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HOMOTOPY PERTURBATION METHOD
FOR MULTI-DIMENSIONAL NONLINEAR COUPLED SYSTEM

OF PARABOLIC AND HYPERBOLIC EQUATIONS

Nasser H. Sweilam — Mohamed M. Khader — Rabab F. Al-Bar

Abstract. In this paper, the homotopy perturbation method (HPM) pro-

posed by J. H. He is adopted for solving multi-dimensional nonlinear cou-

pled system of parabolic and hyperbolic equations. The numerical results
of the present method are compared with the exact solution of an artificial

multi-dimensional nonlinear coupled system of parabolic and hyperbolic
model to show the efficiency of the method. Moreover, comparison is made

between the results obtained by the present method and that obtained by

the Adomian decomposition method (ADM). It is found that the present
method works extremely well, very efficient, simple and convenient.

1. Introduction

In the past few years, we observe a growing interest towards the applications
of the homotopy technique in nonlinear problems which can be described by
weakly (or strongly) nonlinear partial differential equations. The HPM (see [1],
[4], [6]–[9], [12], [16]) is one of the methods which has received much concern, it
has the merits of simplicity and easy execution. Unlike the traditional numerical
methods [10], the HPM does not need discretization, linearization. Many authors
(see [2], [3], [5], [15], [17], [18] and the references cited therein) are pointed out
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that the HPM can overcome the difficulties arising in calculation of Adomian’s
polynomials in ADM.

The multi-dimensional coupled systems of parabolic and hyperbolic equations
often appear in the study of a circled fuel reactor, high-temperature hydrody-
namics and thermo-elasticity problems, see [14] and the references cited therein.
For some kinds of nonlinear thermo-elasticity coupled systems, there are several
publications (see [10], [11], [19] and the references cited therein) studying the
numerical computations, existence and smooth properties of their solutions. In
this paper we will use the merits of simplicity of HPM to solve the following multi-
dimensional coupled system of non-linear partial differential equations (see [14]).

ut −∇.(α(X, t, u, v)∇u) = f(X, t, u, v, ux, vx, uy, vy),(1.1)

vtt −∇.(β(X, t, u, v)∇v) = g(X, t, u, v, ux, vx, uy, vy, ut, vt).(1.2)

Here X = (x, y), X ∈ Ω = [0, d1]× [0, d2], t ∈ [0, T ] with the following boundary
and initial conditions:

(1.3)
u(X, t) = v(X, t) = 0, X ∈ ∂Ω, t ∈ [0, T ],

u(X, 0) = u0(X), v(X, 0) = v0(X), vt(X, 0) = v1(X), X ∈ Ω,

where α, β, f , g, u0, v0, v1 are known functions. For more details on such model
see [14] and the references cited therein.

2. Analysis and implementation of the HPM

To illustrate the basic idea of HPM, let us consider the following system of
partial differential equations:

L1u(X, t) + N1(u(X, t), v(X, t))− f(X, t) = 0,(2.1)

L2v(X, t) + N2(u(X, t), v(X, t))− g(X, t) = 0,(2.2)

where L1, L2 are linear operators and N1, N2 are nonlinear operators. With
suitable initial and boundary conditions, f and g are known analytic functions.
By the homotopy technique, we can construct homotopies

ũ(X, p): Ω× [0, 1] → R and ṽ(X, p): Ω× [0, 1] → R

such that:

(2.3) H1(ũ, p) = L1(ũ)− L1(u0) + p L1(u0) + p [N1(ũ, ṽ)− f(X, t)] = 0,

(2.4) H2(ṽ, p) = L2(ṽ)− L2(v0) + p L2(v0) + p [N2(ũ, ṽ)− g(X, t)] = 0,

where p is an embedding parameter, u0 and v0 are initial approximations of the
solutions. It is obvious that when p = 0, equations (2.3) and (2.4) are linear
equations and when p = 1, they become the original non-linear equations. The
embedding parameter monotonically increases from zero to the unit as the trivial
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problems. L1(ũ)−L1(u0) = 0, L2(ṽ)−L2(v0) = 0, are continuously deformed to
problems (2.3) and (2.4), respectively. This is a basic idea of homotopy method
which is continuously deforming a simple problem easy to be solved into the
difficult problem under study. In view of HPM, we use the homotopy parameter
to expand the solutions

ũ(X, t) = ũ0 + p ũ1 + p2 ũ2 + p3 ũ3 + . . . ,(2.5)

ṽ(X, t) = ṽ0 + p ṽ1 + p2 ṽ2 + p3 ṽ3 + . . .(2.6)

The approximate solutions can be obtained by setting p = 1 in (2.5) and (2.6):

u(X, t) = lim
p→1

ũ = ũ0 + ũ1 + ũ2 + . . . ,

v(X, t) = lim
p→1

ṽ = ṽ0 + ṽ1 + ṽ2 + . . .

