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SOLITARY WAVE SOLUTIONS
FOR A COUPLED MKDV SYSTEM

USING THE HOMOTOPY PERTURBATION METHOD

Yong-Qing Jiang — Jia-Min Zhu

Abstract. The work presents a derivation of solitary solutions of a cou-
pled MKdV system using the homotopy perturbation method.

1. Introduction

In this paper, we consider a coupled MKdV equation which was introduced
by Wu et al. [12]. In [12], the authors introduced a 4× 4 matrix spectral prob-
lem with three potentials and proposed a corresponding hierarchy of nonlinear
equations. One of the typical equations in the hierarchy is a new coupled MKdV
system which can be written as follows:

(1.1)
ut =

1
2
uxxx − 3u2ux +

3
2
vxx + 3(uv)x − 3λux,

vt = −vxxx + 3vvx + 3vxux − 3u2vx − 3λvx.

The system becomes a generalized KdV equation when u = 0 and a MKdV
equation when v = 0, respectively. More recently, the soliton solutions for this
system were constructed by Fan [3]. The discussed coupled MKdV system was
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also studied by many authors via different approaches, for example, trigono-
metric function transform method by Cao et al. [2], the extended tanh-function
method by Fan [3], Jacobian elliptic function method by Hassan et al. [6], and
Adomian’s decomposition method by Raslan [11].

The homotopy perturbation method (HPM) was first proposed by He [7], [8].
Using homotopy technique in topology, a homotopy is constructed with an em-
bedding parameter p ∈ [0, 1] which is considered as a “small parameter”. Re-
cently, many researchers did a lot of significant work about the homotopy per-
turbation method [1], [4], [5].

In this paper, we further extend the method to solve the coupled MKdV
system. Using HPM, we get some explicit solutions of the coupled MKdV system
without using any transformation technology. The method presented here is also
simple to use for obtaining numerical solution of the equations without using any
discrete techniques, and leads to high accuracy as well.

2. Basic idea of He’s homotopy perturbation method

To illustrate the basic ideas of this method, we consider the following non-
linear differential equation [8]:

(2.1) A(u)− f(r) = 0, r ∈ Ω,

with the boundary conditions of

B(u, ∂u/∂n) = 0, r ∈ Γ,

where A is a general differential operator, B is a boundary operator, f(r) is
a known analytical function and Γ is the boundary of the domain Ω.

Generally speaking, the operator A can be decomposed into two operators,
L and N , where L is linear, and N is nonlinear operator. Equation (2.1) can
therefore be rewritten as follows:

L(u) + N(u)− f(r) = 0.

By the homotopy technique, we construct a homotopy V : Ω× [0, 1] → R and let:

(2.2) H(V, p) = (1− p)[L(u)− l(u0)] + p[A(V )− f(r)] = 0, p ∈ [0, 1], r ∈ Ω

or

(2.3) H(V, p) = L(u)− l(u0) + pl(u0) + p[N(V )− f(r)] = 0,

where p ∈ [0, 1] is an embedding parameter, u0 is an initial approximation of
equation (2.1), which satisfies the boundary conditions. Obviously, from (2.2)
and (2.3), we will have:

H(V, 0) = L(u)− l(u0) = 0, H(V, 1) = A(V )− f(r) = 0.
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The changing process of p from zero to unity is just that of V (r, p) from u0(r)
to u(r).

According to the HPM, we can first use the embedding parameter p as
a “small parameter”, and assume that the solution of equations (2.2) and (2.3)
can be written as a power series in p:

V = V0 + pV1 + p2V2 + . . .

Setting p = 1 results in the approximate solution of (2.1):

(2.4) V = lim
p=1

V = V0 + V1 + V2 + . . .

The combination of the perturbation method and the homotopy method is called
the homotopy perturbation method (HPM), which has eliminated the limitations
of the traditional perturbation methods. On the other hand, this technique can
have full advantage of the traditional perturbation techniques.

The series (2.4) is convergent for most cases.

3. Analysis of the method

To investigate the traveling wave solution of equation (1.1), we first construct
a homotopy as follows:

(3.1) (1− p)
(

∂u

∂t
− ∂u0

∂t

)
+ p

(
∂u

∂t
− ∂3u

2∂x3
+ 3u2 ∂u

∂x

− 3∂2v

∂x2
− 3∂uv

∂x
+ 3λ

∂u

∂x

)
= 0,

(3.2) (1− p)
(

∂v

∂t
− ∂v0

∂t

)
+ p

(
∂v

∂t
+

∂3v

∂x3
+ 3v

∂v

∂x

+ 3
∂u

∂x

∂v

∂x
− 3u2 ∂v

∂x
− 3λ

∂v

∂x

)
= 0.

