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HOMOTOPY PERTURBATION SOLUTION
FOR PERISTALTIC FLOW OF A THIRD ORDER FLUID

A. M. Siddiqui — Q. A. Azim — A. Ashraf — Q. K. Ghori

Abstract. The peristaltic transport of a third order fluid in a planar chan-
nel as well as in an axisymmetric tube having walls that are transversely

displaced by an infinite, harmonic travelling wave of large wavelength and

negligibly small Reynolds number, has been analyzed using homotopy per-
turbation technique. Unlike perturbation method, this method does not

restrict the Deborah number Γ to be very large or small and works fairly

well for any choice of Γ. The expressions for stream function and pressure
rise per wavelength have been obtained up to second order of approxima-

tion.

1. Introduction

Peristalsis is an important mechanism for mixing and transporting fluids
generated by a progressive wave of contraction or expansion moving on the wall
of the tube. Common physiological examples are the oesophagus, gastrointestinal
tract, small blood vessels. Roller and finger pumps also operate on this principle.

A number of analytical, numerical and experimental studies of peristaltic
flow of Newtonian fluids have been reported [10] but only limited information
on the transport of non-Newtonian fluids is available. The peristaltic transport
of some non-Newtonian fluids is studied in [4], [16]–[18].
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To avoid complexity of nonlinear equations, we consider the planar and pipe
flows of a third order fluid for the case of a symmetric, harmonic, infinite wave
train with long wavelength approximation and transverse displacements only. We
then employ Homotopy perturbation method due to He [5]–[9] for the solution
of the problem. This method has earlier been employed by Siddiqui et al. in
[3], [11]–[15] and others in [1] for the study of some non-Newtonian fluid flow
problems. However, homotopy perturbation technique has not yet been used for
the solution of problems regarding peristaltic flows. Expressions for the pressure
gradient per unit wavelength and the stream function up to the second order
of approximation are obtained in terms of flow rate, occlusion and the Deborah
number.

2. Basic equations

Basic equations governing a flow of an incompressible fluid are given by the
laws of conservation of mass and conservation of momentum

∇ ·V = 0,(2.1)

ρ
DV
Dt

= ∇ · S(2.2)

where V is the velocity field, S the stress tensor, ρ the constant fluid density
and D/Dt denotes the material derivative. The constitutive equation for a ther-
modynamically compatible third order fluid as proposed by Rajagopal [2] is

(2.3) S = −pI + µA1 + α1A2 + α2A2
1 + β(trA2

1)A1

where p is the fluid pressure, µ the coefficient of viscosity, α1, α2, β the material
constants and A1, A2 are the Rivlin Ericksen tensors defined by

A1 = (∇V) + (∇V)T(2.4)

An =
DAn−1

Dt
+ An−1(∇V) + (∇V)T An−1, n = 2, 3, . . .(2.5)

3. Problem statement

3.1. Peristaltic flow in a planar channel. As discussed in [18] on the
peristaltic flow of a third order fluid in a planar channel, equations (2.1)–(2.5)
reduce to a single dimensionless equation in a wave frame

(3.1)
∂4Ψ
∂y4

+ 2Γ
∂2

∂y2

(
∂2Ψ
∂y2

)
= 0

where Ψ is the stream function and Γ is the Deborah number. For pressure
gradient, which is independent of y, we have

(3.2)
∂3Ψ
∂y3

+ 2Γ
∂

∂y

(
∂2Ψ
∂y2

)
=
dp

dx
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and the pressure rise per wavelength is given by

∆Pλ =
∫ 2π

0

dp

dx
dx

where λ is the wavelength. The boundary conditions associated with this prob-
lem are

Ψ = 0,
∂2Ψ
∂y2

= 0 at y = 0,(3.3)

Ψ = F,
∂Ψ
∂y

= −1 at y = h(3.4)

where h is the dimensionless wall of the tube given by

h = 1 + Φsinx

with amplitude ratio or occlusion Φ, and 2πF indicates the dimensionless volume
flux.

3.2. Peristaltic flow in an axisymmetric tube. For the peristaltic flow
of a third order fluid in an axisymmetric tube, we follow paper [4] to obtain in
a dimensionless wave frame a single dimensionless equation

(3.5)
∂

∂r

[
1
r

∂

∂r

{
r

(
∂

∂r

(
1
r

∂Ψ
∂r

)
+ 2Γ

(
∂

∂r

(
1
r

∂Ψ
∂r

))3)}]
= 0

where Ψ is the stream function and Γ is the Deborah number. For pressure
gradient, which is independent of r, we have

(3.6)
1
r

∂

∂r

{
r

(
∂

∂r

(
1
r

∂Ψ
∂r

)
+ 2Γ

(
∂

∂r

(
1
r

∂Ψ
∂r

))3)}
=
dp

dz

and the pressure rise per wavelength is given by

∆Pλ =

2π∫
0

dp

dz
dz

where λ is the wavelength. The boundary conditions associated with this prob-
lem are

