is continuous in u. Define ĥ:Y →
Îa1
εn,k ∪ D by

ĥ(x) =

{
h(x) if x ∈ Y and h(x) ∈ Îa1

εn,k ∪ D,

φεn,k(τεn,k(u), u) if x ∈ Y and u := h(x) ∈ Îb1
εn,k \ (Îa1

εn,k ∪ D).

Then ĥ ∈ C(Y, Îa ∪ D) and ĥ(x) = h(x) for any x ∈ Y with h(x) ∈ Îa−δ ∪ D.
Thus di is not an essential value of I, a contradiction. �

Since the positive cone and the negative cone in E have no interior, it can not
be expected to construct a similar deformation which is continuous with respect
to the E norm. It is natural to use the space X here.

Completing the Proof of Theorem 1.1. For each k ∈ N and |ε| ≤
ε4(k), according to Lemma 3.10, there are j critical points uε,k,i (i = 1, ldots, j)
of Iε,k in X \ D such that

−∆uε,k,i = f(x, uε,k,i) + εgk(x, uε,k,i) in Ω, uε,k,i|∂Ω = 0,

di − 1 ≤ 1
2

∫
Ω

|∇uε,k,i|2 dx−
∫

Ω

[F (x, uε,k,i) + εGk(x, uε,k,i)] dx ≤ di + 1.

Then it is easy to see that
∫
Ω
|∇uε,k,i|2 dx ≤ C ′

j , where C ′
j is a constant inde-

pendent of ε and k. A result of Brézis and Kato [8] implies that there exists
a constant C ′′

j independent of ε and k such that ‖uε,k,i‖C(Ω) ≤ C ′′
j , for every

k ∈ N, |ε| ≤ ε4(k), and i = 1, . . . , j. So if k > C ′′
j then for any ε with |ε| ≤ ε4(k),

(1.1)ε possesses j distinct nodal solutions uε,k,1, uε,k,2, . . . , uε,k,j . The proof is
finished. �

4. Proof of Theorem 1.3

Now we assume that f(x, t) satisfies (f′0)–(f′3). Choose numbers a > 0, 0 <

q < 1, and β > 0 such that q < 1/(N − 2) if N ≥ 4, 2a < δ, and F (x, t) > β|t|q+1

for a ≤ |t| ≤ 2a. Choose an even function ρ ∈ C1(R, R) such that ρ(t) = 1 for
|t| ≤ a, ρ(t) = 0 for |t| ≥ 2a, and tρ′(t) < 0 for a < |t| < 2a. Define

F̃ (x, t) = ρ(t)F (x, t) + (1− ρ(t))β|t|q+1

and f̃(x, t) = (∂/∂t)F̃ (x, t). As in [19] we have the following lemma which is
a slight modification of [25, Lemma 2.3].
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Lemma 4.1. Assume that f(x, t) satisfies (f′0)–(f′3). Then f̃ ∈ C(Ω × R, R)
satisfies

f̃(x,−t) = −f̃(x, t) for all x ∈ Ω and t ∈ R,(4.1)

f̃(x, t) = f(x, t) for all x ∈ Ω and |t| ≤ a,(4.2)

2F̃ (x, t) > tf̃(x, t) > 0 for all x ∈ Ω and t 6= 0,(4.3)

where F̃ (x, t) =
∫ t

0
f̃(x, s) ds.

Set G̃(x, t) = ρ(t)G(x, t) and g̃(x, t) = (∂/∂t)G̃(x, t), and define

Ĩ(u) =
1
2

∫
Ω

|∇u|2 −
∫

Ω

F̃ (x, u), u ∈ E

and
Ĩε(u) =

1
2

∫
Ω

|∇u|2 −
∫

Ω

[F̃ (x, u) + εG̃(x, u)], u ∈ E.

By (4.1), Ĩ is an even functional. As a well known result, we have

Lemma 4.2. The functionals Ĩ and Ĩε are in C1, Ĩε with |ε| ≤ 1 have a uni-
form lower bound, and lim‖u‖→∞ Ĩε(u) = ∞ uniformly in |ε| ≤ 1.