Suppose the solution of equations (3.1)–(3.2) and the initial approximations are
as follows:

u0(x, t) = u(x, 0), v0(x, t) = v(x, 0),(3.3)

u(x, t) = U(x, t) = u0 + pu1 + p2u2 + p3u3 + . . . ,(3.4)

v(x, t) = V (x, t) = v0 + pv1 + p2v2 + p3v3 + . . . .(3.5)

where ui, vi, (i = 1, 2, . . . ) are functions of (x, t), yet to be determined. Substi-
tuting (3.4)–(3.5) into (3.1), and equating the coefficients of the terms with the
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identical powers of p, we have

(
∂u0

∂t
+ 3u2

0

∂u0

∂x
− 3u0

∂v0

∂x
+ 3λ

∂u0

∂x
− 3∂2v0

∂x2
+

∂u1

∂t
− 3v0

∂u0

∂x
− ∂3u0

2∂x3

)
p

+
(

∂u2

∂t
− ∂3u1

2∂x3
− 3u1

∂v0

∂x
+ 3λ

∂u1

∂t
− 3v0

∂u1

∂x

+ 3u2
0

∂u1

∂x
− 3∂2v1

∂x2
− 3u0

∂v1

∂x
+ 6u0u1

∂u0

∂x
− 3v1

∂u0

∂x

)
p2

+
(

∂u3

∂t
− 3v1

∂u1

∂x
− 3∂2u2

2∂x2
+ 3u2

1

∂u0

∂x
− 3v0

∂u2

∂x

− ∂3u2

∂x3
− 3u2

∂v0

∂x
− 3v2

∂u0

∂x
+ 6u0u1

∂u1

∂x
+ 3u2

0

∂u2

∂x

− 3u0
∂v2

∂x
+ 3λ

∂u2

∂x
− 3u1

∂v1

∂x
+ 6u0u2

∂u0

∂x

)
p3 + . . . = 0,(

∂v1

∂t
+

∂v0

∂t
+ 3v0

∂v0

∂x
+

∂3v0

∂x3
− 3λ

∂v0

∂x
+ 3

∂u0

∂x

∂v0

∂x
− 3u2

0

∂v0

∂x

)
p

+
(

∂v2

∂t
+ 3v0

∂v1

∂x
+ 3

∂u1

∂x

∂v0

∂x
+

∂3v1

∂x3
− 3λ

∂v1

∂x

− 3u2
0

∂v1

∂x
+ 3v1

∂v0

∂x
− 6u0u1

∂v0

∂x
+ 3

∂u0

∂x

∂v1

∂x

)
p2

+
(

∂v3

∂t
− 3λ

∂v2

∂x
+ 3

∂v0

∂x

∂u2

∂x
+ 3v2

∂v0

∂x
− 3u2

0

∂v2

∂x

+ 3v1
∂v1

∂x
− 3u2

1

∂v0

∂x
+ 3

∂v2

∂x

∂u0

∂x
+ 3v0

∂v2

∂x

− 6u0u1
∂v1

∂x
+

∂3v2

∂x3
− 6u0u2

∂v0

∂x
+ 3

∂v1

∂x

∂u1

∂x

)
p3 + . . . = 0.

In order to obtain the unknowns of ui, vi, (i = 1, 2, . . . ), we have to construct
and solve the following system which includes six equations with six unknowns,
considering the initial approximations of equations (3.1)–(3.2)