Ψ = 0,
∂

∂r

(
1
r

∂Ψ
∂r

)
= 0 at r = 0,(3.7)

Ψ = F,
1
r

∂Ψ
∂r

= −1 at r = h(3.8)

where h is the dimensionless wall of the tube given by h = 1 + Φ sin z with
amplitude ratio or occlusion Φ, and 2πF indicates the dimensionless volume
flux.
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4. Solution of the problem

4.1. Peristaltic flow in a planar channel. We apply the homotopy per-
turbation method to the non-linear differential equation (3.1) subject to bound-
ary conditions (3.3) and (3.4). First we define a homotopy ω(y, q): Ω× [0, 1] → R
for (3.1) which satisfies

(4.1) (1− q)[L(Ψ)− L(ψ0)] + q

[
∂4Ψ
∂y4

+ 2Γ
∂2

∂y2

(
∂2Ψ
∂y2

)3]
= 0

where L( · ) = ∂4( · )/∂y4 is a linear operator, q is an embedding parameter and
ψ0 is the initial guess. Equivalently, (4.1) may be written as

(4.2) L(Ψ)− L(ψ0) + qL(ψ0) + q

[
2Γ

∂2

∂y2

(
∂2Ψ
∂y2

)3]
= 0

We assume that (4.2) along with (3.3) and (3.4) has a solution of the form

(4.3) Ψ = Ψ0 + qΨ1 + q2Ψ2 + . . .

We also assume that

(4.4) F = F0 + qF1 + q2F2 + . . . , p = p0 + qp1 + q2p2 + . . .

By substituting (4.3) and (4.4) into (4.2), (3.2), (3.3) and (3.4) and collecting
the coefficients of various powers of q, we obtain

4.1.1. Zeroth order problem and solution. The zeroth order system is

L(Ψ0) = L(ψ0),

dp0

dx
=

[
∂3Ψ0

∂y3
+ 2Γ

∂

∂y

(
∂2Ψ0

∂y2

)3]
at y=0

,

Ψ0 = 0,
∂2Ψ0

∂y2
= 0 at y = 0,

Ψ0 = F0,
∂Ψ0

∂y
= −1 at y = h.

and its solution is given by

(4.5)

Ψ0 = ψ0 =
A1

2

(
y3

3
− h2y

)
− y,

dp0

dx
= A1,

∆Pλ0 = −3[F0I3 + I2],
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where

A1 = − 3
h3

(F0 + h),

In =

2π∫
0

dx

(1 + Φ sinx)n
, n = 1, 2, . . .

I1 =
2π

(1− Φ2)1/2
, I2 =

2π
(1− Φ2)3/2

, I3 =
π(Φ2 + 2)
(1− Φ2)5/2

,

In =
1

1− Φ2

[(
2n− 3
n− 1

)
In−1 −

(
n− 2
n− 1

)
In−2

]
, n > 4.

4.1.2. First order problem and solution. The system of the first order is

∂4Ψ1

∂y4
+ 2Γ

∂2

∂y2

(
∂2Ψ0

∂y2

)3

= 0,

dp1

dx
=

[
∂3Ψ1

∂y3
+ 6Γ

∂

∂y

{(
∂2Ψ0

∂y2

)2(
∂2Ψ1

∂y2

)}]
at y=0

,

Ψ1 = 0,
∂2Ψ1

∂y2
= 0 at y = 0,

Ψ1 = F1,
∂Ψ1

∂y
= 0 at y = h

and its solution is

(4.6)

Ψ1 = −ΓA3
1

2

(
y5

5
− h4y

)
+
B1

2

(
y3

3
− h2y

)
,

dp1

dx
= B1,

∆Pλ1 = −3F1I3 −
162Γ

5
[F 3

0 I7 + 3F 2
0 I6 + 3F0I5 + I4],

where

B1 = − 3
h3

(
F1 −

2Γ
5
A3

1h
5

)
.

4.1.3. Second order problem and solution. The second order system is

∂4Ψ2

∂y4
+ 6Γ

∂2

∂y2

{(
∂2Ψ0

∂y2

)2(
∂2Ψ1

∂y2

)}
= 0,

dp2

dx
=

[
∂3Ψ2

∂y3
+ 6Γ

∂

∂y

{(
∂2Ψ0

∂y2

)2(
∂2Ψ2

∂y2

)
+

(
∂2Ψ0

∂y2

)(
∂2Ψ1

∂y2

)2}]
at y=0

,

Ψ2 = 0,
∂2Ψ2

∂y2
= 0 at y = 0,

Ψ2 = F2,
∂Ψ2

∂y
= 0 at y = h.
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Its solution is given by

(4.7)

Ψ2 =2Γ2A5
1

(
y7

7
− h6y

)
− 3

2
ΓA2

1B1

(
y5

5
− h4y

)
+
C1

2

(
y3

3
− h2y

)
,

dp2

dx
=C1,

∆Pλ2 = − 3F2I3 −
486Γ

5
F1[F 2

0 I7 + 2F0I6 + I5]

− 34992Γ2

175
[F 5

0 I11 + 5F 4
0 I10 + 10F 3

0 I9 + 10F 2
0 I8 + 5F0I7 + I6],

where

C1 = − 3
h3

(
F2 +

12
7

Γ2A5
1h

7 − 6
5
ΓA2

1B1h
5

)
.