Now, in this section, we apply the HPM to an artificial model like in (1.1)–
(1.3) in order to demonstrate the high order accuracy and to compare the HPM
solution with the exact solution. Let us consider the two dimensional nonlinear
coupled system (1.1)–(1.3) with the following coefficients and functions:

α(x, y, t, u, v) = u− 2v, β(x, y, t, u, v) = v − 2u,

f(x, y, t) = 2t− 12x2 − 12y2 + 4(t2 − x2 − y2 − 2(t2 + x2 + y2)),

g(x, y, t) = 2− 12x2 − 12y2 − 4(t2 + x2 + y2 − 2(t2 − x2 − y2)),

and the following initial conditions:

u(x, y, 0) = −(x2+y2), v(x, y, 0) = x2+y2, vt(x, y, 0) = 0, Ω = [0, 1]×[0, 1].

In this case, the coupled system of parabolic and hyperbolic equations has the
following exact solution:

u(x, y, t) = t2 − (x2 + y2), v(x, y, t) = t2 + (x2 + y2).

Now, the model problem (1.1)–(1.2) can be written in the following operator
form:

Ltu−N1(u, v)− f(X, t) = 0,(2.7)

Lttv −N2(u, v)− g(X, t) = 0,(2.8)

where the notations Lt = ∂/∂t and Ltt = ∂2/∂t2 symbolize the linear differential
operators and the nonlinear operators N1(u, v) and N2(u, v) are defined by:

(2.9) N1(u, v) = (ux − 2vx)ux + (uy − 2vy)uy + (u− 2v)(uxx + uyy),

(2.10) N2(u, v) = (vx − 2ux)vx + (vy − 2uy)vy + (v − 2u)(vxx + vyy).
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According to the HPM, we construct the following simple homotopy

(2.11) H1(ũ, p) = Lt(ũ)− Lt(ũ0) + p Lt(ũ0)− p [N1(ũ, ṽ) + f(X, t)] = 0,

(2.12) H2(ṽ, p) = Ltt(ṽ)− Ltt(ṽ0) + p Ltt(ṽ0)− p [N2(ũ, ṽ) + g(X, t)] = 0,

where p ∈ [0, 1] is an embedding parameter. It is obvious that when p = 0, the
above equations become linear equations of the form Lt(ũ) = Lt(ũ0), Ltt(ṽ) =
Ltt(ṽ0), and it turns to the original equations when p = 1. The HPM uses the
homotopy parameter as expanding parameter to obtain

u(X, t) = lim
p→1

ũ = ũ0 + ũ1 + ũ2 + . . . ,

v(X, t) = lim
p→1

ṽ = ṽ0 + ṽ1 + ṽ2 + . . .

Substituting (2.5) and (2.6) into (2.11) and (2.12), respectively and using equa-
tions (2.9) and (2.10), and equating the terms with the identical powers of p,
we can obtain a series of linear equations. These linear equations are easy to be
solved by using Mathematica software. Here we only write the first few linear
equations and for simplicity, we will use the notion ui, vi for the approximate
solution instead of ũi, ṽi:

(2.13) u̇0(X, t) = 0, v̈0(X, t) = 0,

(2.14) u̇1(X, t) = f(X, t) + (u0x − 2v0x)u0x

+ (u0y − 2v0y)u0y + (u0 − 2v0)(u0xx + u0yy),

(2.15) v̈1(X, t) = g(X, t) + (v0x − 2u0x)v0x

+ (v0y − 2u0y)v0y + (v0 − 2u0)(v0xx + v0yy),

(2.16) u̇2(X, t) = (u1x − 2v1x)u0x + (u0x − 2v0x)u1x

+ (u1y − 2v1y)u0y + (u0y − 2v0y)u1y

+ (u0 − 2v0)(u1xx + u1yy) + (u1 − 2v1)(u0xx + u0yy),

(2.17) v̈2(X, t) = (v1x − 2u1x)v0x + (v0x − 2u0x)v1x

+ (v1y − 2u1y)v0y + (v0y − 2u0y)v1y

+ (v0 − 2u0)(v1xx + v1yy) + (v1 − 2u1)(v0xx + v0yy),

the solution of equation (2.13) using the initial conditions is:

u0(x, y, t) = u(x, y, 0) = −(x2 + y2),

v0(x, y, t) = v(x, y, 0) + vt(x, y, 0)t = x2 + y2,
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after substituting u0(x, y, t) and v0(x, y, t) in (2.14)–(2.15), we can find the so-
lution of (2.14)–(2.15) in the form:

