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DETERMINATION OF LIMIT CYCLES
BY ITERATED HOMOTOPY PERTURBATION METHOD

FOR NONLINEAR OSCILLATORS
WITH STRONG NONLINEARITY

Turgut Özi̇ş — Ahmet Yildirim

Abstract. He’s Homotopy Perturbation Method which reduced to an It-

erative Scheme is applied to nonlinear oscillators with strong nonlinearity.
With the method, the iteration scheme provides excellent approximations

to the solutions even though the iteration can only be done to the first

stage.

1. Introduction

In this study, we consider the following type of nonlinear oscillation:

u′′ + εf(u, u′) + u = 0

The study of nonlinear oscillators is of interest to many researchers and there are
a variety of techniques for constructing analytical approximations to the solutions
to the oscillatory systems. The perturbation methods are well established tools
to study diverse aspects of nonlinear problems. The Lindstedt–Poincaré method,
multi-time expansions, harmonic balance method, and the averaging technique
are among those of the methods commonly used in nonlinear analysis [1]–[3].
However, the use of perturbation theory in many important practical problems is
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invalid, or it simply breaks down for parameters beyond a certain specified range.
To overcome the limitations, for example, He [4]–[9] proposed a perturbation
technique, so called He’s homotopy perturbation method (HPM), which does
not require a small parameter in the equation and takes the full advantage of
the traditional perturbation methods and the homotopy techniques. Relatively
recent survey on the method and its applications can be found in [10]–[43]. There
also exists a wide range of literature dealing with the approximate determination
of periodic solutions for nonlinear problems by using a mixture of methodologies
[44]–[68].

The main purpose of this paper is to propose a new approach coupling iter-
ation method and He’s HPM for the periodic solutions to nonlinear oscillators
with strong nonlinearity.

2. Solution method

As it is well known, in He’s homotopy perturbation method, the solution of
functional equation is considered as a sum of an infinite series usually converging
to the solution. To be more specific, consider nonlinear differential equation:

(2.1) N(u) = f

where N is a general differential operator and f is a known analytic function.
We can define a homotopy H(u, p) by

H(u, 0) = L(u) − L(v0) = 0, H(u, 1) = N(u) − f = 0

where L(u) is a functional operator with a known solution v0, which can be easily
obtained. Classically, we may choose a convex homotopy by

(2.2) H(u, p) = (1 − p)L(u) + p[N(u) − f ] = 0

and continuously trace an implicitly defined curve from a starting pointH(v0, 0)
to a solution function H(g, 1) where g is a solution of (2.1). The embedding
parameter p monotonically changes from zero to unity as the trivial problem
L(u) − L(v0) is continuously deformed to the original problemN(u) − f . If
the embedding parameter p is considered as a “small parameter”, applying the
classical perturbation technique, we can assume that the solution of equation
(2.2), can be given as a power series in p, i.e.

(2.3) v = v0 + pv1 + p2v2 + . . .

and setting p = 1 results in the approximate solution of (2.1) as

(2.4) u = lim
p→1

v = v0 + v1 + v2 + . . .
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In HPM, the deformation process validated by substituting (2.3) into (2.2)
and equating the coefficients of like powers p results in a series of nonhomoge-
neous linear differential equations which are recursively ordered to solve. i.e.

(2.5)

p0:L(u0) − L(v0) = 0,

p1:L(u1) + L(v0) + N(u0) − f = 0,

p2:L(u2) + N(u1) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hence, the approximate solution can be readily obtained as in(2.4).
But, the deformation process mentioned above and given by (2.5) can also

be expressed as an iterative procedure. Alternatively, we first linearize the orig-
inal nonlinear equation, and apply the perturbation to find a correction to the
linearized solution v0 iteratively which may give an equivalent recursive process.

To illustrate the idea, consider a nonlinear oscillator modeled by the equation

(2.6) u′′ + f(u) = 0, u(0) = A, u′(0) = 0

Now, we suppose that the natural frequency of the system (2.6) is ω, which
is unknown to be further determined. Hence, the system (2.6) can be rewritten
as

(2.7) u′′ + ω2u = ω2u − f(u) =: g(u), u(0) = A, u′(0) = 0

The linearized form of the equation (2.7) is

(2.8) u′′ + ω2u = 0, u(0) = A, u′(0) = 0

Remember that in equation (2.3) the second term pv1 is a correction term to
the leading term v0 and so on. Due to the fact that any initial approximation is
obtained by using (2.8), means that initial approximation can be considered as
an approximated solution to the original problem (2.7).

Also, comparing equation (2.6) with (2.8), it is easily seen that even though
f(u) is not “small”, the function g(u) = ω2u − f(u) is “small”. Then the left-
hand side of equation (2.6) is linear and the term g(u) on the right-hand side
is a “small” function, namely, g(u) does not have for small u a dominant term
proportional to u. Hence, we equivalently solve equation (2.7) instead of (2.6) for
convenience. This process can also be named as linearization of the perturbation
process (see [66] and [67]).

We construct an iterative formula for the above equation:

(2.9) u′′k+1 + ω2uk+1 = g(uk), uk(0) = A, u
′

k(0) = 0, k = 0, 1, . . .

where the starting function is

(2.10) u0(t) = A cos ωt



352 T. Özi̇ş — A. Yildirim

In this way, the deformation of the perturbed linear problem to the original
nonlinear problem can be performed monotonically step by step until the desired
accuracy is obtained.

