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SPECTRAL PROPERTIES AND NODAL SOLUTIONS
FOR SECOND-ORDER, m-POINT, p-LAPLACIAN

BOUNDARY VALUE PROBLEMS

Niall Dodds — Bryan P. Rynne

Abstract. We consider the m-point boundary value problem consisting
of the equation

(1) −φp(u′)′ = f(u), on (0, 1),

together with the boundary conditions

(2) u(0) = 0, u(1) =

m−2X

i=1

αiu(ηi),

where p > 1, φp(s) := |s|p−1sgn s, s ∈ R, m ≥ 3, αi, ηi ∈ (0, 1), for

i = 1, . . . , m − 2, and
Pm−2

i=1 αi < 1. We assume that the function
f : R → R is continuous, satisfies sf(s) > 0 for s ∈ R \ {0}, and that
f0 := limξ→0 f(ξ)/φp(ξ) > 0.

Closely related to the problem (1), (2), is the spectral problem consist-
ing of the equation

(3) −φp(u′)′ = λφp(u),

together with the boundary conditions (2). It will be shown that the spec-
tral properties of (2), (3), are similar to those of the standard Sturm–

Liouville problem with separated (2-point) boundary conditions (with a mi-
nor modification to deal with the multi-point boundary condition). The

topological degree of a related operator is also obtained. These spectral and

degree theoretic results are then used to prove a Rabinowitz-type global bi-
furcation theorem for a bifurcation problem related to the problem (1), (2).
Finally, we use the global bifurcation theorem to obtain nodal solutions of

(1), (2), under various conditions on the asymptotic behaviour of f .
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1. Introduction

We consider the m-point boundary value problem consisting of the equation

(1.1) −φp(u′)′ = f(u), on (0, 1),

together with the boundary conditions

(1.2) u(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi),

where p > 1, φp(s) := |s|p−1sgn s, s ∈ R, m ≥ 3, αi, ηi ∈ (0, 1), i = 1, . . . ,m− 2,
and

(1.3)
m−2∑
i=1

αi < 1.

We assume that the function f : R → R is continuous, satisfies sf(s) > 0 for
s ∈ R \ {0}, and that

(1.4) f0 := lim
ξ→0

f(ξ)
φp(ξ)

> 0

(we assume that the limit exists and is finite).
When p = 2 the problem (1.1)–(1.2) has been considered in many recent

papers. For example, positive solutions are obtained in [17], and in the references
therein. On the other hand, ‘nodal solutions’ (that is, sign-changing solutions
having a given number of zeros) have been obtained in [11], [16], and in the
references therein. When 1 < p 6= 2, positive solutions have been obtained in [1],
while the existence of solutions in general (ignoring nodal structure) has been
studied in [7], and the references therein. However, in this case the existence
of nodal solutions has not previously been studied, and it is this that we will
consider in this paper.

Previous results on the existence of nodal solutions in the case p = 2 rely
heavily on spectral properties of the linearization of the problem. Here the
related nonlinear eigenvalue problem

(1.5) −φp(u′)′ = λφp(u),

together with the boundary conditions (1.2), is relevant and will be central to
many arguments below. The spectral properties of the p-Laplacian problem (1.5),
together with standard separated (2-point) boundary conditions, are known,
see [2]. However, in the case of the multi-point boundary condition (1.2) these
spectral properties have not been obtained previously. Thus, in Section 3 we set
up a suitable operator formulation of the m-point, p-Laplacian, we show that
this operator is invertible, and we derive the required spectral results for this
operator. The results we obtain are similar to the standard spectral theory of
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the linear, separated Sturm–Liouville problem, with a slight difference in the
nodal counting method used, to deal with the multi-point boundary conditions.
The topological degree of a related operator is also obtained.

In Section 4 we consider a bifurcation problem related to (1.1)–(1.2), and
prove a Rabinowitz-type global bifurcation theorem for this problem. The proof
uses the spectral and degree theoretic results obtained in Section 3. Finally, in
Section 5, we use the global bifurcation theorem from Section 4 to obtain nodal
solutions of (1.1)–(1.2), under various hypotheses on the asymptotic behaviour
of f .

2. Preliminary definitions and results

In this section we describe some notation, and some preliminary results,
which will be required in later sections to prove our main results.

2.1. Function spaces. For any integer n ≥ 0, let Cn[0, 1] denote the usual
Banach space of n-times continuously differentiable functions on [0, 1], with the
usual sup-type norm, denoted by | · |n. A suitable space in which to search for
solutions of (1.1), and which incorporates the boundary conditions (1.2), is the
space

X := {u ∈ C1[0, 1] : φp(u′) ∈ C1[0, 1] and u satisfies (1.2) },
‖u‖X := |u|1 + |φp(u′)|1, u ∈ X.

We also let Y := C0[0, 1], with the norm ‖ · ‖Y := | · |0.
For any continuous function f : R → R, we use the notation f :Y → Y to

denote the corresponding Nemitskii operator defined by f(u)(x) := f(u(x)),
x ∈ [0, 1], for u ∈ Y (using the same notation for the function and the operator
should not cause any confusion). The operator f :Y → Y is bounded (in the sense
that bounded sets are mapped to bounded sets) and continuous. In addition,
it can easily be seen that the operator φp:Y → Y is invertible, with inverse
φ−1

p = φp∗ , where p∗ := p/(p− 1) > 1.

