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HOMOTOPY PERTURBATION METHOD
FOR THE NONLINEAR RELATIVISTIC

TODA LATTICE EQUATIONS

Jiamin Zhu

Abstract. The work presents a derivation of solitary wave solutions of

the nonlinear relativistic Toda lattice equations using the homotopy per-

turbation method.

1. Introduction

Since the work of Fermi, Pasta and Ulam in the 1950s [7], the investigation
of exact solutions of the nonlinear differential-difference equations (DDEs) has
played a crucial role in the modeling of many phenomena in different fields. It is
known to all that discrete solitons exist in atomic chains [26] (discrete lattices)
with on-site cubic nonlinearities, molecular crystals [5], biophysical systems [23],
electrical lattices [21] and in arrays of coupled nonlinear optical wave guides
[6], [24]. Recent study also reveals that discrete solitons appear in photorefractive
optically induced photonic lattices [8], observation of lattice solitons in two-
dimensional systems was reported by Fleischer et al. [4] and Chen et al. [28].
Therefore, the properties of the solitons in nonlinear lattices have been the focus
of considerable studies in various fields of natural science [31] and [32]. Unlike
difference equations which are fully discretized, differential-difference equations
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are semi-discretized, with some (or all) of their spatial variables discretized,
while time variable is usually kept continuous. A wealth of information about
integrable nonlinear differential-difference equations (NDDEs) can be found in
papers by Suris [12], [28], [30].

The homotopy perturbation method (HPM) [13]–[15] is powerful in investi-
gating the approximate or analytical solutions of the nonlinear differential equa-
tions. The method does not depend on a small parameter in the equation.
Using homotopy technique in topology, a homotopy is constructed with an em-
bedding parameter p ∈ [0, 1] which is considered as an expanding parameter.
The method was successfully applied to nonlinear oscillators with discontinu-
ities [16] and bifurcation of nonlinear problems [17]. In [18], a comparison of
HPM and homotopy analysis method was made, revealing that the former is
more powerful than the latter. The HPM was proposed to search for limit cycles
or bifurcation curves of nonlinear equations [19]. In [20], a heuristic example
was given to illustrate the basic idea of the homotopy perturbation method and
its advantages over the Adomian-method, and also this method was applied to
solve boundary value problems [9] and heat radiation equations [11]. Recently,
many researchers did a lot of significant work about the homotopy perturbation
method [1], [3], [10], [25].

In this paper, we extend HPM to solve the Relativistic Toda Lattice equa-
tions, and the accuracy of the extended method is investigated as well. The first
Relativistic Toda Lattice equation is as follows [27]

(1.1)

dun

dt
= (un+1 − vn)vn − (un−1 − vn−1)vn−1,

dvn

dt
= vn(un−1 − un),

where the subscript n represents the nth lattice. Its integrability was studied
in [27]. The polynomial traveling wave solution in tanh can be found in [2]
and [22]. Zhu [31], [32] applied the Exp-function method to the nonlinear
differential-difference equations (DDEs), and found many new solitary solutions.

2. Basic idea of He’s homotopy perturbation method

We consider the following nonlinear differential equation:

(2.1) A(u)− f(r) = 0, r ∈ Ω,

with the boundary conditions

B(u, ∂u/∂n) = 0, r ∈ Γ,

where A is a general differential operator, B is a boundary operator, f(r) is a
known analytical function and Γ is the boundary of the domain Ω.
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Generally speaking, the operator A can be decomposed into two operators,
L and N , where L is linear, and N is a nonlinear operator. Equation (2.1) can
therefore be rewritten as follows:

L(u) + N(u)− f(r) = 0.

By the homotopy technique, we construct a homotopy V : Ω× [0, 1] → R and we
let:

(2.2) H(V, p) = (1− p)[L(u)− l(u0)] + p[A(V )− f(r)] = 0, p ∈ [0, 1], r ∈ Ω

or

(2.3) H(V, p) = L(u)− l(u0) + pl(u0) + p[N(V )− f(r)] = 0,

where p ∈ [0, 1] is an embedding parameter, u0 is an initial approximation of
(2.1), which satisfies the boundary conditions. Obviously, from (2.2) and (2.3),
we will have:

H(V, 0) = L(u)− l(u0) = 0, H(V, 1) = A(V )− f(r) = 0.

The changing process of p from zero to unity is just that of V (r, p) from u0(r)
to u(r).

According to the HPM, we can first use the embedding parameter p as a
“small parameter”, and assume that the solution of (2.2)–(2.3) can be written
as a power series in p:

V = V0 + pV1 + p2V2 + . . .

Setting p = 1 results in the approximate solution of (2.1):

V = lim
p=1

V = V0 + V1 + V2 + . . .