4.1.4. Solution up to second order of approximation. If Ψ is the solution of
(4.2), then according to the construction of a homotopy in (4.1), we have

Ψ = lim
q→1

(Ψ0 + qΨ1 + q2Ψ2 + . . . ).

Using the results obtained in (4.5)–(4.7) we find that

Ψ = 2Γ2A5
1

(
y7

7
− h6y

)
− ΓA2

1(A1 + 3B1)
2

(
y5

5
− h4y

)
+
A1 +B1 + C1

2

(
y3

3
− h2y

)
− y,

dp

dx
=A1 +B1 + C1,

∆Pλ = − 3[F2I3 + F1I3 + F0I3 + I2]−
162Γ

5
[F 3

0 I7 + 3F 2
0 I6 + 3F0I5 + I4]

− 486Γ
5

F1[F 2
0 I7 + 2F0I6 + I5]

− 34992Γ2

175
[F 5

0 I11 + 5F 4
0 I10 + 10F 3

0 I9 + 10F 2
0 I8 + 5F0I7 + I6].

4.2. Peristaltic flow in an axisymmetric tube. We apply the homo-
topy perturbation method to the non-linear differential equation (3.5) subject
to boundary conditions (3.7) and (3.8). First we define a homotopy ω(r, q): Ω×
[0, 1] → R for (3.5) which satisfies

(4.8) (1− q)[L(Ψ)− L(ψ0)] + q

[
∂

∂r

[
1
r

∂

∂r

{
r

(
∂

∂r

(
1
r

∂Ψ
∂r

)
+ 2Γ

(
∂

∂r

(
1
r

∂Ψ
∂r

))3)}]]
= 0

where

L( · ) =
∂

∂r

[
1
r

∂

∂r

{
r

(
∂

∂r

(
1
r

∂( · )
∂r

))}]
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is a linear operator, q is an embedding parameter and ψ0 is the initial guess.
Equivalently, (4.8) may be written as

(4.9) L(Ψ)− L(ψ0) + qL(ψ0) + q

[
∂

∂r

[
1
r

∂

∂r

{
r2Γ

(
∂

∂r

(
1
r

∂Ψ
∂r

))3}]]
= 0.

We assume that (4.9) along with (3.7) and (3.8) has a solution of the form

(4.10) Ψ = Ψ0 + qΨ1 + q2Ψ2 + . . .

We also assume that

(4.11) F = F0 + qF1 + q2F2 + . . . , p = p0 + qp1 + q2p2 + . . .

Substituting (4.10) and (4.11) into (4.9), (3.6)–(3.8) and collecting the coef-
ficients of various powers of q, then solving the zeroth, first and second order
problems subject to their respective boundary conditions we obtain the following
stream function, pressure gradient and pressure rise per wavelength. Substitut-
ing and collecting the coefficients of various powers of q, we obtain

Ψ =Γ2A5
2

(
r8

4
− h6r2

)
− ΓA2

2

4
(A2 + 3B2)

(
r6

3
− h4r2

)
+
A2 +B2 + C2

4

(
r4

2
− h2r2

)
− r2

2
,

dp

dz
=2A2 + 2B2 + 2C2,

∆Pλ = − 8I2 − 16[I4F0 + F1I4 + F2I4]

− 512
3

Γ[8F 3
0 I10 + 12F 2

0 I8 + 6F0I6 + I4]

− 1024ΓF1[4F 2
0 I10 + 4F0I8 + I6]

+
4096

3
Γ2[32F 5

0 I16 + 80F 4
0 I14 + 80F 3

0 I12 + 40F 2
0 I10 + 10F0I8 + I6]

where

A2 = − 8
h4

(
F0 +

h2

2

)
,

B2 = − 8
h4

(
F1 −

Γ
6
A3

2h
6

)
,

C2 = − 8
h4

(
F2 +

3
4
Γ2A5

2h
8 − Γ

2
A2

2B2h
6

)
and

In =
∫ 2π

0

dz

(1 + Φ sin z)n
, n = 1, 2, . . .
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Figure 1. Pressure gradient against axis of symmetry in case of (a) planar

channel and (b) axisymmetric tube for fixed values of dimensionless flow
rate and amplitude ratio

5. Conclusions

The solutions for the peristaltic transport of a third order fluid are obtained
by employing the homotopy perturbation method. Similar results have earlier
been solved by the perturbation method in [18] and [4] for small values of the
Deborah number Γ. On the other hand, the Adomian decomposition method
applied to these problems yields similar results for the planar channel case but
requires tedious calculations in the case of axisymmetric tube. Since the homo-
topy perturbation method does not demand any parameter to be small or large,
the solutions obtained in this paper are independent of choice of Γ. This shows
that the homotopy perturbation method has a wider area of application.
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