2.2. Nodal properties. We now introduce some notation to describe the
nodal properties of solutions of the various differential equations that we consider.
For any C1 function u, if u(x0) = 0 then x0 is a simple zero of u if u′(x0) 6= 0.
Now, for any integer k ≥ 1 and any ν ∈ {±}, we define T ν

k ⊂ X to be the set of
functions u ∈ X satisfying the following conditions:

(i) u(0) = 0, νu′(0) > 0 and u′(1) 6= 0;
(ii) φp(u′) has only simple zeros in (0, 1), and has exactly k such zeros;
(iii) u has a zero strictly between each consecutive zero of u′.

We also define Tk := T+
k ∪ T−k .
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Remarks 2.1. (a) The zeros of u′ and φp(u′) clearly coincide, but simple
zeros of u′ need not be simple zeros of φp(u′), and vice-versa.

(b) If u ∈ T ν
k then u has exactly one zero between each consecutive zero of

u′, and all zeros of u are simple. Thus, u has at least k − 1 zeros in (0, 1), and
at most k zeros in (0, 1].

(c) The sets T ν
k are open in X and disjoint.

Remark 2.2. The sets T ν
k above, in the case p 6= 2, are analogous to the

sets defined in [16] in the case p = 2. One could regard these sets as counting
‘bumps’ of u. The nodal properties of solutions of nonlinear Sturm–Liouville
problems with separated boundary conditions are usually described in terms of
sets similar to T ν

k which count zeros of u (with an additional condition at x = 1
to incorporate the boundary condition there), see, for example, [12, Section 2]
(for the case p = 2). However, it was shown in [16], in the case p = 2, that when
considering the multi-point boundary condition (1.2) the sets T ν

k are in fact the
appropriate sets to describe the nodal properties.

2.3. Existence and uniqueness for initial value problems. We will
need an existence and uniqueness result for the initial value problem

(2.1)
−φp(u′)′ = f(u), on R,

u(x0) = a, u′(x0) = b,

for arbitrary x0, a, b ∈ R. The following result extends [8, Theorem 3] on exis-
tence and uniqueness of solutions of (2.1), and also gives some information on
the general structure of solutions which will be required below. In this result
we will use the following terminology regarding a solution u: the portion of u

between two consecutive zeros will be termed a bump; if u has infinitely many
zeros it is oscillatory.

Theorem 2.3. Suppose that f : R → R is continuous and satisfies sf(s) > 0
for s ∈ R \ {0}. Then for any x0, a, b ∈ R, the problem (2.1) has a unique
solution u. This solution is defined on the whole of R and u, φp(u′) ∈ C1(R). If
u 6≡ 0 then u and φp(u′) have only simple zeros. In addition, u satisfies one of
the following alternatives.

(a) u is bounded. Then u is periodic and oscillatory (and so consists of
a sequence of positive and negative bumps).
All the positive bumps of u have the same shape, and any such bump B

has the following properties:

(a1) B is symmetric about its mid-point mB;
(a2) u′ is strictly decreasing on B, so B contains exactly one zero of u′,

at mB.
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All the negative bumps of u have the same shape, and have similar
properties to those of the positive bumps.
The positive and negative bumps need not have the same shape, although
they will if f is odd.

(b) u is unbounded. Then limx→±∞ |u(x)| = ∞ and u satisfies one of the
following alternatives.

(b1) u has one zero and u′ has no zeros on R. If f is odd, u is anti-
symmetric about its zero.

(b2) u has two zeros, and hence has a single bump B, with properties
similar to (a1) and (a2) above.

Proof. Define F : R → R by

F (s) :=
∫ s

0

f(t) dt, s ∈ R.

Then F is a C1 function, and is strictly increasing on [0,∞) and strictly decreas-
ing on (−∞, 0]. In particular, F ≥ 0, and F (s) = 0 if and only if s = 0. Suppose
that u is an arbitrary solution of (2.1) on a maximal interval E. Multiplying the
differential equation by u′(x) and integrating from x0 to x ∈ E yields

(2.2)
p

p− 1
F (u(x)) + |u′(x)|p = c(a, b) :=

p

p− 1
F (a) + |b|p.

Hence, |u′(x)| ≤ c(a, b)1/p, x ∈ E, and so u is bounded on any bounded interval.
Standard existence theory for ordinary differential equations (for example, The-
orem 1.4, Chapter 1 of [3]) now shows that E = R, that is, there exists a solution
u defined on R.

It now follows from (2.2) that if a = b = 0 then

p

p− 1
F (u(x)) + |u′(x)|p = 0, x ∈ R,

which implies that u ≡ 0 on R. Hence, if u 6≡ 0 then any zeros of u are simple.
Furthermore, if φp(u′(x)) = 0 then u(x) 6= 0, so by our hypothesis on f and the
differential equation (2.1), φp(u′(x))′ 6= 0, that is, any zero of φp(u′) is simple.
From now on we suppose that |a|+ |b| > 0.

Next, we note that, for any a ∈ R, if b 6= 0 then the local uniqueness part
of the proof of [8, Theorem 3] is valid under our hypotheses. Hence, in this case
the above solution u is uniquely defined between x0 and any zero of u′.

Now suppose that u > 0 on a maximal interval P containing x0 (similar
arguments apply to maximal intervals N on which u < 0). Then from (2.1),

φp(u′(x)) = φp(b)−
∫ x

x0

f(u(s)) ds, x ∈ P,
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so that u′ is strictly decreasing on P . Hence, P contains at most one zero of
u′, and it can easily be seen, using the differential equation in (2.1), that P

is bounded if and only if P contains exactly one zero of u′. In addition, if P

is unbounded then either P is bounded below and limx→∞ u(x) = ∞, or P is
bounded above and limx→−∞ u(x) = ∞.

Now suppose that P is bounded, and write P = (xl, xr), mB = (xl + xr)/2.
Then, by (2.2),

(2.3) u(xl) = u(xr) = 0, u′(xl) = −u′(xr) > 0.