Denote O = {u ∈ X : Ĩ(u) < 0}. As in [19], from Lemma 4.1 we can deduce
that O is contractible. In [19], O is defined to be the set of points in E at which
Ĩ < 0. But the same argument can be used here. For k ∈ N, let Sk−1 be the
unit sphere in Rk and define Φk = {h ∈ C(Sk−1, O) : h is odd} and

bk = inf
h∈Φk

sup
u∈h(Sk−1)\D

Ĩ(u).

Then (f ′2) and (4.2) yield b1 ≤ b2 ≤ . . . ≤ bk ≤ . . . < 0.

Lemma 4.3. bk → 0.

Proof. Denote by Σ the class of closed symmetric subsets of X\{0}. Define
γk = {A ∈ Σ : γ(A) ≥ k} and

ck = inf
A∈γk

sup
u∈A

Ĩ(u).

To have a comparison between bk and ck, we observe that γ(Sk−1∩h−1(D)) = 1
for any h ∈ Φk; this genus is easily computed through the odd and continuous
map ν:Sk−1 ∩ h−1(D) → S0 defined by

ν(x) =

{
1 if x ∈ Sk−1 ∩ h−1(P ),

−1 if x ∈ Sk−1 ∩ h−1(−P ).

Then for any h ∈ Φk,

γ(h(Sk−1) \ D) = γ(h(Sk−1 \ h−1(D))) ≥ γ(Sk−1)− γ(Sk−1 ∩ h−1(D)) = k − 1.
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Then {h(Sk−1) \ D : h ∈ Φk} ⊂ γk−1 and bk ≥ ck−1. By the proof of [25,
Lemma 2.4], ck → 0 as k →∞. So bk → 0 as k →∞. �

The sequence {bk} is used to assist in proving the existence of a sequence of
essential values of I with respect to D which is increasing and converges to 0.

Lemma 4.4. Define Λ = {c < 0 : c is an essential value of Ĩ with respect
to D}. Then Λ 6= ∅ and supΛ = 0.

Proof. If the result were false then by Lemma 4.3 there would exist k ∈ N
such that bk < bk+1 and [bk, 0)∩Λ = ∅. Choose real numbers d and a such that

bk < d < a < bk+1.

Let h ∈ Φk be such that
sup

u∈h(Sk−1)\D
Ĩ(u) < d.

For k ∈ N, define Sk
+ = {x : x = (x′, xk+1), x′ ∈ Rk, xk+1 ≥ 0, |x| = 1}. Since

O is contractible, we can extend h to h1 ∈ C(Sk
+, O). Define b = sup{Ĩ(h1(x)) :

x ∈ Sk
+}. Then b < 0 and h1 ∈ C(Sk

+, Ĩb ∪D). By Theorem 2.3, the pair (Ĩb, Ĩa)
is trivial with respect to D. Then there exists h2 ∈ C(Sk

+, Ĩa ∪ D) such that
h2(x) = h1(x) for all x ∈ Sk

+ with h1(x) ∈ Ĩd ∪ D. Then h2(x) satisfies

h2(Sk
+) ⊂ (Ĩa ∪ D) ∩O, h2|Sk−1 is odd.

So we can extend h2 to an odd map h3 ∈ C(Sk, O) satisfying h3(Sk) ⊂ Ĩa ∪ D,
which leads to

bk+1 ≤ sup
u∈h3(Sk)\D

Ĩ(u) = sup
u∈h2(Sk

+)\D
Ĩ(u) ≤ a < bk+1,

a contradiction. Therefore Λ 6= ∅ and sup Λ = 0. �

By Lemma 4.4, we can choose a strictly increasing sequence {dk} ⊂ Λ such
that dk → 0. For any k, define δk = (1/3) min1≤i≤k(di+1 − di). We are going
to prove that for any k if |ε| is small enough then Iε has a critical point uε,i in
X \ D with critical value in (di − δk, di + δk) for all i = 1, . . . , k and then prove
that for k large, the j critical points uε,k−j+1, uε,k−j+2, . . . , uε,k of Ĩε have L∞

norms less than a and thus are nodal solutions of (1.1)ε. For this we need to
study a descending flow of Ĩε.

