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ON DETERMINISTIC AND KOLMOGOROV EXTENSIONS
FOR TOPOLOGICAL FLOWS

Brunon Kamiński — Artur Siemaszko — Jerzy Szymański

Abstract. The concepts of deterministic and Kolmogorov extensions of

topological flows are introduced. We show that the class of deterministic

extensions contains distal extensions and moreover that for the determin-
istic extensions the relative topological entropy vanishes and hence they

preserve the topological entropy. On the other hand we relate the Kol-

mogorov extensions to the asymptotic ones and we show that the class of
these extensions contains uniquely ergodic u.p.e. extensions and also the

class of flows admitting an invariant relative K-measure with full support.

The main tool used to get these results is the relative version of the
Rokhlin–Sinai theorem concerning the existence of perfect measurable par-

titions.

1. Introduction

The investigation of extensions of topological flows is one of the most impor-
tant purposes of topological dynamics. Classical results concerning the theory of
extensions can be found in books of such authors like Auslander, Ellis, Fursten-
berg, Glasner, de Vries.
This paper is a continuation of our papers [15], [16]. We investigate in them

two classes of topological flows, deterministic and Kolmogorov ones. The object
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of the present paper is to study relative versions of these classes of flows, i.e. de-
terministic and Kolmogorov extensions (K-extensions). Their basic properties
are founded on a topological analogue of the relative version of the Rokhlin-Sinai
theorem on the existence of perfect partitions (cf. [14]) from ergodic theory. This
analogue is presented in our main result (Theorem 3.1). As a consequence, we
obtain the existence of relatively extreme relations. We characterize determinis-
tic extensions in terms of the algebra of continuous functions (Proposition 3.6).
This result can be regarded as a topological analogue of the determinism con-
sidered in the theory of stationary processess. Applying the relative version of
Ellis theorem on distal flows we show that distal extensions are deterministic.
On the other hand, it appears (Proposition 3.9) that infinite extensions with as-
ymptotic pairs (for example infinite expansive flows) which are identified by the
homomorphism defining this extension are not deterministic. Using the above
property and the result of Huang, Ye, Zhang on relative topological entropy pairs,
one can deduce that the relative topological entropy of deterministic extensions
equals 0 and thus deterministic extensions preserve entropy. The K-extensions
are closely related to asymptotic extensions. Namely, we show that for any K-
extension the set of asymptotic pairs is dense in the appropriate relation. We
are unable to decide whether minimal K-extensions are relatively weakly mix-
ing. Some related results are contained in the paper [10] of Glasner. Applying
Theorem 3.1 we show that uniquely ergodic extensions having relative uniformly
positive entropy and also flows admitting an invariant relative K-measure (i.e.
a measure of completely positive relative entropy) with the relative full support
are K-extensions. We also get the description of the relative topological Pinsker
factor in terms of relative extreme relations.

We would like to express our gratitude to the referee for his useful remarks,
especially concerning the relationship between determinism and rigidity.

2. Preliminaries

Let (X, d) be a compact metric space and let T :X → X be a continuous
surjection. The pair (X,T ) is said to be a topological flow.

For a given x ∈ X, the set O+T (x) = {Tnx, n ≥ 0} is called the positive
semiorbit of x. In the case when T is invertible, the sets O−T (x) = {Tnx, n ≤ 0}
and OT (x) = {Tnx, n ∈ Z} are called the negative semiorbit and the orbit of x,
respectively.

A flow (Y, S) is called a factor flow of (X,T ) if there exists a continuous
surjection π:X → Y with π ◦ T = S ◦ π.
We assume in the sequel that T is invertible; of course factors of T need not

to be invertible.
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By CER(X), we denote the set of all closed equivalence relations in X ×
X and by ∆ the diagonal relation. A relation R ∈ CER(X) is said to be
positively invariant (resp. invariant) with respect to T if (T × T )(R) ⊂ R (resp.
(T × T )(R) = R). The symbol ICER+(X) (ICER(X)) stands for the set of
all positively invariant (invariant) relations in X × X. For a given relation
R ∈ CER(X) invariant under T × T , the factor flow defined by R is denoted
by (X/R, T/R). For a subset F ⊂ X × X, the smallest invariant relation R ∈
CER(X) containing F is denoted by 〈F 〉. For a family {Ri} ⊂ CER(X), the
symbol

∨
iRi means the smallest closed invariant equivalence relation containing

all Ri’s.