Hence, by the above uniqueness result, the solution curves on the intervals
[xl,mB ], [mB , xr] are symmetric, and u′(mB) = 0. These results show that
any positive (and negative) bumps have the properties (a1) and (a2) described
in the theorem.

Now suppose that there exist two adjacent bumps P and N . Then, by (2.3)
the magnitude of u′ is the same at each end point of P and N , and so, by the
above uniqueness result, the solution u must now consist entirely of a sequence
of copies of these bumps, that is, u must satisfy alternative (a). In addition, the
uniqueness result also shows that the positive and negative bumps must have
the same shape when f is odd.

The only other options for u are:

(i) adjacent unbounded positive and negative intervals;
(ii) a single bump between two unbounded positive or negative intervals.

These options correspond to (b1) and (b2) and this completes the proof. �

Corollary. If F is as in the proof of Theorem 2.3, and lims→±∞ F (s) =
∞, then alternative (b) in Theorem 2.3 cannot hold.

Proof. It follows from (2.2) and the assumption on F that u must be
bounded in this case. �

2.4. The function sinp. Fundamental to the proofs below will be certain
properties of the solution of the specific initial value problem

−φp(u′)′ = (p− 1)φp(u), on R,(2.4)

u(0) = 0, u′(0) = 1.(2.5)

We let sinp denote the (unique) maximal solution of this problem. A construction
of this function is described in [8], and it is shown there that sinp is a 2πp-periodic,
C1 function on R, where πp := 2(π/p)/ sin(π/p). Moreover, for any x ∈ R,

sinp(x + πp) = − sinp(x),(2.6)

| sinp x|p + | sin′p x|p = 1,(2.7)
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and sinp(nπp) = 0, sin′p((n + 1/2)πp) = 0, n ∈ Z. Thus the graph of sinp

resembles a sine wave, and indeed, sin2 is the usual sin function, with π2 = π.

Remark 2.5. The notations sinp, πp have been used in various senses. The
one used here is taken from [8]. Another one (used in, for example, [6], [10] or
[13]) omits the factor p − 1 on the right hand side of the equation (2.4), but
this adds an additional factor to the formula (2.7), and it will be crucial for the
results below to have (2.7) in this simple form.

3. Properties of the m-point, p-Laplacian operator

In this section we define an operator realization of the m-point, p-Laplacian
boundary value problem, and investigate some of the basic spectral and degree
theoretic properties of this operator.

We define ∆p:X → Y by

∆pu := φp(u′)′, u ∈ X.

By the definition of the spaces X, Y , the operator ∆p is well-defined and con-
tinuous. The following result shows that ∆p has a continuous inverse. We say
that an operator is completely continuous if it is continuous and maps bounded
sets into relatively compact sets.

Theorem 3.1. The operator ∆p:X → Y is bijective, and the inverse oper-
ator ∆−1

p :Y → X is continuous. In addition, ∆−1
p :Y → C1[0, 1] is completely

continuous.

Proof. For arbitrary h ∈ Y we will construct a unique solution u ∈ X of
the equation

(3.1) ∆pu = h.

Define a linear operator I:Y → C1[0, 1] by

(Ih)(x) :=
∫ x

0

h(s) ds, h ∈ Y.

Clearly, I:Y → C1[0, 1] is bounded, and I:Y → Y is completely continuous. By
integrating (3.1) twice, and using the boundary condition at x = 0, we see that
any solution of (3.1) must have the form

(3.2) uγ := I(φp∗(γ + Ih)),
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for some γ ∈ R. It now follows from the multi-point boundary condition that uγ

is in fact a solution of (3.1) if and only if

0 = Φ(γ;h) : =
∫ 1

0

φp∗(γ + Ih)−
m−2∑
i=1

αi

∫ ηi

0

φp∗(γ + Ih)

=
(

1−
m−2∑
i=1

αi

) ∫ 1

0

φp∗(γ + Ih) +
m−2∑
i=1

αi

∫ 1

ηi

φp∗(γ + Ih).

Clearly, the function Φ: R × Y → R is continuous and, for fixed h ∈ Y , it
follows from (1.3) that Φ( · ;h) is strictly increasing, with limγ→±∞Φ(γ;h) =
±∞. Thus, there exists a unique γ(h) ∈ R such that Φ(γ(h);h) = 0, and the
functional γ:Y → R is continuous. Hence, uγ(h) is the unique solution of (3.1).

Now, it follows from (3.2) and the properties of I and φp∗ , that the mappings

h → uγ(h):Y → C1[0, 1],

h → φp(u′γ(h)) = γ(h) + Ih:Y → C1[0, 1],

are continuous, and hence uγ(h) ∈ X and the mapping h → uγ(h):Y → X is
continuous. Thus, ∆p is bijective, with continuous inverse ∆−1

p (h) = uγ(h).
Next, it follows directly from (1.3) and the definition of Φ that Φ(γ;h) > 0

for γ > |h|0 and Φ(γ;h) < 0 for γ < −|h|0, so that

|γ(h)| ≤ |h|0, h ∈ Y.

Hence, the mapping h → φp∗(γ(h) + Ih):Y → Y is completely continuous, so
by (3.2), ∆−1

p :Y → C1[0, 1] is completely continuous. �

Remark 3.2. We used the spaces Cn[0, 1], n = 0, 1, to define the above
multi-point, p-Laplace operator ∆p, and Theorem 3.1 showed that the resulting
operator is invertible. This is the function space setting that we will mainly use
here. However, one could also use a Sobolev space setting to define a similar
operator — we outline this briefly here. Let ‖·‖1 and ‖·‖1,1 denote the standard
norms on L1(0, 1) and the Sobolev space W 1,1(0, 1), respectively. Let Ỹ :=
L1(0, 1), and let

X̃ := {u ∈ C1[0, 1] : φp(u′) ∈ W 1,1[0, 1] and u satisfies (1.2)},
‖u‖

eX := |u|1 + ‖φp(u′)‖1,1, u ∈ X̃.