This iteration can be performed to any value k; but for most of the cases,
the iteration can be stopped at k = 2. Because, even termination at k = 2 is
capable of providing very high accuracy for approximate analytical solution to
the exact one.

In the next section, the operations of this procedure will be illustrated by
applying it to two examples.

3. Examples

Example 3.1. Consider the following oscillation

u′′ + u − εu3 = 0, u(0) = A, u′(0) = 0

For this example, iteration scheme (2.9) gives

u′′k+1 + ω2uk+1 = ω2uk − uk + εu3
k, uk(0) = A, u′k(0) = 0.

The first iteration function (2.10) leads to

u′′1 + ω2u1 = (ω2 − 1)A cos ωt + ε(A cos ωt)3

or

(3.1) u′′1 + ω2u1 =
[
ω2 − 1 +

3
4
εA2

]
A cos ωt +

1
4
εA3 cos 3ωt

The requirement of no secular terms in u1(t) implies

(3.2) ω =

√
1 − 3

4
εA2

Equation (3.1) reduces to

u′′1 + ω2u1 =
1
4
εA3 cos 3ωt

with the initial conditions

u1(0) = A, u1
1(0) = 0.

Hence, the first-order approximate solution reads

u1 = A cos ωt +
εA3

32ω2
(cos ωt − cos 3ωt).

From (3.2) the approximated value of the period is

T =
2π

ω
=

2π√
1 − 3

4εA2
= 2π

(
1 +

3
8
εA2 +

27
128

εA4 + . . .

)
+ O(A6).
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Observe that the present method gives exactly the same results as the mod-
ified straightforward expansion solution obtained by present authors [45].

For comparison, the exact period reads:

T =
4
√

2√
(2 − εA2)

∫ π/2

0

dφ√
(1 − β sin2 φ

, β =
εA2

2 − εA2
.

Deduce that small amplitudes yield

T = 2π
(

1 +
3
8
εA2 +

57
256

ε2A4 + . . .

)
+ O(A6), εA2 < 2.

Hence, we can clearly see that its first-order approximation is of high accuracy.
It can be easily shown that the maximal relative error is less than 5.3%.

Example 3.2. Consider the following oscillation

u′′ + sinu = 0, u(0) = A, u′(0) = 0.

Iteration scheme (2.9) gives

u′′k+1 + ω2uk+1 = ω2uk − sin(uk), uk(0) = A, u
′

k(0) = 0

The first iteration function (2.10) leads to

u′′1 + ω2u1 = ω2u0 − sin(u0)

or
u′′1 + ω2u1 = ω2A cos ωt − sin(A cos ωt)

The requirement of no secular term in u1(t) implies that∫ T

0

sinω(t − s){Aω2 cos ωt − sin(A cos ωt)} dt = 0

with T = 2π/ω. Thus, we have

ω2 =

∫ T

0
sinωt. sin(A cos ωt)dt∫ T

0
A sinωt. cos ωtdt

=
2J1(A)

A

where J1(A) is the first-order Bessel function of the first kind;

J1(A) =
1
2
A − 1

16
A3 +

1
384

A5 + . . .

The period then can be calculated as follows:

T =
2π√

2J1(A)/A
=

2π√
1 − A2/8 + A4/192 + · · ·

(3.3)

= 2π

(
1 +

1
16

A2 +
5

1536
A4 + . . .

)
+ O(A6).
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For comparison, the hyper geometric function approach of Tex reads that the
period of the pendulum as 4K(β), where

K(β) =
∫ π/2

0

dφ√
1 − β sin2 φ

, β = sin2 1
2
A

and is the complete elliptic integral of the first kind. The power series represen-
tation of K(β) can be given by

K(β) =
1
2
π

[
1 +

(
1
2

)2

β +
(

1.3
2.4

)2

β2 + . . .

]
, |β| < 1.

Thus, deduce that the period of the oscillation of the pendulum for small ampli-
tudes is given by

(3.4) Tex = 2π

[
1 +

1
16

A2 +
11

3072
A4 + . . .

]
+ O(A6)

It can be observed that our solution (3.3) is in harmony with the perturbed series
of Tex given in (3.4).

3. Conclusion

In summary, iterated HPM method for calculating analytical approximations
to the periodic solutions of nonlinear oscillators with strong nonlinearities has
been proposed. Its applicability has been demonstrated by means of two ex-
amples. The major conclusion is that the iteration scheme provides exceptional
approximations to the solutions even though the iteration can only be done to
the first stage.
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Lindstedt–Poincaré method, Chaos Solitons Fractals 23 (2005), 577–579.

[39] S. L. Mei, C. J. Du and S. W. Zhang, Asymptotic numerical method for multi-degree-

of-freedom nonlinear dynamic systems, Chaos Solitons Fractals (2006).

[40] R. E. Mickens, Oscillations in Planar Dynamics Systems, World Scientific, Singapore,
1996.

[41] A. H. Nayfeh, Perturbation Methods, Wiley–Interscience, New York, 1973.

[42] Z. Odibat and S. Momani, Application of variational iteration method to nonlinear
differential equations of fractional order, Internat. J. Nonlinear Sci. Numer. Simul. 7

(2006), 27–34.

[43] , Modified homotopy perturbation method: Application to quadratic Riccati dif-

ferential equation of fractal order, Chaos Solitons Fractals (2006).
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