Let A(T ) be the set of all asymptotic pairs for T . Recall that (x, x′) ∈ A(T )
if limn→+∞ d(Tnx, Tnx′) = 0. Obviously TA(T ) = A(T ).

Let B be the σ-algebra of Borel sets of X and let M(X,T ) be the space
of all probability measures on B invariant under T . In the sequel, we shall
consider measurable partitions of the Lebesgue space (X,B, µ), µ ∈ M(X,T ).
For the definitions and basic properties of measurable partitions we refer the
reader to [21]. We denote by ε the measurable partition of X on single points.
For a given measurable partition ξ, the σ-algebra generated by ξ is denoted by
σ(ξ). On the other hand, for any σ-algebra A ⊂ B the symbol ξ(A) stands
for the measurable partition generated by A. It is clear that for any relation
R ∈ CER(X), the partition ξR on equivalence classes of R is measurable with
respect to any invariant measure. For a given measurable partition ξ of X we
put ∆ξ = {(x, y) ∈ X×X, y ∈ ξ(x)}, where the symbol ξ(x) means the element
of ξ which contains x ∈ X. Let µ be a probability measure and A ⊂ B be a
σ-algebra. Define the probability measure µ×A µ on (X ×X,B ⊗ B) as follows

(µ×A µ)(A×B) =
∫
X

µ(A|A)(x)µ(B|A)(x)µ(dx),

A,B ∈ B. If ξ is a measurable partition of X, then µ×ξ µ stands for µ×σ(ξ) µ.
Let hµ(T ) and πµ(T ) be the entropy and the Pinsker partition of T , respect-

ively. If σ is an invariant measurable partition, i.e. Tσ = σ, by hµ(T |σ) and
πµ(T |σ) we denote the σ-relative entropy of T and the σ-relative Pinsker parti-
tion of T , respectively. For the definition and properties of entropy (resp. relative
entropy) we refer the reader to [25] (resp. [13]).

Let us recall that a measurable partition ξ is called σ-relatively extreme ([13])
if it satisfies the following conditions

(a) σ 4 T−1ξ 4 ξ,
(b)
∨∞
n=0 T

nξ = ε,
(c)
∧∞
n=0 T

−nξ = πµ(T |σ).
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Here ξ 4 η means that η is finer than ξ. It is known ([14]) that for any T there
exists a σ-relative extreme partition.
Let h(T ) and E(X,T ) be the topological entropy and the set of topological

entropy pairs of T , respectively ([2]). The relation Π(T ) = 〈E(X,T )〉 is called
the Pinsker relation of T (cf. [5]). For a given µ ∈ M(X,T ) and T -invariant
measurable partition σ, Eµ(X,T ) (resp. Eµ(X,T |σ)) denotes the set of entropy
pairs (resp. σ-relative entropy pairs) for T with respect to µ (cf. [3], [19]). The
relation Πµ(T |σ) = 〈Eµ(X,T |σ)〉 is called the σ-relative Pinsker relation of T
with respect to µ.
Let Σ ∈ CER(X) be an invariant relation.
We denote by h(T |Σ), E(X,T |Σ) and Π(T |Σ) the relative topological en-

tropy, the set of relative topological entropy pairs and the relative Pinsker rela-
tion, respectively (cf. [8], [12]). It is clear that if Σ = X×X then h(T |Σ) = h(T ),
E(X,T |Σ) = E(X,T ) and Π(T |Σ) = Π(T ).
By analogy with the concept of a σ-relative extreme measurable partition,

we define a Σ-relative extreme relation as follows.

Definition 2.1. We say that a relation R ∈ CER(X) is Σ-relatively extreme
with respect to µ if

(a) (T × T )(R) ⊂ R ⊂ Σ,
(b)
⋂∞
n=0(T × T )n(R) = ∆,

(c)
∨∞
n=0(T × T )−n(R) = Πµ(T |σ),

where σ is the invariant measurable partition associated with Σ.

Proposition 2.2. For any measure µ ∈ M(X,T ) and any invariant mea-
surable partition σ, there exists a σ-relative extreme partition ζ with ∆ζ ⊂ A(T ).