Then we can define ∆̃p: X̃ → Ỹ in the obvious manner, and the analogue of
Theorem 3.1 holds for ∆̃p, with a similar proof, using a functional γ̃: Ỹ → R.

The following result will be required below. The notation ⇀ will denote
weak convergence.
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Lemma 3.3. Suppose that q > 1, (hn) is a sequence in Lq(0, 1), with hn ⇀

h∞ in Lq(0, 1), and (pn) is a sequence in (1,∞), with pn → p∞ ∈ (1,∞). Then
∆̃−1

pn
(hn) → ∆̃−1

p∞(h∞) in C1[0, 1].

Proof. In this proof, to indicate the dependence on p, we write γ̃p for
the functional γ̃ mentioned in Remark 3.2. By weak convergence, (Ihn)(x) →
(Ih∞)(x) for all x ∈ [0, 1]. Also, the sequence (hn) is bounded in Lq(0, 1)
(by weak convergence), so the set of functions {Ihn} is uniformly bounded and
equicontinuous (by Hölder’s inequality). Thus, by the proof of the Arzela–Ascoli
theorem, Ihn → Ih∞ in C0[0, 1]. It follows from this, and the definition of γ̃p,
that γ̃pn

(hn) → γ̃p∞(h∞), and hence, by the properties of the operators I and
φp, p > 1,

∆̃−1
pn

(hn) = I(φp∗n(γ̃pn
(hn) + Ihn)) → I(φp∗∞(γ̃p∞(h∞) + Ih∞)) = ∆̃−1

p∞(h∞),

in C1[0, 1]. �

Remark 3.4. Lemma 3.3 also holds if q = 1 and the set of functions {hn}
is equi-integrable, that is, there exists h ∈ L1(0, 1) such that |hn(x)| ≤ h(x) for
a.e. x ∈ [0, 1] and any n ≥ 1 (this condition implies equicontinuity of the set
{Ihn} in this case).

Next, we consider the eigenvalue problem

(3.3) −∆p(u) = λφp(u), u ∈ X.

Of course, a number λ ∈ R is said to be an eigenvalue of (3.3) if this problem
has a non-trivial solution u, which is then an eigenfunction corresponding to λ.
Clearly, if u is an eigenfunction then tu is an eigenfunction for all non-zero t ∈ R
— the eigenvalue λ is said to be simple if every eigenfunction corresponding to
λ is of the form tu, for some t ∈ R (for linear problems, ‘simple’ eigenvalues
usually have some further properties, but here we will use the term in the above
sense for all p > 1, even in the linear case p = 2).

Theorem 3.5. The set of eigenvalues of (3.3) consists of a strictly increas-
ing sequence of simple eigenvalues λk > 0, k = 1, 2, . . . , with corresponding
eigenfunctions uk(x) = sinp((λk/(p− 1))1/px). In addition,

(a) limk→∞ λk = ∞;
(b) uk ∈ T+

k , for each k ≥ 1, and u1 is strictly positive on (0, 1).

Proof. Combining the boundary condition (1.2) with Theorem 2.3 ensures
that any eigenvalue λ is simple. Now let (λ, u) be a non-trivial solution of (3.3),
with u′(0) > 0 (without loss of generality). Suppose that λ < 0. Then for x

between 0 and the first positive zero of u we have

φp(u′(x)) = φp(u′(0))− λ

∫ x

0

φp(u(s)) ds,
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from which it follows that u is strictly increasing on [0, 1]. Hence, by (1.2) and
(1.3),

u(1) =
m−2∑
i=1

αiu(ηi) ≤ u(1)
m−2∑
i=1

αi < u(1),

and this contradiction shows that this case cannot occur. Also, by Theorem 3.1,
the case λ = 0 cannot occur. Thus, from now on we may assume that λ > 0.

It now follows from the construction of the function sinp and the uniqueness
of the solution of the initial value problem that there exists s > 0 and C ∈ R
such that λ = sp(p − 1) and u(x) = C sinp(sx), x ∈ [0, 1]. Hence, if we define
a function Γ: (0,∞)× (1,∞) → R by

Γ(s, p) := sinp s−
m−2∑
i=1

αi sinp(ηis), s ∈ (0,∞),

then Γ(s, p) = 0 if and only if λ = sp(p − 1) is an eigenvalue of (3.3), with
eigenfunction ws(x) := sinp(sx). Thus, to prove the theorem it suffices to search
for zeros of Γ.

For fixed p > 1, it follows from (1.3) and the properties of sinp that Γ(s, p) >

0, s ∈ (0, πp/2], and Γ(s, p) < 0, s ∈ [πp, 3πp/2], while Γ((i + 1/2)πp, p) 6= 0, for
any integer i ≥ 1. Hence all the zeros of Γ(s, p) lie in ∪k≥1Ik(p), where Ik(p),
k = 1, 2, . . . , are the open intervals

I1(p) :=
(

1
2
πp, πp

)
,

Ik(p) :=
((

k − 1
2

)
πp,

(
k +

1
2

)
πp

)
, k = 2, 3, . . .

In addition, it is straightforward to show that if s ∈ Ik(p) then ws ∈ T+
k , and

if s ∈ I1(p) then ws is strictly positive on (0, 1). Thus, to prove the theorem it
suffices to show that for each p > 1 and each k ≥ 1, the function Γ( · , p) has
exactly one zero in the interval Ik(p). To do this we require the following lemma.

