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NEW APPLICATION OF HOMOTOPY
PERTURBATION METHOD TO ZK-MEW EQUATION

Jia-Cheng Lan — Jia-Min Zhu — Zheng-Yi Ma

Abstract. The work presents a derivation of solitary solutions of the two-
dimensional Zakharov–Kuznetsov Modified Equal Width (ZK-MEW) equa-

tion using the homotopy perturbation method.

1. Introduction

The discussed Zakharov–Kuznetsov (ZK) equation has been studied by many
authors via different approaches. The ZK equation governs the behaviour of
weakly nonlinear ion-acoustic waves in a plasma comprising cold ions and hot
isothermal electrons in the presence of a uniform magnetic field [18]. In [15],
the ZK equation is solved by the sine-cosine and the tanh-function methods.
The numbers of solitary waves, periodic waves and kink waves of the modified
Zakharov–Kuznetsov equation are obtained by A. M. Wazwaz [16]. Recently,
Mustafa Inc [10] obtained some exact solutions for the ZK-MEW equation by
using extended tanh-method. The modified equal width (MEW) equation is
given by

ut + 3u2ux − αuxxt = 0
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has been discussed in [10], [15], [16], [18]. The MEW equation is related to
the RLW equation. This equation has solitary waves with both positive and
negative amplitudes. We will consider two-dimensional ZK-MEW equation in
the following form:

(1.1) ut + α(u3)x + (buxt + ruyy)x = 0,

where a, b and r are constants.
The homotopy perturbation method (HPM) was first proposed by He [5]–

[9]. The HPM does not depend on a small parameter in the equation. Using
homotopy technique in topology, a homotopy is constructed with an embedding
parameter p ∈ [0, 1] which is considered as a “small parameter”. Recently, many
researcher do a lot of significant work about the homotopy perturbation method
[11], [14].

In this paper we further extend the method to solve the nonlinear ZK-MEW
equation. By using the HPM, we get the explicit solutions of the nonlinear
ZK-MEW equation without using any extended-tanh method. The method pre-
sented here is also simple to use for obtaining numerical solution of the equations
without using any discrete techniques. Furthermore, we will show that consid-
erably better approximations related to the accuracy level are obtained.

2. Analysis of He’s homotopy perturbation method

The principles of the HPM and its applicability for various kinds of differen-
tial equations are given in [4]–[8], [11], [14]. To illustrate the basic ideas of this
method, we consider the following nonlinear differential equation [5]:

A(u)− f(r) = 0, r ∈ Ω,

with the boundary conditions of

B(u, ∂u/∂n) = 0, r ∈ Γ,

where A is a general differential operator, B is a boundary operator, f(r) is a
known analytical function and Γ is the boundary of the domain Ω.

Generally speaking, the operator A can be decomposed into two operators,
L and N , where L is linear, and N is a nonlinear operator. Equation (1.1) can
therefore be rewritten as follows:

L(u) + N(u)− f(r) = 0.

By the homotopy technique, we construct a homotopy V (r, p): Ω × [0, 1] → R

which satisfies:

(2.1) H(V, p) = (1− p)[L(V )−L(u0)]+ p[A(V )− f(r)] = 0, p ∈ [0, 1], r ∈ Ω,
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or

(2.2) H(V, p) = L(u)− L(u0) + pL(u0) + p[N(V )− f(r)] = 0,

where p ∈ [0, 1] is an embedding parameter, u0 is an initial approximation of
equation (1.1), which satisfies the boundary conditions. Obviously, from equa-
tions (2.1) and (2.2), we will have:

H(V, 0) = L(V )− L(u0) = 0, H(V, 1) = A(V )− f(r) = 0.

The changing process of p from zero to unity is just that of V (r, p) from u0(r)
to u(r). According to the HPM, we can first use the embedding parameter p as
a “small parameter”, and assume that the solution of equations (2.1) and (2.2)
can be written as a power series in p:

V = V0 + pV1 + p2V2 + . . .

Setting p = 1 results in the approximate solution of equation (1.1):

u = lim
p=1

V = V0 + V1 + V2 + . . .

3. Soliton solutions for the two-dimensional ZK-MEW equation

To investigate the traveling wave solution of equation (1.1), we first construct
a homotopy as follows:

(3.1) (1− p)
(

∂u

∂t
− ∂u0

∂t

)
+ p

(
∂u

∂t
+ 3αu2 ∂u

∂x
+ b

∂3u

∂x2∂t
+ r

∂3u

∂y2∂x

)
= 0.