Proof. Let (ξn) be a sequence of finite measurable partitions of X such
that ξ1 4 ξ2 4 . . . and diam ξn ≤ 1/n for n ≥ 1. Hence, ξn ↗ ε.
Now one constructs a σ-relative extreme partition ζ in the same way as the

extreme partition in [23] (see also [22], [20]). Namely, let (nk) be an arbitrary
sequence of natural numbers and

ηp =
p∨
k=1

T−nkξk, η =
∞∨
p=1

ηp.

Now put ζ = η ∨ η− ∨ σ. Clearly ζ � σ, T−1ζ � ζ and
∨∞
n=0 T

nζ = ε.
We show that ∆ζ ⊂ A(T ). Let (x, y) ∈ ∆ζ , i.e. x and y belong to the same

atom of ζ, therefore to the same atom of η−. Thus T ix, T iy, i ≥ 1 belong to
the same atom of ηp, p ≥ 1 and so T i+npx, T i+npy belong to the same atom of
ξp, i.e. Tnx, Tny belong to the same atom of ξp for n > np. This means that
d(Tnx, Tny) < 1/p, n > np, p ≥ 1, i.e. (x, y) ∈ A(T ).



On Deterministic and Kolmogorov Extensions for Topological Flows 195

Similarly as in the proof of Theorem 6.11 in [20] one can show that the
sequence (nk) can be especially chosen so that Hµ(ηp|η−p ∨σ)−Hµ(ηp|ζ− ∨σ) <
1/p for any p ≥ 1. This forces the equality

∧∞
n=0 T

−nζ = πµ(T |σ). �

Let λσµ = µ×πµ(T |σ) µ and let Λσµ be the topological support of λσµ. One
could prove the following proposition applying similar methods as those used
in [4] (Lemma 7). We give here the proof based on relative versions of some
classical results from ergodic theory.

Proposition 2.3. If µ ∈M(X,T ) is ergodic then the measure λσµ is ergodic.

Proof. Let F be the σ-algebra generated by πµ(T |σ). It is well known
(cf. [13]) that T is a relative K-automorphism w.r. to F . Hence using classical
methods (see the proof of Theorem 1 of [7, p. 283]) one shows that T is relatively
K-mixing w.r. to F , i.e.

lim
n→∞

sup
A∈T−nA−∨F

||µ(A ∩B|F)− µ(A|F)µ(B|F)||1 = 0

for any finite algebra A and B ∈ B, and hence it is relatively weakly mixing w.r.
to F . Since µ is ergodic a simple direct reasoning shows that µ×F µ is ergodic.�

3. Results

For any invariant relation Σ ∈ CER(X) let σ denotes the invariant measur-
able partition associated with Σ.

Theorem 3.1. For any ergodic measure µ ∈M(X,T ) and invariant relation
Σ ∈ CER(X), there exists a relation R = Rµ ∈ CER(X) with

(a) (T × T )(R) ⊂ R ⊂ Σ,
(b)
⋂∞
n=0(T × T )n(R) = ∆,

(c) Eµ(X,T |σ) ∪ S(µ) ⊂
⋃∞
n=0(T × T )−n(R) ⊂ Πµ(T |σ),

where S(µ) = {(x, x) ∈ X ×X; x ∈ Suppµ}.

Proof. If hµ(T |σ) = 0 we put R = ∆. Let now µ ∈ M(X,T ) be ergodic
with hµ(T |σ) > 0 and let ζ be a σ-relative extreme partition of (X,B, µ, T )
such that ∆ζ ⊂ A(T ). First, observe that the relative version of Proposition 4
in [3] holds, i.e. hµ◦ϕ−1(T/Πµ(T |σ)|σ) = 0, where ϕ:X → X/Πµ(T |σ) denotes
the quotient map. Therefore ξΠµ(T |σ) 4 πµ(T |σ). Now, since ζ < πµ(T |σ) and
ζ < σ, there exists a subset X0 ⊂ X such that µ(X0) = 1 and the following
inclusions hold

(3.1) ∆ζ ∩ (X0 ×X0) ⊂ ∆πµ(T |σ) ∩ (X0 ×X0)
⊂ ∆ξΠµ(T |σ) ∩ (X0 ×X0) = Πµ(T |σ) ∩ (X0 ×X0),

(3.2) ∆ζ ∩ (X0 ×X0) ⊂ ∆σ ∩ (X0 ×X0) = Σ ∩ (X0 ×X0).
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It follows from Lemma 6 of [4] that (µ×ζ µ)(∆ζ) = 1. Since the equality µ(X0) =
1 implies (µ×ζ µ)(X0 ×X0) = 1, we have

(µ×ζ µ)(∆ζ ∩ (X0 ×X0)) = 1.