Lemma 3.6. The function Γ and the partial derivative Γs are continuou on
(0,∞)× (1,∞). For fixed p > 1, all the zeros of Γ( · , p) are simple.

Proof. The first result is a consequence of equation (2.5) in [10]. Now
suppose that s is a double zero of Γ( · , p), that is,

(3.4) sinp s =
m−2∑
i=1

αi sinp(ηis), sin′p s =
m−2∑
i=1

αiηi sin′p(ηis).
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Then, by (1.3) and (2.7),

1 =
( m−2∑

i=1

αi sinp(ηis)
)

φp(sinp s) +
( m−2∑

i=1

αiηi sin′p(ηis)
)

φp(sin′p s)

≤
m−2∑
i=1

αi(| sinp(ηis)|| sinp s|p−1 + | sin′p(ηis)|| sin′p s|p−1)

≤
m−2∑
i=1

αi(| sinp(ηis)|p + | sin′p(ηis)|p)1/p(| sinp s|p + | sin′p s|p)(p−1)/p < 1,

which shows that (3.4) cannot hold, and so Γ( · , p) has only simple zeros. �

Now, letting p vary over (1,∞), it follows from Lemma 3.6 and the form of
the implicit function theorem in Theorem 15.1 of [4] that the zeros of Γ( · , p)
depend continuously upon p, and the number of zeros in each interval Ik(p)
remains constant. By Lemma 3.2 in [16], Γ( · , 2) has exactly one zero in Ik(2),
for each k ≥ 1, so this remains true for all p > 1. This concludes the proof of
Theorem 3.5. �

The above proof of Theorem 3.5 also proves the following result.

Corollary 3.7. The eigenvalues of (3.3) depend continuously on p∈(1,∞).

Now, the eigenvalue problem (3.3) is equivalent to the equation

(3.5) u + Kλ(u) = 0, u ∈ Y,

where Kλ := ∆−1
p ◦(λφp):Y → Y . In particular, (3.5) has a non-trivial solution u

if and only if λ is an eigenvalue of the operator −∆p. Furthermore, the operator
Kλ is completely continuous (by Theorem 3.1), and homogeneous (in the sense
that Kλ(tu) = tKλ(u), for any t ∈ R and u ∈ Y ). Thus, if λ is not an eigenvalue
of −∆p then the Leray-Schauder degree deg(I +Kλ, Br, 0) is well defined for any
r > 0, where Br denotes the open ball in Y , centered at 0 with radius r.

Theorem 3.8. For any r > 0,

deg(I + Kλ, Br, 0) =

{
1 if λ < λ1,

(−1)k if λ ∈ (λk, λk+1), k ≥ 1.

Proof. We again prove the result by continuation with respect to p, varying
p from the known, linear case p = 2 to general p 6= 2. Hence, to explicitly
indicate the dependence of the operator Kλ on p we write Kλ,p. We also denote
the eigenvalues of (3.3) by λk(p), k ≥ 1. By Corollary 3.7 the functions λk( · )
are continuous on (1,∞).

When p = 2, the operator Kλ,2 is in fact the linear operator λ∆−1
2 :Y →

Y . By Lemma 3.8 in [16], all the characteristic values of −∆−1
2 have algebraic
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multiplicity 1, so in this case the result follows from the Leray–Schauder index
theorem (see, for example, Proposition 14.5 in [Zeidler]).

Now fix k ≥ 1, p > 2 and λ ∈ (λk(p), λk+1(p)) (the cases 1 < p < 2
and λ < λ1(p) are similar). By Theorem 3.5 and Corollary 3.7, we can choose
a continuous function ρ: [2, p] → R such that ρ(p) = λ and

λk(q) < ρ(q) < λk+1(q), q ∈ [2, p].

Now, by Lemma 3.3, the homotopy

H(q, u) := Kρ(q),q(u): [2, p]× Y → Y

is completely continuous and, by construction, for each q ∈ [2, p] the equation
u + H(q, u) = 0 has no non-trivial solution u, since ρ(q) is not an eigenvalue
of −∆p. Hence the result follows from the homotopy invariance of the Leray–
Schauder degree. �

4. Global bifurcation theory

In this section we consider the bifurcation problem,

(4.1) −∆p(u) = λf(u), (λ, u) ∈ R×X.

Clearly, u ≡ 0 is a solution of (4.1) for any λ ∈ R; such solutions will be called
trivial. We will prove a Rabinowitz-type global-bifurcation result for the solution
set of (4.1).

We first observe that, by Theorem 3.1, equation (4.1) is equivalent to the
equation

(4.2) u + ∆−1
p ◦ (λf)(u) = 0, (λ, u) ∈ R× Y.

The following result gives the degree of the operator on the left of this equation.

Lemma 4.1. If λf0 is not an eigenvalue of (3.3), then for sufficiently small
r > 0.

deg(I + ∆−1
p ◦ (λf), Br, 0) = deg(I + Kλf0 , Br, 0).

Proof. The operator ∆−1
p :Y → Y is completely continuous, by Theo-

rem 3.1, and f :Y → Y is bounded, so the operator ∆−1
p ◦ (λf):Y → Y is

completely continuous. Since |f(u)|0 = f0φp(|u|0) + o(|u|p−1
0 ), as |u|0 → 0, for

u ∈ Y , the result follows from standard continuity properties of the degree. �

We now prove various results on the set of non-trivial solutions of (4.1).

Definition 4.2. Let S ⊂ R×X denote the the set of non-trivial solutions
(λ, u) of (4.1), and let S denote the closure of S in R×X.
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Lemma 4.3. If (λ, u) ∈ S then u ∈ Tk for some k ≥ 1.