The combination of the perturbation method and the homotopy method is
called HPM, which has eliminated the limitations of the traditional perturbation
methods. On the other hand, this technique can have full advantage of the
traditional perturbation techniques.

3. Analysis of the HPM

To investigate the traveling wave solution of (1.1), we first construct a ho-
motopy as follows:

(3.1) (1− p)
(

dun

dt
− dun0

dt

)
+ p

[
dun

dt
− (un+1 − vn)vn + (un−1 − vn−1)vn−1

]
= 0,
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(3.2) (1− p)
(

dvn

dt
− dvn0

dt

)
+ p

[
dvn

dt
− vn(un+1 − un)

]
= 0.

Suppose the solution of (3.1)–(3.2) and the initial approximations are as follows:

(3.3) un0(n, t) = un(n, 0), vn0(n, t) = vn(n, 0),

(3.4)
un(n, t) = Un(n, t) = un0 + pun1 + p2un2 + p3un3 + . . . ,

vn(n, t) = Vn(x, t) = vn0 + pvn1 + p2vn2 + p3vn3 + . . .

where uni, vni (i = 1, 2, . . . ) are functions of (n, t) yet to be determined. Substi-
tuting (3.4) into (3.1)–(3.2), and equating the coefficients of the terms with the
identical powers of p, we have

(3.5)
(

dun1

dt
+

dun0

dt
+ u(n−1)0v(n−1)0 − u(n−1)0vn0 − v2

(n−1)0 + v2
n0

)
p

+
(

dun2

dt
− u(n+1)1vn0 + 2vn0vn1 + v(n−1)1v(n−1)0

− u(n+1)0vn1 + u(n−1)1v(n−1)0 − 2v(n−1)0v(n−1)1

)
p2 + . . . = 0,

(3.6)
[
dvn1

dt
+

dvn0

dt
− vn0(u(n+1)0 − un0)

]
p

+
[
dvn2

dt
− vn0(u(n+1)1 − un1)− vn1(u(n+1)0 − un0)

]
p2 + . . . = 0.

In order to obtain the unknowns of uni, vni, (i = 1, 2, . . . ), we have to con-
struct and solve the following system, considering the initial approximations of
equations (3.3)

(3.7)
dun1

dt
+

dun0

dt
+ u(n−1)0v(n−1)0 − u(n−1)0vn0 − v2

(n−1)0 + v2
n0 = 0,

(3.8)
dun2

dt
− u(n+1)1vn0 + 2vn0vn1 + v(n−1)1v(n−1)0

− u(n+1)0vn1 + u(n−1)1v(n−1)0 − 2v(n−1)0v(n−1)1 = 0,
dvn1

dt
+

dvn0

dt
− vn0(u(n+1)0 − un0) = 0,(3.9)

dvn2

dt
− vn0(u(n+1)1 − un1)− vn1(u(n+1)0 − un0) = 0.(3.10)

If the first three approximations are sufficient, we will obtain:

un(n, t) = lim
p→1

Un(n, t) =
k=2∑
k=0

unk(n, t),(3.11)

vn(n, t) = lim
p→1

Vn(n, t) =
k=2∑
k=0

vnk(n, t).(3.12)
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4. Application

Firstly, we consider the solution of (1.1) with the initial conditions:

(4.1) un0(n, t) = c[coth(k) + tanh(kn)], vn0(n, t) = c[coth(k) + tanh(kn)],

where k and c are arbitrary constants. Equation (1.1) has a kink-type soliton
solution [22], which reads

(4.2)
un(n, t) = c[coth(k) + tanh(kn + ct)],

vn(n, t) = c[coth(k) + tanh(kn + ct)].

To calculate the terms of the homotopy series (3.11)–(3.12) for un(n, t) and
vn(n, t), we substitute the initial conditions (4.1) and equations (3.11)–(3.12)
into the (3.7)–(3.10), the solutions of the equation can be obtained as follows:

un0(n, t) = c[coth(k) + tanh(kn)],

un1(n, t) =
2c2t

1 + cosh(2nk)
,

un2(n, t) = [cosh(4nk + 4k)− 3 cosh(2k)− 3 cosh(4nk + 2k) + 4 cosh(2nk + 2k)

− cosh(4nk + 2k)− cosh(2nk + 2k) + 3]4c3t2/[sinh(6nk + 2k)

− sinh(6nk + 4k) + 3 sinh(2nk − 2k)− 3 sinh(2nk + 4k)

+ 3 sinh(4nk)− sinh(4k)− 3 sinh(4nk + 4k)

− 8 sinh(2k)− 6 sinh(2nk + 2k) + 6 sinh(2nk)],

vn0(n, t) = c[coth(k) + tanh(kn)],

vn1(n, t) =
2c2t

1 + cosh(2nk)
,

vn2(n, t) = [cosh(2nk + 4k)− cosh(4nk + 4k) + 3 cosh(2k) + 3 cosh(2nk)

− 4 cosh(2nk + 2k) + cosh(4nk + 4k) + 3]4c3t3/[sinh(6nk + 4k)

− sinh(6nk + 2k) + 3 sinh(2nk + 4k)− 3 sinh(2nk − 2k)

− 3 sinh(4nk) + sinh(4k) + 3 sinh(4nk + 4k)

+ 8 sinh(2k) + 6 sinh(2nk + 2k)− 6 sinh(2nk)].