Similarly as in the proof of Proposition 5 ([4]) one constructs a set G ⊂ X×X
in the following manner. First, one shows that there exists a sequence (Uk) of
open sets such that λσµ(Uk) > 0, k ≥ 1, every point of X×X belongs to infinitely
many Uk, k ≥ 1 and the diameters of Uk tend to 0 as k → ∞. Next one takes
the set Vk of all x ∈ X belonging to infinitely many sets (T ×T )nUk, n ≥ 1, and
finally defines

G =
∞⋂
k=1

Vk.

The set G has the following two properties. For any point (x, x′) ∈ G, the semior-
bit O−T×T (x, x

′), and so the orbit OT×T (x, x′), is dense in Λσµ and (µ×ζ µ)(G) =
1. Thus, we have (µ×ζ µ)(∆ζ ∩ (X0 ×X0) ∩G) = 1. Put ∆0ζ = ∆ζ \∆. Since
hµ(T |σ) > 0 we have ζ 6= ε and so the measure µ×ζ µ is not concentrated on
∆ (cf. [4], Lemma 5 (i)). Thus we have (µ×ζ µ)(∆0ζ) > 0 and in consequence
(µ×ζ µ)(∆0ζ ∩ (X0 ×X0) ∩G) > 0.
Now choose an arbitrary pair (x, x′) ∈ ∆0ζ ∩ (X0 × X0) ∩ G and define a

relation R as follows

R = O+T×T (x, x
′) ∪O+T×T (x

′, x) ∪∆.

This relation is, of course, reflexive, symmetric and positively invariant. Since
(x, x′) ∈ A(T ), it is closed and the equality (b) is satisfied.
Applying similar methods as in the proof of Theorem 1 ([9]), one can show

the following relative version of this theorem:

Λσµ = Eµ(X,T |σ) ∪ S(µ).

The density of OT×T (x, x′) in Λσµ implies

Eµ(X,T |σ) ∪ S(µ) ⊂
∞⋃
n=0

(T × T )−n(R).

The fact that x 6= x′ and the assumption hµ(T |σ) > 0 imply that the orbits
OT (x) and OT (x′) are infinite and disjoint. Therefore, R is transitive.
From (3.1), we get (x, x′) ∈ Πµ(T |σ), hence, R ⊂ Πµ(T |σ). Since Πµ(T |σ) is

closed and invariant, we immediately get

∞⋃
n=0

(T × T )−n(R) ⊂ Πµ(T |σ).
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Since Σ is closed and invariant, then applying (3.2) we get R ⊂ Σ, i.e. R satisfies
all desired properties. �

From Theorem 3.1 it follows at once

Corollary 3.2. For any ergodic measure µ ∈ M(X,T ), there exists a σ-
relative extreme relation with respect to µ.

Let (X,T ) be an extension of the flow (Y, S) via the factor map π:X → Y .
By Σπ = Σ denote the invariant closed equivalence relation given by π (i.e.
Σπ = {(x, x′) ∈ X ×X : π(x) = π(x′)}).

Definition 3.3. The homomorphism π is called deterministic (or (X,T ) is
called a deterministic extension of (Y, S)) if for every relation R ∈ CER(X) such
that (T × T )(R) ⊂ R ⊂ Σπ we have (T × T )(R) = R.

In the case Σπ = X × X, (X,T ) is said to be deterministic (cf. [15]). It is
easy to show the following.

Proposition 3.4. A homomorphism π: (X,T ) → (Y, S) is deterministic if
and only if for every factor (Z,U) with (X,T )→ (Z,U)→ (Y, S) the map U is
invertible.

Corollary 3.5. If π: (X,T ) → (Y, S) is deterministic and (X,T ) ρ−→
(Z,U)

η−→ (Y, S), where π = η ◦ ρ, then so is η.

