APPLICATION
OF HE’S FREQUENCY-AMPLITUDE FORMULATION
TO THE DUFFING-HARMONIC OSCILLATOR

Jie Fan

Abstract. The work presents a derivation of frequency-amplitude of the Duffing-harmonic oscillator from a formulation suggested by Ji-Huan He. The obtained result is valid for all amplitudes, and its maximal error is less than 2.2%.

1. Introduction

Consider the Duffing-harmonic oscillator [1]–[4], [12] as follows

\[\frac{d^2 u}{dt^2} + \frac{u^3}{1 + u^2} = 0, \quad u(0) = A, \quad \frac{du}{dt}(0) = 0. \]

Usually, it is difficult to find an accurate analytical approximation for (1.1). Several new methods have been applied to dealing with (1.1), such as the variational iteration method [6], [16], the homotopy perturbation method [9]–[11], [14], [17], the parameter-expanding method [10], [15], the exp-function method [13], [18], [19] and harmonic balance based methods [1], [12].

In this work, He’s frequency-amplitude formulation [7], [8], [11] originated from ancient Chinese mathematics was employed to solve the nonlinear oscillator. It is a rather simple and relatively accurate way to get an analytical approximate solution of the Duffing-harmonic nonlinear oscillator.

2000 Mathematics Subject Classification. 01A05, 01A25, 20C20.

Key words and phrases. Ancient Chinese mathematics, nonlinear oscillator, He’s frequency-amplitude formulation.
2. Solution procedure

According to He’s frequency-amplitude formulation, we choose two trial-functions (initial solutions) [11]:

\[u_1(t) = A \cos t \quad \text{and} \quad u_2(t) = A \cos \omega t. \]

Submitting the above trial-functions to (1.1) results in the following residuals:

\[R_1(t) = -A \cos t \quad \text{and} \quad R_2(t) = -A\omega^2 \cos \omega t + (1 - \omega^2)A^3 \cos^3 \omega t. \]

He’s frequency-amplitude formulation requires that [11]:

\[\omega^2 = \frac{\omega^2 R_2(t_2) - \omega^2 R_1(t_1)}{R_2(t_2) - R_1(t_1)} \]

where \(\omega_1 = 1 \) and \(\omega_2 = \omega \), are respectively the frequency of \(u_1 \) and \(u_2 \), and \(\omega \) is the frequency of the Duffing-harmonic oscillator, \(t_1 \) and \(t_2 \) are location points. Generally we let

\[t_1 = \frac{T_1}{N}, \quad t_2 = \frac{T_2}{N} \]

where \(T_1 \) and \(T_2 \) are periods of the trial solutions \(u_1(t) = A \cos t \) and \(u_2(t) = A \cos \omega t \), respectively. In [11] \(N = 0 \), and in [5] \(N = 12 \). Setting \(N = 12 \), we obtain

\[
\omega^2 = \frac{-A \omega^2 \cos \frac{T_2}{N} + (1 - \omega^2)A^3 \cos^3 \frac{T_2}{N} - \omega^2 \left(-A \cos \frac{T_1}{N} \right)}{-A \omega^2 \cos \frac{T_2}{N} + (1 - \omega^2)A^3 \cos^3 \frac{T_2}{N} - \left(-A \cos \frac{T_1}{N} \right)} = \frac{3}{4} \frac{A^2}{1 + \frac{3}{4} A^2}
\]

i.e.

\[
\omega = \sqrt{\frac{\frac{3}{4} A^2}{1 + \frac{3}{4} A^2}}.
\]

The approximate period is

\[T = 2\pi \sqrt{\frac{4}{3A^2} + 1}. \]

The approximate analytical solution has a considerable accuracy by comparing it with the numerical solution. See comparison of approximate solution \(u = A \cos \omega t \) with the numerical solution in Figures 1–5 (exact solution — continued line, approximate solution — dashed line).

Figures 1–5 show that the accuracy increases with the increase of the amplitude \(A \). In order to illustrate the accuracy of the approximate analytical result,
we compare the approximate solution with the exact solution. The exact period is \([2], [12]\)

\[
T_e(A) = 4A \int_0^1 \frac{du}{\sqrt{A^2(1-u^2) + \log((1 + A^2u^2)/(1 + A^2))}}.
\]

When \(A \to 0\),

\[
T_e \approx \frac{2\sqrt{2}K(-1)}{A} + \ldots = \frac{7.4163}{A} + \ldots
\]

So we have

\[
\lim_{A \to 0} \frac{T}{T_e} = \frac{4\pi \sqrt{3}}{3.4/7.4163} = 0.9783.
\]
The accuracy of 2.2% is a remarkable accuracy.

In the case $A \to \infty$, the original equation (1.1) can be reduced to

$$\frac{d^2u}{dt^2} + u = 0.$$

Its period is $T = 2\pi$. When $A \to \infty$, the approximate period is

$$\lim_{A \to \infty} T = \lim_{A \to \infty} 2\pi \sqrt{\frac{4}{3A^2} + 1} = 2\pi.$$

It agrees exactly with the exact period.
3. Conclusions

The He’s frequency-amplitude formulation is of remarkable convenience and of excellent accuracy, it can be easily applied to other nonlinear oscillators without any difficulty.

References

Manuscript received October 11, 2007

Jie FAN
TMT Lab, College of Textile
Donghua University
Shanghai 201620, P. R. China

E-mail address: fanjie@mail.dhu.edu.cn