Suppose the solution of equation (3.1) and the initial approximations are as
follows:

u0(x, y, t) = u(x, y, 0),(3.2)

u(x, y, t) = U(x, y, t) = u0 + pu1 + p2u2 + p3u3 + · · ·(3.3)

where ui(i = 1, 2, . . . ) are functions of (x, y, t) yet to be determined. Substituting
equation (3.3) into equation (3.1), and equating the coefficients of the terms with
the identical powers of p, we have((

∂

∂t
u1

)
+

(
∂

∂t
u0

)
+ r

(
∂3

∂y2∂x
u0

)
+ 3au2

0

(
∂

∂x
u0

)
+ b

(
∂3

∂x2∂t
u0

))
p

+
(

b

(
∂3

∂x2∂t
u1

)
+ 6au0u1

(
∂

∂x
u0

)
+

(
∂

∂t
u2

)
+ 3au2

0

(
∂

∂x
u1

)
+ r

(
∂3

∂y2∂x
u1

))
p2

+
(

r

(
∂3

∂y2∂x
u2

)
+ 3au2

1

(
∂

∂x
u0

)
+ 6au0u1

(
∂

∂x
u1

)



238 J.-Ch. Lan — J.-M. Zhu — Zh.-Y. Ma

+
(

∂

∂t
u3

)
+ b

(
∂

∂t
u3

)
+ b

(
∂

∂x2∂t
u2

)
+ 6au0u2

(
∂

∂x
u0

)
+ 3au2

0

(
∂

∂x
u2

))
p3 + · · · = 0.

In order to obtain the unknowns of ui(i = 1, 2, . . . ), we must construct and
solve the following system which includes three equations with three unknowns,
considering the initial approximations of equation (3.1)(

∂

∂t
u1

)
+

(
∂

∂t
u0

)
+ r

(
∂3

∂y2∂x
u0

)
+ 3au2

0

(
∂

∂t
u0

)
+ b

(
∂3

∂x2∂t
u0

)
= 0,

b

(
∂3

∂x2∂t
u1

)
+ 6au0u1

(
∂

∂x
u0

)
+

(
∂

∂t
u2

)
+3au2

0

(
∂

∂x
u1

)
+ r

(
∂3

∂y2∂x
u1

)
= 0,

r

(
∂3

∂y2∂x
u2

)
+ 3au2

1

(
∂

∂x
u0

)
+ 6au0u1

(
∂

∂x
u1

)
+

(
∂

∂t
u3

)
+b

(
∂

∂x2∂t
u2

)
+ 6au0u2

(
∂

∂t
u0

)
+ 3au2

0

(
∂

∂x
u2

)
= 0.

If the first three approximations are sufficient, we will obtain:

(3.4) u(x, y, t) = lim
p→1

U(x, y, t) =
3∑

k=0

uk(x, y, t).

4. Application

Firstly, we consider the solutions of equation (1.1) with the initial condi-
tion [10]:

(4.1) u(x, y, 0) = −
√
−2c

a
tanh

[√
− c

bc− r
(x + y)

]
, where

c

bc− r
< 0.

To calculate the terms of the homotopy series (3.4) for u(x, y, t), we substitute
the initial conditions (4.1) into the system (4.2), and finally using Maple, the
solutions of the equation can be obtained as follows:

(4.2) u0 = −
√
−2c

a
tanh

[√
− c

bc− r
(x + y)

]
,

(4.3) u1 =(32
√

2r tanh(
√

2x +
√

2y)2 + 24
√

2a tanh(
√

2x +
√

2y)2

− 24
√

2a tanh(
√

2x +
√

2y)4 − 8r
√

2− 24
√

2r tanh(
√

2x +
√

2y)4)t

(4.4) u2 = − 32(192a sinh(
√

2(x + y)) cosh(
√

2(x + y))2r

− 54a2 sinh(
√

2(x + y)) + 120r2 sinh(
√

2(x + y)) cosh(
√

2(x + y))2)

− 8r2 sinh(
√

2(x + y)) cosh(
√

2(x + y))4
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+ 72a2 sinh(
√

2(x + y)) cosh(
√

2(x + y))2 − 180r2 sinh(
√

2(x + y))