In the following proposition we characterize the deterministic extensions by
means of subalgebras of the algebra C(X) of continuous functions on X. The
map

C(X/Σ) 3 ϕ 7→ ϕ ◦ π ∈ C(X)
embeds the algebra C(X/Σ) in C(X) as a subalgebra C(X,Σ) of all continuous
functions on X constant on equivalence classes of Σ. Let A+Σ(f) denote the
smallest closed linear algebra containing functions UmT f for m ≥ 1 together with
C(X,Σ).

Proposition 3.6. A homomorphism π: (X,T ) → (Y, S) is deterministic if
and only if f ∈ A+Σ(f) for every function f ∈ C(X).

Proof. (⇒) Let f ∈ C(X). It is enough to show that UTA+Σ(f) = A
+
Σ(f).

For this observe that if
R =

⋂
ϕ∈A+Σ(f)

Rϕ

then R ⊂ Σ since Σ =
⋂
ϕ∈C(X,Σ)Rϕ. Since obviously (T × T )R ⊂ R, the

determinism of π forces (T × T )R = R, hence UTC(X,R) = C(X,R).
From the definition of R it follows that A+Σ(f) ⊂ C(X,R). By the defi-

nition A+Σ(f) contains all constant functions. Take [x1]R, [x2]R ∈ X/R with
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(x1, x2) /∈ R. There exists ϕ ∈ A+Σ(f) such that ϕ(x1) 6= ϕ(x2). Treating ϕ
as an element of the space C(X/R) it means that ϕ distinguishes points [x1]R
and [x2]R. Now applying the Stone–Weierstrass theorem we obtain A+Σ(f) =
C(X,R).
(⇐) Let R ∈ CER(X) be such that (T × T )(R) ⊂ R ⊂ Σ. It follows that

(3.3) UTC(X,R) ⊂ UTC(X, (T × T )R) = C(X,R).

We will show that U−1T C(X,R) ⊂ C(X,R). Let f ∈ C(X,R). By (3.3), f ◦Tm ∈
C(X,R) for m ≥ 1, thus A+Σ(f) ⊂ C(X,R). Since also C(X,Σ) ⊂ C(X,R), we
get

U−1T f ∈ U
−1
T A

+
Σ(f) ⊂ A

+
Σ(f) ⊂ C(X,R).

We have obtained UTC(X,R) = C(X,R) which means that (T × T )(R) = R. �

Proposition 3.7. Every distal extension of a minimal flow is deterministic.

Proof. Let π: (X,T )→ (Y, S) be the distal extension where (Y, S) is mini-
mal. Using Theorem 6 ([1, p. 141]) we have that (Σπ, T × T ) is a disjoint union
of minimal sets. Let R ∈ ICER+(X), R ⊂ Σπ. We show that R ∈ ICER(X).
Let (x, y) ∈ Σπ be such that (Tx, Ty) ∈ R. Since (x, y) belongs to some minimal
subset of Σπ, it is positively recurrent, i.e. there exists an increasing sequence
(nk) of positive integers with (T × T )nk(x, y)→ (x, y). By the assumption on R
we obtain (x, y) ∈ R, i.e. R ∈ ICER(X). This means that π is deterministic. �

Remark 3.8. In Glasner–Maon, [11], there is a notion of weak rigidity. A
flow (X,T ) is weakly rigid if the identity homeomorphism I:X → X is a limit
point of the collection {Tn; n ∈ Z} in the topology of pointwise convergence;
in other words, if I is not an isolated point in the enveloping semigrup E(X).
Clearly every infinite minimal distal flow is weakly rigid, but the class of weakly
rigid flows is much larger, e.g. it includes the class of rigid (hence also uniformly
rigid) flows. In particular it contains some weakly mixing minimal flows.
Following the referee suggestion, one can define positive weak rigidity by the

condition I ∈ {Tn;n ≥ 1} and observe that in the absolute case the proof of
Proposition 3.7 shows that every positively weakly rigid flow is deterministic. In
fact the proof shows that every positively doubly recurrent flow (cf. [26]), i.e.
a flow such that every point in the product X ×X is positively recurrent under
T × T , is deterministic. In particular it holds for positively weakly rigid flows.
Since for a weakly rigid flow either (X,T ) or (X,T−1) are positively weakly
rigid it follows that for a weakly rigid flow at least one of (X,T ) or (X,T−1) is
deterministic.