With respect to the usual norm ‖ · ‖, the gradient of Ĩε takes the form
Ĩ ′ε(u) = u−Aε(u), where Aε:E → E is defined by

Aε(u) = (−∆)−1(f̃(x, u) + εg̃(x, u)).

By the construction of f̃ and g̃, there exists C > 0 such that for all x ∈ Ω, t ∈ R,
and |ε| ≤ 1,

|f̃(x, t) + εg̃(x, t)| ≤ C(1 + |t|q).
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Since q < 1/(N − 2) if N ≥ 4, it is easy to see that Aε(E) ⊂ X and Aε is
continuous and compact from E to X. For any real number c, Lemma 4.2
implies that

⋃
|ε|≤1 Ĩc

ε is a bounded subset of E and thus closX(
⋃
|ε|≤1 Aε(Ĩc

ε)) is
a compact subset of X. Denote A = A0. The strong maximum principle together
with (4.3) implies that A(±P\{0}) ⊂ int(±P ). Define Kε = {u ∈ E : Ĩ ′ε(u) = 0}.
Then Kε ⊂ X. Since in this case Ĩε is only C1, to study a descending flow of Ĩε

we have to construct a pseudo-gradient vector field.

Lemma 4.5. For any d < 0, there exists ε1 = ε1(d) ∈ (0, 1) such that for
each ε with |ε| ≤ ε1, there exists an operator Bε:E → X such that

(a) Bε|E\Kε
is locally Lipschitz continuous from E \Kε to X;

(b) Bε(±P ∩ Ĩd
ε ) ⊂ int(±P );

(c) closX

( ⋃
|ε|≤ε1

Bε(Ĩ0
ε )

)
is compact in X;

(d) (Ĩ ′ε(u), u−Bε(u)) ≥ (1/2)‖Ĩ ′ε(u)‖2 for any u ∈ E;
(e) ‖u−Bε(u)‖ ≤ 2‖Ĩ ′ε(u)‖ for any u ∈ E.

Proof. For any d < 0, choose ε∗ = ε∗(d) ∈ (0, 1) such that for the set M

defined by M =
⋃
|ε|≤ε∗ Ĩd

ε ,

2δ := distE(0,M) > 0.

For any u ∈ E \Kε, let r = r(u) ∈ (0, δ) be such that

(4.4) ‖Aε(v)−Aε(w)‖ <
1
2

min{‖v −Aε(v)‖, ‖w −Aε(w)‖}

for all v and w in Br(u) and that Br(u) does not intersect P and −P si-
multaneously, where Br(u) is the ball in (E, ‖ · ‖) centered at u and with ra-
dius r. Let {Uλ : λ ∈ Λ} be a locally finite open refinement of the covering
{Br(u) : u ∈ E \ Kε} of E \ Kε. For any λ ∈ Λ, choose uλ ∈ Uλ such that
uλ ∈ Uλ∩P if Uλ∩P 6= ∅ and uλ ∈ Uλ∩ (−P ) if Uλ∩ (−P ) 6= ∅. This is possible
since for any λ ∈ Λ there exists uλ ∈ E \Kε such that Uλ ⊂ Br(uλ) and Br(uλ)
does not intersect P and −P simultaneously. Let πλ, λ ∈ Λ, be a locally finite
partition of unity subordinated to {Uλ : λ ∈ Λ} such that the πλ:E \Kε → R
are Lipschitz continuous. Define Bε:E → X by

Bε(u) =


∑
λ∈Λ

πλ(u)Aε(uλ) if u ∈ E \Kε,

u if u ∈ Kε.