− 18a2 sinh(
√

2(x + y)) cosh(
√

2(x + y))4

− 24r sinh(
√

2(x + y)) cosh(
√

2(x + y))4a

− 234a sinh(
√

2(x + y))r)t2/

cosh(
√

2(x + y))7 − 32(−30b
√

2 cosh(
√

2(x + y))3)r

− 33b
√

2 cosh(
√

2(x + y))3a + 6b
√

2 cosh(
√

2(x + y))5a

+ 4b
√

2 cosh(
√

2(x + y))5r + 30b
√

2 cosh(
√

2(x + y))r

+ 30b
√

2 cosh(
√

2(x + y))a)t/ cosh(
√

2(x + y))7,

(4.5) u3 =
1
3
((110592ra2

√
2 + 73728r2a

√
2 + 55296a3

√
2 + 16384r3

√
2)
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√
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√

2y)

+ (−11280384ra2
√

2− 8224768r3
√
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√

2

− 2543616a3
√

2) cosh(6
√
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√

2y)

+ (−669966336ra2
√
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√
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√

2
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√
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√
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√

2y)

+ (239337472r3
√

2 + 378667008r2a
√

2 + 20791296a3
√

2

+ 160137216ra2
√

2) cosh(4
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√
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+ 10 cosh(8
√
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√

2y) + 45 cosh(6
√
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√
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+ 120 cosh(4
√

2x + 4
√

2y) + 210 cosh(2
√

2x + 2
√

2y) + 126)

+
1
3
(556695552r2b + 648806400rba + 96657408ba2)

· sinh(2
√

2x + 2
√

2y)/(cosh(10
√

2x + 10
√

2y)

+ 10 cosh(8
√

2x + 8
√

2y) + 45 cosh(6
√

2x + 6
√

2y)

+ 120 cosh(4
√

2x + 4
√

2y) + 210 cosh(2
√

2x + 2
√

2y) + 126)

+
1
3
(18874368rba + 12091392r2b + 6414336ba2)

· cosh(8
√

2x + 8
√

2y)/(cosh(10
√
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√

2y)

+ 10 cosh(8
√

2x + 8
√
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√
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√
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√

2x + 4
√

2y) + 210 cosh(2
√
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√
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1
3
(−110592ba2 − 147456rba− 49152r2b) sinh(8

√
2x + 8

√
2y)/

(cosh(10
√
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√
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√
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√
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2 + 6
√
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+
1
3
(12288b2

√
2r + 18432b2

√
2a) cosh(8

√
2x + 8

√
2y)

+ (−1585152b2
√

2a− 1449984b2
√

2r) cosh(6
√

2x + 6
√

2y)

+ (−1892352b2
√

2r − 1363968b2
√

2a) cosh(2
√

2x + 2
√

2y)

+ (11501568b2
√

2a + 11698176b2
√

2r) cosh(4
√

2x + 4
√

2y)

− 14469120b2
√

2a− 15052800b2
√

2r)t/(cosh(10
√

2x + 10
√

2y)

+ 10 cosh(8
√

2x + 8
√

2y) + 45 cosh(6
√

2x + 6
√

2y)

+ 120 cosh(4
√

2x + 4
√

2y) + 210 cosh(2
√

2x + 2
√

2y) + 126).

In this manner the other components can be easily obtained. Substituting equa-
tions (4.2)–(4.5) into (3.4):

u(x, y, t) = u0(x, y, t) + u1(x, y, t) + u2(x, y, t) + u3(x, y, t) + . . .

Using Taylor series, we obtain the closed form solutions as follows:

u(x, y, t) = −
√
−2c

a
tanh

[√
− c

bc− r
(x + y − ct)

]
,

c

bc− r
< 0.

With initial conditions (4.1), the solitary wave solutions of equation (1.1) are in
full agreement with the ones constructed by Mustafa Inc [10].

(x, y, t) |uexact − uhomotopy| |uexact − uhomotopy|/uhomotopy

(8,8,0.1) 1E–09 5E–10

(8,8,0.2) 9E–09 4.5E–09

(8,8,0.3) 1E–09 5E–10

(8,8,0.4) 2E–09 1E–09

(8,8,0.5) 2E–09 1E–10

(13,13,0.1) 1E–09 5E–10

(13,13,0.2) 9E–09 4.5E–09

(13,13,0.3) 1E–09 5E–10

(13,13,0.4) 2E–09 1E–09

(13,13,0.5) 2E–09 1E–10

(10,10,0.1) 1E–09 5E–10

(10,10,0.2) 9E–09 4.5E–09

(10,10,0.3) 1E–09 5E–10

(10,10,0.4) 2E–09 1E–09

(10,10,0.5) 2E–09 1E–09

Table 1. The HPM results for u(x, y, t) for the first three approximations
in comparison with the analytical solutions when a = 1, b = −1, c = −2,
r = 1, for the solitary wave solutions with the initial conditions (3.2) of

equation (1.1).
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5. Discussion and conclusion