Proof. The properties of solutions of (4.1) proved in Theorem 2.3 are, es-
sentially, the properties used to prove the corresponding result for the case p = 2
in Proposition 4.1 in [16]. Thus, to prove the result in the current p 6= 2 setting
we simply follow the proof in [16]. The only modification required here is in the
verification that property (ii) in the definition of the sets Tk holds. In view of
this, we simply describe this verification.

Suppose there exists x0 ∈ (0, 1) such that φp(u′(x0)) = 0, φp(u′(x0))′ = 0.
Then, by equation (4.1) and the assumptions on f , u(x0) = u′(x0) = 0, and
so by Theorem 2.3, u ≡ 0 on [0, 1]. However, this contradicts the non-triviality
of u, so we conclude that u satisfies condition (ii) in the definition of Tk (for
some k). �

Lemma 4.4.

(a) For each k ≥ 1 there is a neighbourhood Ok of (λk/f0, 0) in R×Xsuch
that S ∩Ok ⊂ R× Tk.

(b) S ∩ (R× {0}) ⊂
⋃∞

k=1{(λk/f0, 0)}.

Proof. Let (µi, ui) ∈ S, i = 1, 2, . . . , be a sequence of solutions such that
ui 6∈ Tk, and limi→∞(µi, ui) = (λk/f0, 0). Then, for each i ≥ 1, the function
vi := ui/|ui|0 satisfies

(4.3) vi = −∆−1
p (µi(f(ui)/|ui|p−1

0 )),

and f(ui)/|ui|p−1
0 is bounded in Y , by assumption. Hence, by Theorem 3.1, after

taking a subsequence if necessary, there exists v∞ 6= 0 such that vi → v∞ in Y .
Therefore, by (1.4), f(ui)/|ui|p−1

0 → f0v∞ in Y , and by (4.3) and Theorem 3.1
again, vi → v∞ in X, and in fact −∆pv∞ = λkv∞. Thus, v∞ is an eigenfunction
of −∆p corresponding to the eigenvalue λk, and hence v∞ ∈ Tk, by Theorem 3.5.
However, each vi 6∈ Tk so, since Tk is open in X, this is a contradiction. This
proves part (a) of the lemma; similar arguments prove part (b). �

We now prove the following global bifurcation result. Here, a continuum is
a closed, connected set.

Theorem 4.5. For each k ≥ 1 there exists a continuum Ck ⊂ R+ × X of
solutions of (4.1) with the properties:

(a) (λk/f0, 0) ∈ Ck;
(b) Ck \ {(λk/f0, 0)} ⊂ R+ × Tk;
(c) Ck is unbounded in R+ × Y .
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Proof. For fixed k ≥ 1, it follows from Lemmas 3.8 and 4.1 and Theorem
2.9 in [9] that there exists a continuum Ck ⊂ S of solutions of (4.2) containing
(λk/f0, 0), such that one of the following alternatives holds:

(i) Ck is unbounded in R× Y ;
(ii) (λj/f0, 0) ∈ Ck for some j 6= k.

Remarks 4.6. (a) When p = 2, that is, when ∆p is linear, this result is
analogous to Theorem 2.3 in [12] (which deals with separated boundary condi-
tions); when p 6= 2, that is, when ∆p is non-linear but positively homogeneous,
the result can be proved in a similar manner to the proof in [12], see for example
Theorem 2.9 in [9].

(b) The cited global bifurcation results actually show that Ck is a continuum
in the space R× Y . However, by (4.2) and the continuity of the operator ∆−1

p ◦
f :Y → X, the continuum Ck can also be regarded as a continuum in R×X.

Now, by Lemmas 4.3, 4.4, and the fact that the sets Ti, i ≥ 1, are open and
disjoint in X, we see that property (b) in the theorem holds. It follows from this
that alternative (ii) above cannot hold. Thus, Ck is unbounded in R× Y .

Finally, it follows from Theorem 3.1 that (4.2) cannot have a non-trivial
solution with λ = 0. Thus, since Ck is connected and λk > 0, it follows that
Ck ⊂ R+ ×X. �

Definition 4.7. For k ≥ 1, let C±k := (Ck ∩ (R× T±k )) ∪ {(λk/f0, 0)}.

Theorem 4.8. For each k ≥ 1, each set C±k is closed, connected and un-
bounded in R+ × Y .

Proof. Since the sets T±k are open, disjoint subsets of X, it follows from
the proof of Lemma 28.6 in [WIL] that the sets C±k are connected, and it is clear
that they are also closed. The argument in the proof of [15, Theorem 6.1] shows
that each of the sets C±k are unbounded. �

5. A non-resonance condition and nodal solutions

In this section we obtain solutions of the problem

(5.1) −∆p(u) = f(u) + h, u ∈ X,

for arbitrary h ∈ Y , and also nodal solutions of the problem (1.1), (1.2), which
is a special case of (5.1), and can be rewritten as

(5.2) −∆p(u) = f(u), u ∈ X.

We first suppose that the following limit exists,

f∞ := lim
|ξ|→∞

f(ξ)
φp(ξ)

,
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where we allow f∞ = ∞ (our basic hypotheses on f imply that f∞ ≥ 0).

Theorem 5.1. Suppose that f∞ < ∞. If f∞ is not an eigenvalue of (3.3)
then equation (5.1) has a solution u ∈ X for any h ∈ Y .

Proof. The proof is similar to the proof of Theorem 4.1 in [15], using the
above properties of the operator ∆−1

p . �

Remark 5.2. Theorem 5.1 can be extended to yield a solution u ∈ X̃ of
(5.1), for any h ∈ Ỹ = L1(0, 1), by using the operator ∆̃−1

p described in Re-
mark 3.2.