Since 2δ = distE(0,M), A(closE(Nδ(M)∩(±P ))) is a compact subset of int(±P ).
Here Nδ(M) is the δ-neighbourhood of M in E. Then there exists ε1 = ε1(d) ∈
(0, ε∗(d)) such that if |ε| ≤ ε1 then Aε(closE(Nδ(M) ∩ (±P ))) ⊂ int(±P ). In
what follows fix an ε with |ε| ≤ ε1. For u ∈ (P ∩ Ĩd

ε ) \ Kε, if πλ(u) 6= 0 then
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u ∈ Uλ ∩ P , which implies Uλ ∩ P 6= ∅ and uλ ∈ Uλ ∩ P . Since u ∈ M and
‖uλ − u‖ < δ, uλ ∈ Nδ(M) ∩ P . Therefore,

Bε(u) =
∑
λ∈Λ

πλ(u)Aε(uλ) ∈ int(P ).

For u ∈ P ∩ Ĩd
ε ∩Kε, Bε(u) = u ∈ int(P ). Thus Bε(u) ∈ int(P ) for u ∈ P ∩ Ĩd

ε .
Similarly, Bε(u) ∈ int(−P ) for u ∈ −P ∩ Ĩd

ε , finishing the proof of (b). Result (c)
follows from the same property associated with Aε. For any u ∈ E, (4.4) implies
that

‖Aε(u)−Bε(u)‖ ≤ 1
2
‖Ĩ ′ε(u)‖,

which leads to (d) and (e). �

Let u ∈ E \Kε and consider the initial value problem in E \Kε{
φ′(t) = −φ(t) + Bε(φ(t)) for t ≥ 0,

φ(0) = u.

The solution, which exists uniquely as a consequence of Lemma 4.5(a), is
denoted by φε(t, u) with [0, ηε(u)) the maximal interval of existence. Note that
if u ∈ X then φε(t, u) stays in X for all t ∈ [0, ηε(u)) and φε(t, u) is continuously
dependent on t and u with respect to the X norm. By Lemma 4.5(b), as in the
proof of Lemma 3.8, we can prove the following lemma.

Lemma 4.6. Assume d < 0 and |ε| ≤ ε1(d). If 0 < t1 < t2 < ηε(u) and
φε(t1, u) ∈ ∂D ∩ Ĩd

ε then φε(t2, u) ∈ int(D).

By Lemma 4.5(b) and (c), as in the proof of Lemma 3.9, we can prove the
following lemma.

Lemma 4.7. Let a, b be two real numbers with a < b < 0 and |ε| ≤ ε1(d). If
Ĩε has no critical point in Ĩb

ε \ (int(Ĩa
ε ) ∪ D) then there exists σ = σ(a, b, ε) such

that ‖Ĩ ′ε(u)‖ ≥ σ for all u ∈ Ĩb
ε \ (int(Ĩa

ε ) ∪ D).

With the help of Lemma 4.5(d) and (e), Lemmas 4.6 and Lemma 4.7, in
a similar way as in the proof of Lemma 3.10, we obtain the next lemma.

Lemma 4.8. For any k ∈ N, there exists ε2(k) ∈ (0,min{ε1(dk), 1/k}) such
that if |ε| ≤ ε2(k) then for any i ∈ {1, . . . , k}, Ĩε has at least one critical point
in Ĩdi+δk

ε \ (int(Ĩdi−δk
ε ) ∪ D).

Now we are ready to complete the proof of Theorem 1.3.

Completing the Proof of Theorem 1.3. For k ∈ N and |ε| ≤ ε2(k),
by Lemma 4.8, there exists k critical points uε,1, . . . , uε,k of Ĩε in X \ D. These
critical points satisfy

di − δk ≤ Ĩε(uε, i) ≤ di + δk.
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By the same argument as [19, Theorem 2], there exists k ∈ N such that uε,k−j+1,
uε,k−j+2, . . . , uε,k have L∞ norms less than a for any |ε| ≤ ε2(k). So they are j

distinct nodal solutions of (1.1)ε with negative critical values. �
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