In this paper, the homotopy perturbation method (HPM) was used for finding
soliton solutions of a Zakharov–Kuznetsov Modified Equal Width (ZK-MEW)
equation with initial conditions. The obtained solutions are compared with the
extended tanh-method [10]. To demonstrate the convergence of the HPM, the
results of the numerical example are presented and only few terms are required to
obtain accurate solutions. The accuracy of the HPM for the Zakharov–Kuznetsov
Modified Equal Width (ZK-MEW) equation is controllable, and absolute errors
are very small with the present choice of t and x, y. These results are listed in
Tables 1, it is seen that the implemented method achieves a minimum accuracy
for the first three approximations for the initial conditions (4.1). It is also evident
that when more terms for the HPM are computed the numerical results get much
more closer to the corresponding exact solutions with the initial conditions (4.1)
of equation (1.1).

References

[1] J. Biazar, M. Eslami and H. Ghazvini, Homotopy perturbation method for systems

of partial differential equations, Internat. J. Nonlinear Sci. 8 (2007), 413–418.

[2] D. D. Ganji and A. Sadighi, Application of He’s homotopy-perturbation method to

nonlinear coupled systems of reaction-diffusion equations, Internat. J. Nonlinear Sci. 7
(2006), 411–418.

[3] M. Gorji, D. D. Ganji and S. Soleimani, New Application of He’s Homotopy Per-
turbation Method, Int. J. Nonlinear Sci. 8(3) (2007), 319–328.

[4] J. H. He, Homotopy perturbation technique J. Comput, Math. Appl. Mech. Eng (1999),
257–262.

[5] , The homotopy perturbation method for nonlinear oscillators with discontinu-

ities, Appl. Math. Comput. 151 (2004), 287–292.

[6] , Comparison of homotopy perturbation method and homotopy analysis method,

Appl. Math. Comput. 156 (2004), 527–539.

[7] , Homotopy perturbation method for bifurcation of nonlinear problems, Internat.

J. Nonlinear Sci. Numer. Simul. 6 (2005), 207–208.

[8] , Homotopy perturbation method for bifurcation of nonlinear problems, Internat.

J. Nonlinear Sci. Numer. Simul. (2006), 87–88.

[9] , Some asymptotic methods for strongly nonlinear equations, Internat. J. Modern

Phys. 20 (2006), 2561–2568.

[10] M. Inc, New exact solutions for the ZK-MEW equations by using symbolic computation,

Appl. Math. Comput. (2007), in press.

[11] T. Ozis and A. Yildirim, Traveling wave solution of Korteweg-de Vries equation using
He’s homotopy perturbation method, Int. J. Nonlinear Sci. 8(2) (2007), 239–242.

[12] M. Rafei and D. D. Ganji, Explicit solutions of Helmholtz equation and fifth-order
KdV equation using homotopy perturbation method, Int. J. Nonlinear Sci. 7 (2006), 321–
328.

[13] A. Sadighi and D. D. Ganji, Solution of the generalized nonlinear Boussinesq equation
using homotopy perturbation and variational iteration methods, Internat. J. Nonlinear

Sci. 8 (2007), 435–450.



242 J.-Ch. Lan — J.-M. Zhu — Zh.-Y. Ma

[14] H. Tari, D. D. Ganji and M. Rostamian, Approximate solutions of K(2, 2), KdV and

modified KdV equations by variational iteration method, homotopy perturbation method
and homotopy analysis method, Internat. J. Nonlinear Sci. 8 (2007), 203–210.

[15] A. M. Wazwaz, Compact and noncompact physical structures for ZK-BBM equation,

Appl. Math.Comput 169 (2005), 713–725.

[16] , The tanh and the sine-cosine methods for a reliable of the modified equal width

equation and itsvariants, Commun Nonlinear Sci. and Numer. Simu 1 (2006), 148–160.

[17] E. Yusufoglu, Homotopy Perturbation Method for Solving a Nonlinear System of Sec-

ond Order Boundary Value Problems, Int. J. Nonlinear Sci. 8(3) (2007), 353–358.

[18] V. E. Zakharov and E. A. Kuznetsov, On three-dimensional solitons, Soviet Phys.

39 (1974), 285–288.

Manuscript received September 18, 2007

Jia-Cheng Lan, Jia-Min Zhu and Zheng-Yi Ma
Department of Mathematics

Zhejiang Lishui University

Lishui, P. R. CHINA

E-mail address: lanjc.ls@163.com

zjm64@163.com
mazhengyi77@yahoo.com.cn

TMNA : Volume 31 – 2008 – No 2