Proposition 3.9. If π: (X,T ) → (Y, S) is deterministic, X is infinite and
(Y, S) is minimal then A(T ) ∩ Σπ = ∅.
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In order to prove the above proposition we will need the following result
due to M. Kuczma ([17]). We include its proof to make our exposition more
self-contained, as well as, to provide some notations used in later considerations.

Lemma 3.10 ([17], [24, p. 121]). Let X be a locally compact space and
T :X → X be a continuous transformation. Then every finite ω-limit set of
(X,T ) consists of a single periodic orbit.

Proof. Assume that a set ωT (x) of all limit points of O+T (x) is finite. Take
ε > 0 such that {B(y, ε) : y ∈ ωT (x)} is a finite collection of compact pairwise
disjoint neighborhoods. Let x′ ∈ ωT (x) and OT (x′) = {x′, Tx′, . . . , T l−1x′}.
There exist εl < ε1 < . . . < εl−1 < ε0 < ε such that

TB(T jx′, εj+1) ⊂ B(T j+1x′, εj+2(mod l))

for all j ∈ {0, . . . , l − 1}. Let E = {n ∈ N : Tnx ∈
⋃l−1
j=0B(T

jx′, εj+1)} and
F = {n ∈ E : n + 1 6∈ E}. Observe that if n ∈ F then Tnx ∈ B(T l−2x′, εl−1),
hence Tn+1x ∈ B(T l−1x′, ε0) \ B(T l−1x′, εl). If F were infinite then the set
B(T l−1x′, ε0) \ B(T l−1x′, εl) would contain a point from ωT (x) distinct from
T l−1x′ that is a contradiction. Therefore F is finite and thus every n large enough
belongs to E since the latter set is infinite. It follows that ωT (x) = OT (x′). �

Remark 3.11. Let us notice that using the above consideration we are able
to show a little more. Namely:
If OT (x) is infinite and ωT (x) has l elements then y can be chosen from ωT (x)
in such a way that limn→∞ Tnl+jx = T jy for j ∈ {0, . . . , l − 1}, i.e. the flow
(OT (x)∪ωT (x), T ) is the l-point compactification of Z, where N spirals down to
ωT (x). Obviously (x, y) ∈ A(T ).

Proof. Let ω(x) = {x′, Tx′, . . . , T l−1x′}. Given m ∈ N \ {0} take Umj =
B(T jx′, εj+1) where εj+1’s are like in the proof of the above lemma with ε = 1/m.
Let km be the first time the forward orbit of x enters

⋃l−1
j=0 U

m
j and stays in

this set forever. Passing to a subsequence if necessary we may assume that
T kmx ∈ Umj0 for some j0 ∈ {0, . . . , l − 1}. Passing again to a subsequence find
i ∈ {0, . . . , l − 1} with km ≡ i(mod l). Put y = T j0+l−ix′. �

Proof of Proposition 3.9. Suppose A(T ) ∩Σπ 6= ∅. We shall show that
π is not deterministic. Let (x, x) ∈ A(T )∩Σπ. Hence, at least one of the orbits
OT (x) and OT (x) must be infinite. We shall consider the following three cases.
(A) The orbits OT (x) and OT (x) are infinite and disjoint.
In this case, we put like in [15] (or in the proof of Theorem 3.1)

R = O+T×T (x, x) ∪O
+
T×T (x, x) ∪∆

and we see that R ∈ ICER+(X) \ ICER(X).
(B) Precisely one of the orbits OT (x) and OT (x) is infinite.
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Assume that OT (x) = {x, Tx, . . . , T k−1x}. We put Oi = {T ix, Tnk+ix; n ≥
0} for 0 ≤ i ≤ k − 1 and define

R =
k−1⋃
i=0

(Oi ×Oi) ∪∆.

Now we check again that R ∈ ICER+(X) \ ICER(X).
Note that we have not used minimality of (Y, S) so far.
(C) The orbits OT (x) and OT (x) are infinite and OT (x) ∩OT (x) 6= ∅, hence

OT (x) = OT (x).
Assume first that ωT (x) is of finite cardinality l. It can be shown that

l = min{k > 0 : (x, T kx) ∈ A(T )} but this is not relevant for the proof. We know
from Remark 3.11 that limn→∞ Tnlx = y for some y ∈ ωT (x), so (x, y) ∈ A(T )
by Lemma 3.10 (y is l-periodic). Since (X,T ) has periodic orbits, by minimality
of (Y, S), Y is finite (this is the only place we use minimality of (Y, S)). Therefore
there is n0 such that (Tn0lx, y) ∈ A(T ) ∩ Σπ. We have come to the case (B).
If ωT (x) is infinite consider a factor (X,T )

ρ−→ (Z,U) η−→ (Y, S), where

Σρ = ((ωT (x)× ωT (x)) ∪∆) ∩ Σπ.

