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HE’S HOMOTOPY PERTURBATION METHOD
FOR THE TEMPERATURE DISTRIBUTION

IN CONVECTIVE STRAIGHT FINS
WITH TEMPERATURE-DEPENDENT

THERMAL CONDUCTIVITY

Lan Xu

Abstract. This paper applies J. H. He’s homotopy perturbation method
(HPM) to calculate the temperature distribution in convective straight fins
with temperature-dependent thermal conductivity. The temperature dis-
tribution of straight fins is obtained as a function of thermo-geometric fin
parameter. Comparison with the exact solution shows that the method
is very effective and convenient, only one iteration leads to an accurate
solution.

1. Introduction

With the rapid development of nonlinear science, there has appeared ever-
increasing interest of scientists and engineers in the analytical asymptotic tech-
niques for nonlinear problems. Perturbation method provides the most versa-
tile tools available in nonlinear analysis of engineering problems, but the small
parameter assumption greatly restricts its application. As is well known, an
overwhelming majority of nonlinear problems, especially those having strong
nonlinearity, have no small parameters at all. To overcome the difficulty arising
in perturbation methods, many new analytical methods are proposed in the last
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few decades, for example, Adomian decomposition method [1], [2], [4], modified
Lindstedt–Poincaré method [13]–[15], [25], variational iteration method [3], [21],
[23], [24], [26], [27], [34], homotopy perturbation method [5]–[12], [18], [20], [28],
[29], parameter-expanding methods [31], and variational approaches [22], [30],
[32], [33], a complete review can be found in [16], [19] or Ji-Huan He’s mono-
graph [17]. In this paper we will apply the Homotopy Perturbation Method [6],
[16], [17], [19] to calculate analytically the temperature distribution of straight
fins with temperature-dependent thermal conductivity. The basic idea of homo-
topy method is to deform continuously a simple problem which easy to be solved
into the difficult problem under study. Comparison with exact solution shows it
is a very promising method.

2. Formulation

Consider a straight fin as illustrated in Figure 1, where Ac is an arbitrary
constant cross-sectional area, P is perimeter, b is length, h is the local heat
transfer coefficient along the fin surface, Tb is the fin base temperature and
Tais the temperature of a convective environment. The fin extends into the
convective environment and its tip is insulated. The one-dimensional energy
balance equation is given as follows [1], [4], [17]

(2.1) Ac
d

dx

[
k(T )

dT

dx

]
− ph(Tb − Ta) = 0, k(T ) = ka[1 + λ(T − Ta)],

in which ka is the thermal conductivity at the ambient fluid temperature of the
fin and λ is the parameter describing the variation of the thermal conductivity.

Figure 1. Geometry of a straight fin

When employing the following dimensionless parameters

θ =
T − Ta

Tb − Ta
, ξ =

x

b
, β = λ(Tb − Ta), ψ =

(
hpb2

kaAc

)1/2
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equation (2.1) can be written in the following dimensionless form

(2.2)

d2θ

dξ2
+ βθ

d2θ

dξ2
+ β

(
dθ

dξ

)2

− ψ2θ =0,

dθ

dξ
=0 at ξ = 0,

θ =1 at ξ = 1.

3. Homotopy perturbation method

Recently, some rather extraordinary virtues of the homotopy perturbation
method have been exploited [5]–12, [16]–[20], [28], [29]. The method has elimi-
nated limitations of the traditional perturbation methods, on the other hand it
can take full advantage of the traditional perturbation techniques [16], [17], [19].

According to the homotopy perturbation method [6], [16], [17], [19], we con-
struct a homotopy in the form

(3.1)
[
d2θ

dξ2
+ a

]
+ P

[
d2θ

dξ2
+ βθ

d2θ

dξ2
+ β

(
dθ

dξ

)2

− ψ2θ − a

]
= 0, P ∈ [0, 1],

with the initial conditions

θ(1) = 1, θ′(0) = 0.