The hypothesis in Theorem 5.1 that f∞ is not an eigenvalue is a ‘non-
resonance’ condition. Non-resonance conditions have been extensively investi-
gated for general, separated boundary condition problems, both for the semilin-
ear problem p = 2 and the general p-Laplacian problem with 1 < p 6= 2 (see, for
example, [14], [15] and the references therein). However, non-resonance condi-
tions for the m-point problem (5.1) have received less attention, since the spectral
theory of the operator −∆p has not previously been derived. The paper [7], and
the references therein, consider ‘resonant’ problems.

Next, we consider nodal solutions of (5.2). We note that (5.2) has the trivial
solution u = 0, so Theorem 5.1 tells us nothing about this problem.

Theorem 5.3. Suppose that f∞ < ∞. If, for some k ≥ 1,

(5.3) (λk − f0)(λk − f∞) < 0,

then (5.2) has solutions u±k ∈ T±k .

Proof. We shall show the existence of a solution u+
k ∈ T+

k , and note that
the existence of u−k follows by similar arguments. Let C+

k ⊂ R+ ×X denote the
subcontinuum of solutions of (4.1) given by Theorem 4.8 Clearly, any non-trivial
solution (1, u) ∈ C+

k yields a non-trivial solution of (5.2), so we will show that
C+

k intersects the set {1} ×X.
Let (µi, ui) ∈ C+

k , i = 1, 2, . . . , be a sequence of non-trivial solutions which
is unbounded in R+ × Y . Suppose, firstly, that f∞ > 0 and µi →∞ as i →∞.
Then, for each i ≥ 1, (µi, ui) satisfies the differential equation

−φp(u′i(x))′ = µiGi(x)φp(ui(x)), x ∈ [0, 1],

where, for x ∈ [0, 1],

Gi(x) :=

{
f(ui(x))/φp(ui(x)) if ui(x) 6= 0,

f0 if ui(x) = 0.

It follows from our assumptions on f and f0 > 0, f∞ > 0, that Gi ∈ C0[0, 1],
and that there exists constants C, c such that C ≥ Gi ≥ c > 0, for all i. Hence,
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by the Sturm comparison theorem (Theorem 6 in [8]), for sufficiently large i the
solution ui has more than k + 2 interior zeros, which contradicts ui ∈ Tk. Thus,
if f∞ > 0 then the sequence (µi) must be bounded.

Now suppose that µi → µ∞ < ∞ and |ui|0 →∞ (after taking a subsequence
if necessary). For each i ≥ 1, letting vi := ui/|ui|0, hi := f(ui)/|ui|p−1

0 , we see
that

(5.4) vi = ∆−1
p (µihi).

By our assumptions on f , the sequence (hi) is bounded in Y , so by (5.4) and
Theorem 3.1 we may suppose that vi → v∞ 6= 0 in Y . We now have the following
result.

Lemma 5.4. hi → f∞φp(v∞) in Y .

Proof. Let ε > 0 and define the set S(ε) := {x ∈ [0, 1] : |v∞(x)| < ε}. Since
vi → v∞ in Y , there exists N1 such that, for i > N1,

|vi − v∞|0 + |φp(vi)− φp(v∞)|0 <
1
2
ε,

and hence, since |hi(x)| = |Gi(x)||φp(vi(x))|, x ∈ [0, 1],

(5.5) |hi(x)− f∞φp(v∞(x))| < (C + |f∞|)φp(2ε), x ∈ S(ε).

Also, since |ui|0 →∞, there exists N2 ≥ N1 such that, for i > N2,

|Gi(x)− f∞| < ε, x ∈ [0, 1] \ S(ε),

it follows that

|hi(x)− f∞φp(v∞(x))| ≤ |Gi(x)− f∞||φp(vi(x))|+ |f∞||φp(vi(x))− φp(v∞(x))|
≤ (sup

i∈N
φp(|vi|0) + |f∞|)ε, x ∈ [0, 1] \ S(ε).

Combining this with (5.5) proves Lemma 5.4.

Now, by Lemma 5.4, letting i →∞ in (5.4) shows that vi → v∞ in X, and

−∆p(v∞) = µ∞f∞φp(v∞).

Therefore, since vi ∈ T+
k , i ≥ 1, it follows from Lemma 4.4 that v∞ ∈ T+

k , and
hence µ∞ = λk/f∞. Now, since C+

k is connected and bifurcates from (λk/f0, 0),
condition (5.3) implies that C+

k intersects the hyperplane {1}×X at a non-trivial
solution. This completes the proof of Theorem 5.3 when f∞ > 0.

On the other hand, if f∞ = 0 then the preceding argument in fact shows that
the case µi → µ∞ < ∞ cannot hold. Hence, in this case µi → ∞, and so the
final part of the above argument again shows that C+

k intersects the hyperplane
{1} ×X at a non-trivial solution. This completes the proof. �

Next, we consider the case where f∞ = ∞.
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Theorem 5.5. Suppose that f∞ = ∞. If λk0/f0 > 1, for some k0 ≥ 1, then
(5.2) has solutions u±k ∈ T±k , for all k ≥ k0.

Proof. We follow the proof of Theorem 5.3. The initial argument there
shows that the sequence (µi) must be bounded in this case, and so we have
|ui|0 →∞. Next, the following result can be proved as in Lemmas 3.12 and 4.5
of [9].

Lemma 5.6. For any compact interval J ⊂ (0,∞), there exists MJ > 0 such
that if λ ∈ J and u is a solution of (4.2), then |u|0 ≤ MJ .