Observe that ρ|X\ωT (x) is one-to-one and O
+
T (x) ∩ ωT (x) = ∅ since every point

of ωT (x) is periodic while OT (x), hence also O+T (x), is infinite. It follows that
(ρ(x), ρ(x)) ∈ A(U) ∩ Ση. Therefore η is not deterministic since ωU (ρ(x)) =
ρ(ωT (x)) is finite. By Corollary 3.5, π is not deterministic. �

Let us consider the absolute case, i.e. Y is a one point space.

Corollary 3.12. If (X,T ) is deterministic then A(T ) = ∅.

In [6] Bryant and Walters have shown that if (X,T ) is expansive thenA(T ) 6=
∅. Therefore applying Proposition 3.9 we get at once

Corollary 3.13. If (X,T ) is infinite expansive then (X,T ) is not deter-
ministic.

From the above corollary, we get the proof of Corollary 3 in [15] whose proof
has a gap.
It is shown in [12] (Theorem 4.6), that the set A(T )∩Σπ is dense in the set

of the relative topological entropy pairs. Using this result and Proposition 3.9,
we get the following

Corollary 3.14. Every deterministic homomorphism onto a minimal flow
has zero relative topological entropy.

The minimality assumption in the above corollary can be omitted (cf. Re-
mark 3.24).
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From this, it follows that deterministic extensions preserve topological en-
tropy (cf. [18]).

Definition 3.15. The homomorphism π: (X,T ) → (Y, S) is called Kol-
mogorov (or (X,T ) is called a Kolmogorov extension of (Y, S)) if there exists
a relation R ∈ CER(X) such that

(a) (T × T )(R) ⊂ R ⊂ Σπ,
(b)
⋂∞
n=0(T × T )n(R) = ∆,

(c)
⋃∞
n=0(T × T )−n(R) = Σπ.

The relation R is called the relative K-relation of (X,T ). In the case Σπ =
X ×X, (X,T ) is said to be a K-flow (cf. [15]).

Example 3.16. One easily checks that if (X,T ) is a topological K-flow,
(Y, S) is an arbitrary flow and the flow (Z,U) is the product flow of (X,T ) and
(Y, S) then the projection of Z onto Y is a Kolmogorov homomorphism.

The following proposition relates K-extensions to asymptotic extensions, i.e.
extensions π: (X,T )→ (Y, S) such that Σπ ⊂ A(T ).

Proposition 3.17. If π is a K-extension then A(T ) ∩ Σπ is dense in Σπ.

Proof. Let R be a relative K-relation of (X,T ). First observe that R ⊂
A(T ). Indeed, if it is not the case, it would exist a pair (x, y) ∈ R and a se-
quence (ni) of positive integers such that d(Tnix, Tniy) ≥ ε for some ε > 0.
By the compactness of X we see that there exists (u, v) ∈ X × X and a sub-
sequence (nij ) of (ni) such that limj→∞ T

nij x = u and limj→∞ T
nij y = v.

Applying (a) and (b) of Definition 3.15 it is easy to see that (u, v) ∈ ∆ and so
limj→∞ d(T

nij x, Tnij y) = 0 what is impossible.
The inclusion R ⊂ A(T ) and (c) of Definition 3.15 imply

Σπ =
∞⋃
n=0

(T × T )−n(R) ⊂ A(T ) ∩ Σπ

which gives the desired result. �

It would be interesting to know whether the relative analogue of Theorem 6
of [15] is true, i.e. whether the minimality of (X,T ) implies that any K-extension
π is relatively weakly mixing, i.e. the dynamical system (Σπ, T ×T ) is transitive.
Proposition 3.17 allows to reduce the above question to the following. Let (X,T )
be minimal and let A(T ) ∩ Σπ be dense in Σπ. Is it true that π is relatively
weakly mixing?
Let us note the following result of E. Glasner ([10]) close to our question: If

(X,T ) is minimal, π is open and Q(n)π = R
(n)
π for every n ≥ 2 then π is a weakly

mixing extension.