u1(x, y, t) =
∫ t

0

[ (u0x − 2v0x)u0x + (u0y − 2v0y)u0y

+ (u0 − 2v0)(u0xx + u0yy) + f(X, τ) ] dτ = t2 − 4
3
t3,

v1(x, y, t) =
∫ t

0

∫ t

0

[ (v0x − 2u0x)v0x + (v0y − 2u0y)v0y

+ (v0 − 2u0)(v0xx + v0yy) + g(X, τ)] dτdτ = t2 +
1
3
t4,

after substituting u0, u1 and v0, v1 in (2.16)–(2.17), we can find the solution of
(2.16)–(2.17) in the form:

u2 =
∫ t

0

[(u1x − 2v1x)u0x + (u0x − 2v0x)u1x + (u1y − 2v1y)u0y

+ (u0y − 2v0y)u1y + (u0 − 2v0)(u1xx + u1yy)

+ (u1 − 2v1)(u0xx + u0yy)] dτ =
4
15

t3(5 + 5t + 2t2),

v2 =
∫ t

0

∫ t

0

[(v1x − 2u1x)v0x + (v0x − 2u0x)v1x + (v1y − 2u1y)v0y

+ (v0y − 2u0y)v1y + (v0 − 2u0)(v1xx + v1yy)

+ (v1 − 2u1)(v0xx + v0yy)] dτ dτ =
t4

45
(−15 + 24t + 2t2).

Also, we can find the solutions u3(x, y, t), v3(x, y, t) in the form:

u3(x, y, t) =
−4t4

315
(105 + 126t− 28t2 − 4t3),

v3(x, y, t) =
−t5

315
(168 + 126t + 16t2 − t3).

Proceeding in the same way, we can obtain high order approximations. In order
to illustrate the advantages and the accuracy of the HPM for solving the present
problem, we calculate the fifteenth order perturbation, i.e. the approximate so-
lutions are:

(2.18) u(x, y, t) = u0 + . . . + u15 and v(x, y, t) = v0 + . . . + v15,

and compare it with the exact solution, where d1 = d2 = 1, T = 2. The numerical
results are shown in Table 1. We achieved a very good approximation with the
actual solution of the equations. It is evident that even using few terms of the
series, the overall results are getting very close to the exact solution, errors can
be made smaller by adding new terms of the expanded series. From Table 1, we
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t ‖u− u15‖2 ‖v − v15‖2

0.25 2.77334E−32 1.92593E−34
0.50 6.87141E−23 3.30001E−25
0.75 4.28078E−18 7.90194E−20
1.00 1.78134E−16 3.51264E−17
1.25 4.85668E−12 1.18268E−13
1.50 4.30891E−12 3.11003E−11
1.75 2.64388E−07 2.70213E−09
2.00 2.13518E−05 2.19768E−06

Table 1. The L2-norm error of u, v at different times

can conclude that the HPM scheme has a very high accuracy comparing with
the exact solution even for long time period.

3. Analysis and implementation of the ADM

To explain and implement the ADM to the same model, we will consider
the system (2.7)–(2.8) with respect to (2.9) and (2.10). By using the inverse
operators, we can write the system (2.7)–(2.8) in the following form:

(3.1) u(x, y, t) = u(x, y, 0) + L−1
t f(x, y, t) + L−1

t N1(u, v),

(3.2) v(x, y, t) = v(x, y, 0) + vt(x, y, 0)t + L−1
tt g(x, y, t) + L−1

tt N2(u, v),

where the inverse operators are defined by

L−1
t =

∫ t

0

( · ) dt, L−1
tt =

∫ t

0

∫ t

0

( · ) dt dt.

The ADM suggests that the solution u(x, y, t) and v(x, y, t) can be decom-
posed into an infinite series of components:

u(x, y, t) =
∞∑

i=0

Ui(x, y, t), v(x, y, t) =
∞∑

i=0

Vi(x, y, t),

and the nonlinear terms defined in (2.9) and (2.10) decomposed into the infinite
series:

Nk(u, v) =
∞∑

i=0

Aki, k = 1, 2,

where Ui(x, y, t) and Vi(x, y, t), i ≥ 0, are the components of u(x, y, t), v(x, y, t)
that will be smartly determined and are called Adomian’s polynomials and de-
fined by

(3.3) Akn =
1
n!

[
dn

dλn
Nk

( n∑
j=0

λjuj ,

n∑
j=0

λjvj

)]
λ=0

, n ≥ 0.
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From the above considerations, the decomposition method defines the compo-
nents Ui and Vi for, i ≥ 0 by the following recursive relationships

(3.4)

U0(X, t) = u(X, 0),

U1(X, t) = L−1
t [f(X, t) + A10],

Un+1(X, t) = L−1
t [A1n], n ≥ 1,

(3.5)

V0(X, t) = v(X, 0) + vt(X, 0)t,

V1(X, t) = L−1
tt [g(X, t) + A20],

Vn+1(X, t) = L−1
tt [A2n], n ≥ 1.