(3.6)
∂u0

∂t
+ 3u2

0

∂u0

∂x
− 3u0

∂v0

∂x
+ 3λ

∂u0

∂x

− 3∂2v0

∂x2
+

∂u1

∂t
− 3v0

∂u0

∂x
− ∂3u0

2∂x3
= 0,

(3.7)
∂u2

∂t
− ∂3u1

2∂x3
− 3u1

∂v0

∂x
+ 3λ

∂u1

∂t
− 3v0

∂u1

∂x

+ 3u2
0

∂u1

∂x
− 3∂2v1

∂x2
− 3u0

∂v1

∂x
+ 6u0u1

∂u0

∂x
− 3v1

∂u0

∂x
= 0,
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(3.8)
∂u3

∂t
− 3v1

∂u1

∂x
− 3∂2u2

2∂x2
+ 3u2

1

∂u0

∂x
− 3v0

∂u2

∂x

− ∂3u2

∂x3
− 3u2

∂v0

∂x
− 3v2

∂u0

∂x
+ 6u0u1

∂u1

∂x
+ 3u2

0

∂u2

∂x

− 3u0
∂v2

∂x
+ 3λ

∂u2

∂x
− 3u1

∂v1

∂x
+ 6u0u2

∂u0

∂x
= 0,

(3.9)
∂v1

∂t
+

∂v0

∂t
+ 3v0

∂v0

∂x
+

∂3v0

∂x3
− 3λ

∂v0

∂x
+ 3

∂u0

∂x

∂v0

∂x
− 3u2

0

∂v0

∂x
= 0,

(3.10)
∂v2

∂t
+ 3v0

∂v1

∂x
+ 3

∂u1

∂x

∂v0

∂x
+

∂3v1

∂x3

− 3λ
∂v1

∂x
− 3u2

0

∂v1

∂x
+ 3v1

∂v0

∂x
− 6u0u1

∂v0

∂x
+ 3

∂u0

∂x

∂v1

∂x
= 0,

(3.11)
∂v3

∂t
− 3λ

∂v2

∂x
+ 3

∂v0

∂x

∂u2

∂x
+ 3v2

∂v0

∂x
− 3u2

0

∂v2

∂x
+ 3v1

∂v1

∂x
− 3u2

1

∂v0

∂x

+ 3
∂v2

∂x

∂u0

∂x
+ 3v0

∂v2

∂x
− 6u0u1

∂v1

∂x
+

∂3v2

∂x3
− 6u0u2

∂v0

∂x
+ 3

∂v1

∂x

∂u1

∂x
= 0.

If the first three approximations are sufficient, we will obtain:
(3.12)

u(x, t) = lim
p→1

U(x, t) =
k=3∑
k=0

uk(x, t), v(x, t) = lim
p→1

V (x, t) =
k=3∑
k=0

vk(x, t).

4. Application

Firstly, we consider the solutions of (1.1) with the initial conditions (see [3]):

(4.1) u0 =
b

2k
+ ktanh(kx), v0 =

λ

2

(
1 +

k

b

)
+ btanh(kx),

where k and b are arbitrary constants. To calculate the terms of the homotopy
series (3.12) for u(x, t) and v(x, t), we substitute the initial conditions (4.1) and
(3.12) into the system (3.6)–(3.11), the solutions can be obtained as follows:

u0(x, t) =u0(x, 0) = u(x, 0) =
b

2k
+ ktanh(kx),(4.2)

u1(x, t) =
(6λk2b + 4k4b− 3b3 − 6k3λ)[tanh2(kx)− 1]t

4b
,(4.3)

u2(x, t) = {12[3kλ− 2b(3λ + 2k2)] + 9b3(1− 4λk3)(4.4)

+ 4k4b2[3b2(3λ− 2k2) + (9λ2 + 12λk2 + 4k4)]}

· [tanh2(kx)− 1]tanh(kx)t2

16kb2
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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v0(x, t) = v0(x, 0) = v(x, 0) =
λ

2

(
1 +

k

b

)
+ btanh(kx),(4.5)

v1(x, t) =
(4k4b− 6k2λb− 3b3 + 6k3λ)(tanh2(kx)− 1)t

4k
,(4.6)

(4.7) v2(x, t) = {288bk6λ(k − b)tanh5(kx) + 72b2k4λ(b− k)tanh4(kx)

+ [9b6 + 12k2b4(3λ− 2k2)− 36λk3b3

+ 4k4b2(9λ2 + 4k4 + 132λk2)

− 24λk5b(3λ + 22k2) + 36k6λ2]tanh3(kx)

+ 144b2k4λ(b− k)tanh2(kx)

+ [9b6 + 12k2b4(3λ− 2k2)− 36k3λb3

+ 4k4b2(9λ + 4k4 + 60k2λ)− 24λk5b(3λ + 10k2)

+ 36k6λ2]tanh(kx) + 72b2k4λ(k − b)} t2

16bk2
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this way the other components can be easily obtained. Substituting equations
(4.2)–(4.7) into (3.12):

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + · · · ,

v(x, t) = v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t) + · · · .

we can obtain the closed form solutions as follows:

u(x, t) =
b

2k
+ ktanh

[
k

(
x +

1
4

(
6kλ

b
+

3b2

k2
− 6λ− 4k2

)
t

)]
,

v(x, t) =
λ

2

(
1 +

k

b

)
+ btanh

[
k

(
x +

1
4

(
6kλ

b
+

3b2

k2
− 6λ− 4k2

)
t

)]
.