202 B. Kamiński — A. Siemaszko — J. Szymański

Here

R(n)π = {(x1, . . . , xn) ∈ Xn; π(xi) = π(xj), 1 ≤ i, j ≤ n},

Q(n)π =
⋂
{TV ∩R(n)π ; V a neighborhood of the diagonal in Xn}.

Remark 3.18. Using Theorem 3.1 and applying the same argument as in the
proof of Proposition 3.17 one can easily show that for any extension π: (X,T )→
(Y, S) the set A(T )∩Σπ is dense in E(X,T |Σπ) which gives the relative version
of Proposition 4 of [4].

Definition 3.19. We say that a measure µ ∈ M(X,T ) has a relative full
support w.r. to an invariant relation Σ ∈ CER(X) if Supp (µ×σ µ) = Σ, where
σ is the invariant partition associated with Σ.

Proposition 3.20. If a flow (X,T ) admits an ergodic measure µ ∈M(X,T )
with πµ(T |σ) = σ for an invariant partition σ which has full support relatively to
invariant relation Σ ∈ CER(X) associated with σ then (X,T ) is a Kolmogorov
extension of the factor flow determined by Σ.

Proof. It follows from our assumption and Proposition 1 from [19] that

Eµ(X,T |σ) ∪∆ = Λσµ = Supp (µ×σ µ) = Σ.

Applying Theorem 3.1 we see that there exists a relation R ∈ CER(X) satisfying
the conditions (a)–(c). The last equality implies R is a relative K relation with
respect to Σ. �

Definition 3.21 ([12], [19]). A homomorphism π: (X,T ) → (Y, S) is said
to have relative u.p.e. (or (X,T ) is called a u.p.e. extension of (Y,S)) if for
any two-set open cover α = {U, V } of X such that U 6= Σπ(x) 6= V for some
x ∈ X, we have h(T, α|Σπ) > 0. Here Σπ(x) denotes the equivalence class of Σπ
containing x.

Proposition 3.22. Any uniquely ergodic extension having relative u.p.e. is
a Kolmogorov extension.

Proof. Let µ be the unique invariant measure on (X,T ) and let π: (X,T )→
(Y, S) be a u.p.e. extension. By Theorem 4.1 ([12]), Eµ(X,T |σπ) = E(X,T |Σπ)
= Σπ where σπ is the partition determined by π. Therefore the relation given
by Theorem 3.1 is a relative K-relation of (X,T ). �

Using Theorem 3.1, we give the following description of Π(T |Σ) different
from those in [18] and [19].
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Proposition 3.23.

Π(T |Σ) =
〈⋃
µ

∞⋃
n=0

(T × T )−n(Rµ)
〉
,

where µ ∈M(X,T ) runs over all ergodic measures with hµ(T |σ) > 0.

Proof. Proposition 2 of [19] yields Π(T |Σ) = 〈
⋃
µEµ(X,T |σ)〉. Therefore,

by (c) of Theorem 3.1, we have

Π(T |Σ) ⊂
〈⋃
µ

∞⋃
n=0

(T × T )−n(Rµ)
〉
⊂
〈⋃
µ

Πµ(T |σ)
〉

=
〈⋃
µ

〈Eµ(X,T |σ)〉
〉
=
〈⋃
µ

Eµ(X,T |σ)
〉
= Π(T |Σ). �

Remark 3.24. Using Proposition 3.23, similarly like in [16], we may give
yet another proof of Corollary 3.14 without minimality assumption. Indeed. Let
π: (X,T ) → (Y, S) be a deterministic homomorphism. Then for every ergodic
µ ∈ M(X,T ) with hµ(T |σ) > 0 we have Rµ = ∆, hence Π(T |Σ) = ∆ that is
equivalent, by Theorem 2 of [8] and Remark 1 of [18], to the fact the relative
topological entropy of π: (X,T )→ (Y, S) is equal to zero.

Remark 3.25. Following Remark 3.8 and applying Remark 3.24 in the ab-
solute case we obtain new proofs of the facts that positively doubly recurrent
flows and also weakly rigid flows have zero topological entropy (cf. [26]).
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