This will enable us to determine the components Un and Vn recurrently. However,
in many cases the exact solution in a closed form may be obtained. For numerical
comparisons purpose, we construct the solutions u(x, y, t) and v(x, y, t) such that:

lim
n→∞

Ψn = u(x, y, t), lim
n→∞

Θn = v(x, y, t),

where

Ψn(x, y, t) =
n−1∑
i=0

Ui(x, y, t), Θn(x, y, t) =
n−1∑
i=0

Vi(x, y, t), n ≥ 0.

In an algorithmic form, the ADM can be implemented to the coupled solu-
tions as follows:

Algorithm. Let n be the iteration index, set a suitable value for the toler-
ance (Tol.)

Step 1. Compute the initial approximations

U0(X, t) = u(X, 0), U1(X, t) = L−1
t (f(X, t) + A10),

V0(X, t) = v(X, 0) + vt(X, 0)t, V1(X, t) = L−1
tt (g(X, t) + A20)

with respect to (1.3), set n = 1.
Step 2. Compute the Adomian polynomials A1n and A2n from (3.3).
Step 3. Use the calculated values of Un and Vn to compute Un+1 from (3.4).
Step 4. Define Un := Un+1.
Step 5. Use the calculated values of Un and Vn to compute Vn+1 from (3.5).
Step 6. If maxX∈Ω |Un+1 −Un| < Tol. and maxX∈Ω |Vn+1 − Vn| < Tol. stop,

otherwise continue.
Step 7. Set Un+1 := Un.
Step 8. Set n = n + 1 and return to Step 2.
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To find the solution of the system (1.1)–(1.3) using ADM, we can give the
first Adomian polynomials of the Aki using equations (3.3) as follows:

A10 =(u0x − 2v0x)u0x + (u0y − 2v0y)u0y + (u0 − 2v0)(u0xx + u0yy),

A20 =(v0x − 2u0x)v0x + (v0y − 2u0y)v0y + (v0 − 2u0)(v0xx + v0yy),

A11 =(u1x − 2v1x)u0x + (u0x − 2v0x)u1x + (u1y − 2v1y)u0y

+ (u0y − 2v0y)u1y + (u0 − 2v0)(u1xx + u1yy) + (u1 − 2v1)(u0xx + u0yy),

A21 =(v1x − 2u1x)v0x + (v0x − 2u0x)v1x + (v1y − 2u1y)v0y

+ (v0y − 2u0y)v1y + (v0 − 2u0)(v1xx + v1yy) + (v1 − 2u1)(v0xx + v0yy).

Proceeding in the same way, the above Adomian polynomials of the A1k and
A2k can be evaluated. Now, by using the given initial conditions and the above
choice of the coefficient and functions we can derive:

U1(x, y, t) = t2 − 4
3
t3,

U2(x, y, t) =
4
15

t3(5 + 5t + 2t2),

U3(x, y, t) =
−4t4

315
(105 + 126t− 28t2 − 4t3),

U4 =
8t5

315
(378 + 126t− 261t2 + t3),

V1(x, y, t) = t2 +
1
3
t4,

V2(x, y, t) =
t4

45
(−15 + 24t + 2t2),

V3(x, y, t) =
−t5

315
(168 + 126t + 16t2 − t3),

V4 =
t6

14175
(5040 + 3600t− 1245t2 + 2t3),

Proceeding in the same way, we can obtain high order approximation. In order to
verify numerically whether the proposed methodology leads to higher accuracy,
we evaluate the numerical solutions using the n-term approximation. It is to
be noted that Ψn and Θn show clearly the convergence to the correct limit.
Although we have difficulties to calculate the Adomian polynomials, but we can
arrive to the same order of accuracy of the solutions using n = 15 terms of the
decomposition series derived above (3.4)–(3.5) where d1 = d2 = 1, T = 2.

4. Conclusions

In this paper, HPM is used to solve numerically the multi-dimensional non-
linear coupled system of parabolic and hyperbolic equations when compared with
ADM the present method has some obvious merits: (1) the mathematical calcu-
lations of the approximate solution are simpler than in other methods; (2) the
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solution obtained by the present method has a very high accuracy comparing
with the exact solution even for long time period; (3) the method does need not
to calculate Adomian’s polynomials. (4) the HPM is highly accurate numeri-
cal solution without spatial discretizations or linearization for nonlinear partial
differential equations. Finally, we point out that the corresponding analytical
and numerical solutions are obtained according to the iteration equations using
Mathematica 5.
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