Similarly we can easily obtain un3, vn3, un4, vn4, . . . Substituting un0, un1, un2,
vn0, vn1, vn2, . . . into equations (3.11)–(3.12) yields

un(n, t) = un0 + un1 + un2 + . . . , vn(n, t) = vn0 + vn1 + vn2 + . . .

In order to verify numerically whether the proposed methodology leads to high
accuracy, we evaluate the numerical solution using the 3-term approximation
and compare it with the exact analytical solution (4.2). The accuracy of the
HPM for the first relativistic Toda lattice equation is controllable, and absolute
errors are very small. These results are listed in Tables 1–3, it is seen that the
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implemented method achieves a minimum accuracy for the first three approxi-
mations for the initial condition (3.11)–(3.12). It is also evident that when more
terms are computed the numerical results get much closer to the corresponding
exact solutions with the initial conditions (3.11)–(3.12) of (1.1).

n |une − unh| |(une − unh)/une| |vne − vnh| |(vne − vnh)/vne|
−15 0 0 0 0

−5 2.0E−12 2.012144094E−10 2.0E−12 2.012144094E−10

−4 3.96E−10 3.984044906E−08 3.96E−10 3.984044906E−08

−3 1.4532E−07 1.461957711E−05 1.4532E−07 1.461957711E−05

3 5.3E−08 1.321715656E−08 5.3E−08 1.321715656E−08

4 0 0 0 0

5 0 0 0 0

15 0 0 0 0

Table 1. The HPM results for un for the first three approximation in

comparison with the analytical solutions when c = 2, k = 3, t = 0.5, for
the solitary wave solutions with the initial conditions (4.1) of equations

(1.1), respectively. (une equal to unexact, unh is unhomotopy, vne equal to

vnexact, vnh is vnhomotopy)

n |une − unh| |(une − unh)/une| |vne − vnh| |(vne − vnh)/vne|
−15 0 0 0 0

−5 4.0E−12 4.024288189E−10 4.0E−12 4.024288189E−10

−4 6.188E−09 6.225568818E−07 6.188E−09 6.225568818E−07

−3 2.533961E−06 2.548494555E−04 2.533961E−06 2.548494555E−04

3 3.03E−07 7.556223455E−08 3.03E−07 7.556223455E−08

4 0 0 0 0

5 0 0 0 0

15 0 0 0 0

Table 2. The HPM results for un for the first three approximation in

comparison with the analytical solutions when c = 2, k = 3, t = 1, for
the solitary wave solutions with the initial conditions (4.1) of equations
(1.1), respectively. (une equal to unexact, unh is unhomotopy, vne equal to
vnexact, vnh is vnhomotopy)
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n |une − unh| |(une − unh)/une| |vne − vnh| |(vne − vnh)/vne|
−15 0 0 0 0

−5 9.0E−12 9.054648425E−10 9.0E−12 9.054648425E−10

−4 5.7376E−08 5.772403553E−06 5.7376E−08 5.772403553E−06

−3 2.3053922E−05 2.313669816E−03 2.3053922E−05 2.313669816E−03

3 7.92E−07 1.975092071E−07 7.92E−07 1.975092071E−07

4 2.0E−09 4.98760624E−10 2.0E−09 4.98760624E−10

5 0 0 0 0

15 0 0 0 0

Table 3. The HPM results for un for the first three approximation in

comparison with the analytical solutions when c = 2, k = 3, t = 1.5, for
the solitary wave solutions with the initial conditions (4.1) of equations

(1.1), respectively (une equal to unexact, unh is unhomotopy, vne equal to

vnexact, vnh is vnhomotopy)

5. Conclusions

In this paper, the HPM was used for finding soliton solutions of the nonlinear
Relativistic Toda Lattice equations with initial conditions. It can be concluded
that the HPM is a very powerful and efficient technique in finding exact so-
lutions for wide classes of problems. It is worth pointing out that the HPM
presents a rapid convergence for the solutions. The HPM does not require small
parameters in the equation, so that the limitations of the traditional pertur-
bation methods can be eliminated, and also the calculations in the HPM are
simple and straightforward. The reliability of the method and the reduction in
the size of computational domain give to this method a wider applicability. The
results show that the HPM is a powerful mathematical tool for solving systems
of nonlinear partial differential equations.
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