The kink-type solitary wave solutions are in full agreement with the ones con-
structed by Fan [3].

To examine the accuracy and reliability of the HPM for the coupled MKdV
system, we can also consider the different initial values [3]:

(4.8)
u(x, 0) = ktanh(kx),

v(x, 0) =
1
2
(4k2 + λ)− 2k2tanh2(kx).

where k is an arbitrary constant. To calculate the terms of the homotopy series
(3.12) for u(x, t) and v(x, t), we substitute the initial conditions (4.8) and equa-
tions (3.12) into system (3.6)–(3.11), the solutions of the system can be obtained.
Following this procedure as illustrated in the first example, we obtain the closed
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form of soliton solutions:

u(x, t) = tanh
[
k(x− 1

2
(3λ + 2k2)t)

]
,

v(x, t) =
1
2
(λ + 4k2)− 2k2tanh2

[
k

(
x− 1

2
(3λ + 2k2)t

)]
.

In this case, solitary wave solutions of (1.1) of kink-type for u(x, t), but bell-type
for v(x, t) were justified by Fan [3].

5. Comparing the results with the exact solutions

To demonstrate the convergence of the HPM, the results of the numerical
examples are presented and only few terms are required to obtain accurate solu-
tions. The accuracy of the HPM for the coupled MKdV system is controllable,
and absolute errors are very small. These results are listed in Tables 1 and 2,
it is seen that the implemented method achieves a minimum accuracy for the
first three approximations for initial conditions (4.1). For the initial conditions
(4.8), we need mor terms for v(x, t) to improve its accuracy. It is also evident
that when more terms are computed the numerical results get much closer to
the corresponding exact solutions.

(x, t) |uexact − uhomotopy| |vexact − vhomotopy|
(0.1,0.1) 2.413610343E-8 2.413610343E-8

(0.1,0.2) 3.663037028E-7 3.663037028E-7

(0.1,0.3) 1.754575181E-6 1.754575181E-6

(0.2,0.1) 4.574557069E-8 4.574557069E-8

(0.2,0.2) 7.144966135E-7 7.144966135E-7

(0.2,0.3) 3.538101206E-6 3.538101206E-6

(0.3,0.1) 6.015304680E-8 6.015304680E-8

(0.3,0.2) 9.523327446E-7 9.523327446E-7

(0.3,0.3) 4.773953444E-6 4.773953444E-6

Table 1. The HPM results for u(x, t), v(x, t) for the first three approxi-
mations in comparison with the analytical solutions when b = 1, k = 1,

λ = 1, for the solitary wave solutions with the initial conditions (4.1) of
equations (1.1), respectively

6. Conclusions

In this paper, the homotopy perturbation method (HPM) was used for finding
soliton solutions of a coupled MKdV system with initial conditions. It can be
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(x, t) |uexact − uhomotopy| |vexact − vhomotopy|
(1,0.01) 7.583561082E-8 0.3806588329

(1,0.02) 1.291668628E-6 0.3979604164

(1,0.03) 6.953972064E-6 0.4148836580

(2,0.01) 4.624794765E-8 0.07479221354

(2,0.02) 7.484818668E-7 0.08062151984

(2,0.03) 3.829091662E-6 0.08686390626

(3,0.01) 8.285192424E-9 0.01065463095

(3,0.02) 1.341588331E-7 0.01153381026

(3,0.03) 6.899929688E-7 0.01248327260

Table 2. The HPM results for u(x, t), v(x, t) for the first three approxima-

tion in comparison with the analytical solutions when k = 1, λ = 1, for the
solitary wave solutions with the initial conditions (4.8) of equations (1.1),

respectively

concluded that the HPM is a very powerful and efficient technique in finding
exact solutions for wide classes of problems. It is worth pointing out that the
HPM presents a rapid convergence for the solutions. The obtained solutions
are compared with the Adomian decomposition method [11], and all examples
show that the results of the present method are in excellent agreement with
those obtained by the Adomian decomposition method. The HPM has many
merits and much advantages over the Adomian decomposition method. This
method is to overcome the difficulties arising in calculation of the Adomian
polynomials. Also the HPM does not require small parameters in equations, so
that the limitations of the traditional perturbation methods can be eliminated,
and also the calculation in the HPM is simple and straightforward. The reliability
of the method and the reduction in the size of computational domain give this
method a wider applicability. The results show that the HPM is a powerful
mathematical tool for solving systems of nonlinear partial differential equations.
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