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APPLICATION
OF THE HOMOTOPY PERTURBATION METHOD

TO COUPLED SYSTEM
OF PARTIAL DIFFERENTIAL EQUATIONS
WITH TIME FRACTIONAL DERIVATIVES

Z. Z. Ganji — D. D. Ganji — H. Jafari — M. Rostamian

Abstract. The homotopy perturbation method (HPM) is applied to solve
nonlinear partial differential equations of fractional orders. The correspond-

ing solutions for integer orders of the fractional derivatives are found to be

special cases of the fractional differential equations. It is predicted that
HPM can be found widely applicable in engineering.

1. Introduction

In recent years, it has turned out that many phenomena in engineering,
physics, chemistry and other sciences can be described very successfully by mod-
els using fractional calculus, i.e. the theory of derivatives and integrals of frac-
tional (non-integer) order. For instance, the nonlinear oscillation of earthquakes
can be modeled by fractional derivatives [and the fluid-dynamic traffic model
with fractional derivatives can eliminate the deficiency arising in the assump-
tion of continuum traffic flow. Most fractional differential equations do not
have exact analytic solutions, so approximate and numerical techniques have to
be used. The variational iteration method [2]–[7], [12], homotopy perturbation
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method [2]–[4], [7], [9]–[11], [13], [19]–[23], [25]–[30] and Adomian’s decomposi-
tion method [1], [14], [15] are relatively new approaches to providing analytic
approximations to linear and nonlinear problems. Recently, Odibat and Mo-
mani [17] have implemented the variational iteration method to solve nonlinear
ordinary differential equations of fractional order. In this study, He’s homotopy
perturbation method is implemented to derive analytical approximate solutions
to linear partial differential equations of fractional order.

2. Basic definitions

Definition 2.1. A real function f(x), x > 0 is said to be in the space Cα,
α ∈ < if there exists a real number p (> α) such that f(x) = xpf1(x) where
f1(x) ∈ C[0,∞). Clearly Cα ⊂ Cβ if β ≤ α.

Definition 2.2. A function f(x), x > 0 is said to be in the space Cm
α ,

m ∈ N ∪ {0}, if f (m) ∈ Cα.

Definition 2.3. The left sided Riemann–Liouville fractional integral of or-
der µ > 0, [21], [24] of a function f ∈ Cα, α ≥ −1 is defined as:

Iµf(x) =
1

Γ(µ)

∫ x

0

f(τ)
(t− τ)1−µ

dτ, µ > 0, x > 0,

I0f(x) = f(x).

Definition 2.4. The fractional derivative of f(x) in the Caputo sense is
defined as:

D∗
αf(x) = Jm−α Dmf(x) =

1
Γ(m− α)

∫ x

0

(x− t)m−α−1f (m)(t) dt,

for m− 1 < α < m, m ∈ N , x > 0, f ∈ Cm
−1

Note that (see [21], [24])

Iµtγ =
Γ(γ + 1)

Γ(γ + µ + 1)
tγ+µ, µ > 0, γ > −1, t > 0,

IµDµ
∗ f(t) = f(t)−

m−1∑
k=0

f (k)(0+)
tk

k!
, m− 1 < µ ≤ m, m ∈ N.

Definition 2.5. For m to be the smallest integer that exceeds α, the Caputo
time-fractional derivative operator of orderα > 0 is defined as:

Dα
∗t u(x, t) =

∂α u(x, t)
∂tα

=


Jm−α

(
∂mu(x, t)

∂tm

)
m− 1 < α < m, m ∈ N,

∂mu(x, t)
∂tm

α = m.
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3. Basic idea of He’s homotopy perturbation method

To illustrate the basic ideas of this method, we consider the following equation
(see [11]):

(3.1) A(u)− f(r) = 0, r ∈ Ω,

with the boundary condition:

B

(
u,

∂u

∂n

)
= 0, r ∈ Γ,

where A is a general differential operator, B a boundary operator, f(r) a known
analytical function and G is the boundary of the domain Ω.