Combining these results shows that we must have µi → 0, and the final
argument in the proof of Theorem 5.3 now shows that C+

k intersects the hyper-
plane {1} × X at a non-trivial solution of (4.2). This completes the proof of
Theorem 5.5. �

Finally, we no longer suppose that the limit f∞ exists, and we allow different
asymptotic behaviour of f(ξ) as ξ →∞ and ξ → −∞. To make this precise, we
define

γ± := lim sup
ξ→±∞

f(ξ)
φp(ξ)

, γ± := lim inf
ξ→±∞

f(ξ)
φp(ξ)

,

and we assume that 0 < γ± ≤ γ± < ∞ (the numbers γ±, γ± may all be
different).

For any k ≥ 1, let

(λ+
k )1/p := (p− 1)1/pπp

[
(k + 1)/2
(γ+)1/p

+
k/2

(γ−)1/p

]
,

(λ
+

k )1/p := (p− 1)1/pπp

[
k/2

(γ+)1/p
+

(k − 1)/2
(γ−)1/p

]
,

(λ−k )1/p := (p− 1)1/pπp

[
(k + 1)/2
(γ−)1/p

+
k/2

(γ+)1/p

]
,

(λ
−
k )1/p := (p− 1)1/pπp

[
k/2

(γ−)1/p
+

(k − 1)/2
(γ+)1/p

]
.

Clearly, λ
±
k ≤ λ±k .

Theorem 5.7. If, for some k ≥ 1 and ν ∈ {±},

(5.6) λk/f0 < 1 and λ
ν

k > 1 or λk/f0 > 1 and λν
k < 1,

then (5.2) has a solution uν
k ∈ T ν

k .

Proof. We again follow the proof of Theorem 5.3. In this case Cν
k contains

a sequence (µi, ui), i = 1, 2, . . . , such that µi → µ∞, |ui|0 → ∞ and vi =
ui/|ui|0 → v∞ 6= 0 in Y . In addition, the sequence hi = f(ui)/φp(|ui|0) is
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bounded in L2(0, π), so an extension of the argument on p. 648 of [5] proves
that, after choosing a subsequence if necessary,

hi ⇀ q+φp(v+
∞)− q−φp(v−∞),

in L2(0, 1), where v±∞(x) = max{±v∞(x), 0}, x ∈ [0, 1], and

(5.7) γ± ≤ q±(x) ≤ γ±, x ∈ [0, 1].

Now, by Lemma 3.3, v∞ ∈ X̃ (recall Remark 3.2) and satisfies

(5.8) −φp(v′∞)′ = µ∞q+φp(v+
∞)− µ∞q−φp(v−∞).

We can now estimate µ∞.

Lemma 5.8. λ
ν

k ≤ µ∞ ≤ λν
k.

Proof. It follows from uniqueness of the solutions of the initial value prob-
lem for (5.8) (see Theorem 1 in [8]) that v∞ has only simple zeros in [0, 1].
In addition, by its construction as the limit of the sequence ui/|ui|2 ∈ T ν

k ,
i = 1, 2, . . . , the function v∞ has the general shape described in Theorem 2.3.
Specifically, v∞ consists of a sequence of positive and negative bumps (together
with a truncated bump at the right end of the interval [0, 1]), such that all the
positive (respectively, negative) bumps have the same shape (the shapes of the
positive and negative bumps may be different), and all these bumps are sym-
metric about their mid-points (so the idea of a ‘half bump’ makes sense). Now,
recalling the definition of the set T ν

k , and ‘counting’ the truncated bump, we can
say, heuristically, that v∞ has between k − 1/2 and k + 1/2 bumps. Also, let-
ting d+ (respectively, d−) denote the width of a complete (untruncated) positive
(respectively, negative) bump of v∞, it follows from the estimate (5.7) that

(p− 1)1/pπp

(µ∞γ±)1/p
≤ d± ≤ (p− 1)1/pπp

(µ∞γ±)1/p
,

by (5.8), the properties of πp and sinp, and the Sturm comparison theorem
(Theorem 6 in [8]).

Now suppose that k = 2l, for some integer l, and ν = +. Then v∞ has
between l and l+1/2 positive bumps, and between l−1/2 and l negative bumps,
and hence

(p− 1)1/pπp

[
l

(µ∞γ+)1/p
+

(l − 1/2)
(µ∞γ−)1/p

]
≤ 1 ≤ (p− 1)1/pπp

[
(l + 1/2)

(µ∞γ+)1/p
+

l

(µ∞γ−)1/p

]
,

from which we deduce that λ
+

2l ≤ µ∞ ≤ λ+
2l. The other cases can be dealt with

similarly. �
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The proof of Theorem 5.7 can now completed by noting that the condition
(5.6), together with the estimates in Lemma 5.8, ensures that the bifurcation
point λk/f∞ and the asymptote µ∞ of Cν

k are on opposite sides of 1, and hence
Cν

k must cross the hyperplane {1} ×X. �

Remark 5.9. Most of the results in this paper can be extended to the case
where the boundary condition at x = 0 is replaced by u′(0) = 0. The only
changes required to deal with this case are to redefine X to incorporate this
alternative boundary condition, to modify conditions (i) and (ii) in the definition
of the sets T ν

k , to:

(i) u′(0) = 0, νu(0) > 0 and u′(1) 6= 0,
(ii) φp(u′) has only simple zeros in [0, 1), and has exactly k such zeros,

and to redefine the numbers λν , λ
ν

appropriately. All results then follow by
similar arguments, with the exception of part (ii) in Theorem 3.5, where φ1 is
no longer strictly positive, but φ′1 is now strictly negative on (0, 1).
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