When p = 0, equation (3.1) becomes a linearized equation, θ′′ +a = 0, where
a is an unknown parameter to be further determined; when p = 1, it turns out to
be the original one. The embedding parameter p monotonically increases from
zero to unit as the trivial problem, θ′′ + a = 0, is continuously deformed to the
original problem, equation (2.2), as illustrated in Figure 2.
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Figure 2. Homotopy perturbation method is to deform continuously from
a simple problem (p = 0) to the original nonlinear problem (p = 14)
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According to the homotopy perturbation method, we assume that the solu-
tion to (3.1) may be written as a power series in p:

(3.2) θ = θ0 + pθ1 + p2θ2 + . . . .

Substituting (3.2) into (3.1) and equating the terms with the identical powers
of p, we have

(3.3) p0: θ′′0 + a = 0, θ0(1) = 1, θ′(0) = 0,

(3.4) p1: θ′′1 + βθ0θ
′′
0 + β(θ′0)

2 − ψ2θ0 − a = 0, θ1(1) = 0, θ′1(0) = 0,

(3.5) p2: θ′′2 + θ′′1 + βθ1θ
′′
0 + βθ0θ

′′
1 + 2βθ′0θ

′
1 − ψ2θ1 = 0, θ2(1) = 0, θ′2(0) = 0.

The solution of equation (3.3) can be readily obtained, which reads

(3.6) θ0(ξ) =
(

1 +
a

2

)
− a

2
ξ2.

Substituting (3.6) into (3.4), considering the initial conditions θ1(1) = 0 and
θ′1(0) = 0, we can easily solve θ1 which reads

θ1 =
1
2

(
βa+

β

2
a2 + ψ2 +

ψ2

2
a+ a

)
ξ2 − 1

12

(
3β
2
a2 +

ψ2

2
a

)
ξ4,

where

a =




−(12β + 5ψ2 + 12) +
√

(12β + 5ψ2 + 12)2 − 144βψ2

6β
, β �= 0,

a = − 12ψ2

5ψ2 + 12
, β = 0.

We, therefore, obtain the first-order approximate solution, which reads

(3.7) θ = θ0+θ1 =
(

1+
a

2

)
+

1
2

(
βa+

β

2
a2+ψ2+

ψ2

2
a

)
ξ2− 1

12

(
3β
2
a2+

ψ2

2
a

)
ξ4.

The main merit of the homotopy perturbation method is that only one it-
eration leads to a high accurate solution. In case β = 0, e.g. constant thermal
conductivity, comparison of the first-order approximate solution, equation (3.7),
with exact solution [1] is tabulated in Table 1 and illustrated in Figure 3, show-
ing an remarkable agreement. Of course, we can obtain even higher accurate
solutions without any difficulty.

The dimensionless temperature distribution along the fin surface with β vary-
ing from −0.5 to 0.5 are shown in Figure 4 for different values of ψ = 0.5 and
ψ = 1.0, respectively.

From Figure 4, it can be seen that the mean temperature increases with the
increase of the thermal conductivity of the fin’s material.
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Figure 3. The temperature distribution for the case of constant thermal
conductivity β = 0.
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Figure 4. The temperature distribution in convective fins with variable
thermal conductivity β varying from −0.5 to 0.5
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Ψ = 0.5 Ψ = 1.0

ξ HPM Exact Relative Error HPM Exact Relative Error

0.0 0.886792453 0.886819 2.99351E−005 0.647058824 0.648054 1.53564E−003

0.2 0.891230189 0.891257 3.00822E−005 0.660047059 0.661059 1.53079E−003

0.4 0.904588679 0.904614 2.79909E−005 0.699576471 0.700594 1.45238E−003

0.6 0.927003774 0.927026 2.39756E−005 0.767341176 0.768246 1.17778E−003

0.8 0.958701887 0.958715 1.36777E−005 0.866164706 0.866731 6.53368E−004

1.0 1.000000 1.000000 0.00000E+000 1.000000 1.000000 0.00000E+000

Table 1. The dimensionless temperature distribution for the case of con-
stant thermal conductivity, i.e. β = 0

4. Conclusions

In this paper, we have applied He’s homotopy perturbation method in ob-
taining the temperature distribution of straight fins with temperature-dependent
thermal conductivity. The obtained solutions are in good agreement with exact
values. The results show that He’s homotopy perturbation method does not re-
quire small parameters in the equations, so the limitations of the traditional per-
turbation methods can be eliminated completely. The reliability of the method
and reduction in the size of computational domain give a wider applicability to
this method.
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