A can be divided into two parts which are L and N , where L is linear and
N is nonlinear. Equation (3.1) can therefore be rewritten as follows:

L(u) + N(u)− f(r) = 0, r ∈ Ω,

Homotopy perturbation structure is shown as follows:

(3.2) H(v, p) = (1− p) · [L(v)− L(u0)] + p[A(v)− f(r)] = 0,

where v: Ω× [0, 1] → R.
In (3.2), p ∈ [0, 1] is an embedding parameter and is the first approximation

that satisfies the boundary conditions. We can assume that the solution of (3.1)
can be written as a power series in p, as following:

(3.3) v = v0 + p v1 + p2v2 + . . . ,

and the best approximation is:

u = lim
p→1

v = v0 + v1 + v2 + . . .

Recently, Momani applied homotopy perturbation method to fractional dif-
ferential equations. To illustrate the basic ideas of the new modification, we
consider the following nonlinear differential equation of fractional order (see [16]
and [18]):

Dα
∗ u(t) + L(u(t)) + N(u(t)) = f(t), t > 0, m− 1 < α < m,

where L is a linear operator which might include other fractional derivatives
of order less than a, N is a nonlinear operator which also might include other
fractional derivatives of order less than a, f is a known analytic function and Dα

∗
is the Caputo fractional derivative of order a, subject to the initial conditions

uk(0) = ck, k = 0, . . . , m− 1.

In view of the homotopy technique, we can construct the following homotopy:

u(m) − f(t) = p [u(m) − L(u(t))−N(u(t))−Dα
∗ u], p ∈ [0, 1].
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4. Application and numerical result

We consider the following nonlinear system [5]:

(4.1)

Dα
t u + vxwy − vywx = −u,

Dα
t v + wxuy + uvwx = v,

Dα
t w + uxvy + uyvx = w,

(0 < α < 1) with the initial conditions as:

u(x, 0) = ex+y, v(x, 0) = ex−y, w(x, 0) = e−x+y,

The exact solutions, when α = 1 are:

u(x, t) = ex+y−t, v(x, t) = ex−y+t, w(x, t) = e−x+y+t,

In order to solve (4.1) using HPM, we construct the following homotopy for these
equations:

(4.2)

ut = p[ut − vxwy + vywx − u− uα
t ],

vt = p[ut − wxuy − uvwx + v − vα
t ],

wt = p[wt − uxvy − uyvx + w − wtα],

Substituting v from (3.3) into (4.2) and rearranging based on powers of p-terms,
we can obtain:

p0:
∂u0

∂t
= 0, p0:

∂v0

∂t
= 0, p0:

∂w0

∂t
= 0,

p1:
∂u1(x, y, t)

∂t
= − ∂v0(x, y, t)

∂x
· ∂w0(x, y, t)

∂y
+

∂v0(x, y, t)
∂y

∂w0(x, y, t)
∂x

− u0(x, y, t) +
∂u0(x, y, t)

∂t
− ∂αu0(x, t)

∂tα
,

p1:
∂v1(x, y, t)

∂t
= − ∂w0(x, y, t)

∂x
· ∂u0(x, y, t)

∂y
+

∂w0(x, y, t)
∂y

· ∂u0(x, y, t)
∂x

− v0(x, y, t) +
∂v0(x, y, t)

∂t
− ∂αv0(x, t)

∂tα
,

p1:
∂w1(x, y, t)

∂t
= − ∂v0(x, y, t)

∂x
· ∂u0(x, y, t)

∂y
+

∂v0(x, y, t)
∂y

· ∂u0(x, y, t)
∂x

− w0(x, y, t) +
∂w0(x, y, t)

∂t
− ∂αw0(x, t)

∂tα
,

p2:
∂u2(x, y, t)

∂t
= − ∂v0(x, y, t)

∂x
· ∂w0(x, y, t)

∂y

+
∂v0(x, y, t)

∂y
· ∂w1(x, y, t)

∂x
· ∂v1(x, y, t)

∂y
· ∂w0(x, y, t)

∂x

− u1(x, y, t) +
∂u1(x, y, t)

∂t
− ∂αu1(x, t)

∂tα
,
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p2:
∂v2(x, y, t)

∂t
= − ∂u1(x, y, t)

∂x
· ∂w0(x, y, t)

∂y

+
∂w1(x, y, t)

∂y
· ∂u0(x, y, t)

∂x
· ∂u1(x, y, t)

∂y
· ∂w0(x, y, t)

∂x

− ∂w1(x, y, t)
∂x

· ∂u0(x, y, t)
∂y

− v1(x, y, t)

+
∂v1(x, y, t)

∂t
− ∂αv1(x, t)

∂tα
,

p2:
∂w2(x, y, t)

∂t
= − ∂u0(x, y, t)

∂x
· ∂v0(x, y, t)

∂y

+
∂v1(x, y, t)

∂x
· ∂u0(x, y, t)

∂y
· ∂v0(x, y, t)

∂y

· ∂u1(x, y, t)
∂x

· ∂v0(x, y, t)
∂x

· ∂u1(x, y, t)
∂y

− w1(x, y, t) +
∂w1(x, y, t)

∂t
− ∂αw1(x, t)

∂tα
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and therefore

u0 = ex+y, v0 = ex−y, w0 = e−x+y,

u1 = −ex+y t, v1 = ex−y t, w1 = e−x+y t,

u2 =
t2

2
ex+y t2 +

ex+yt2−α

Γ3− α
− ex+yt,

v2 =
t2

2
ex−y t2 − ex−yt2−α

Γ3− α
+ ex−yt,

w2 =
t2

2
e−x+y t2 − e−x+yt2−α

Γ3− α
+ e−x+yt,

u3 = − t3

6
e(x+y) + e(x+y)t2 − (t(3−α))2e(x+y)

Γ(4− 2α)t3

− 2(t− 3 + α)t(3−α)e(x+y)

Γ(4− α)t
− ex+yt,

v3 =
t3

6
e(x−y) + e(x−y) t2 +

(t(3−α))2e(x−y)

Γ(4− 2α)t3

− 2(t− 3 + α) t(3−α) e(x−y)

Γ(4− α)t
− ex−yt,

w3 =
t3

6
e(−x+y) + e(−x+y)t2 +

(t(3−α))2e(−x+y)

Γ(4− 2α)t3

− 2(t− 3 + α)t(3−α)e(−x+y)

Γ(4− α)t
− e(−x+y)t,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



346 Z. Z. Ganji — D. D. Ganji — H. Jafari — M. Rostamian

The solution of this equation, when p → 1 will be as follows:

u(x, y, z, t) = u0 + u1 + u2 + u3,

v(x, y, z, t) = v0 + v1 + v2 + v3,

w(x, y, z, t) = w0 + w1 + w2 + w3,

Substituting α = 1 in u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) we ultimately
obtain the solutions as below. These are exact solutions confirmed by [8].

u(x, y, z, t) = e(x+y)

(
− t +

t2

2!
− t3

3!
+ . . .

)
= e(x+y)e−t = e(x+y−t),

v(x, y, z, t) = e(x−y)

(
t +

t2

2!
+

t3

3!
+ . . .

)
= e(x−y)et = e(x−y+t),

w(x, y, z, t) = e(−x+y)

(
t +

t2

2!
+

t3

3!
+ . . .

)
= e(−x+y)et = e(−x+y+t),

5. Conclusion

In this paper, the homotopy perturbation method (HPM) was successfully
applied to study the partial differential of coupled systems of time-fractional
equation. The solution obtained by means of the homotopy perturbation method
is an infinite power series with respect to appropriate initial condition, which can
be, in turn, expressed in a closed form. The obtained results reinforce the conclu-
sions made by many researchers about the efficiency of HPM. The results show
that homotopy perturbation method is a powerful and efficient technique in find-
ing exact and approximate solutions for nonlinear partial differential equations
of fractional order.
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