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OSCILLATION AND CONCENTRATION EFFECTS
DESCRIBED BY YOUNG MEASURES

WHICH CONTROL DISCONTINUOUS FUNCTIONS

Agnieszka Ka lamajska

Abstract. We study oscillation and concentration effects for sequences of

compositions {f(uν)}ν∈N of µ-measurable functions uν : Ω → Rm where Ω
is the compact subset of Rn and f is the (possibly) discontinuous function.

The limits are described in terms of Young measures which can control

discontinuous functions recently introduced in [14].

1. Introduction

The celebrated theorem by Young [29] asserts that given an arbitrary se-
quence of measurable functions {uν}ν∈N defined on a measurable bounded set
Ω ⊆ Rn with values in Rm and an arbitrary continuous function f : Rm → R
which vanishes at infinity one can extract the subsequence of {uν}ν∈N such that
{f(uν)}ν∈N converges weakly ∗ in L∞ to the function f described by an integral
formulae

(1.1) Ω 3 x 7→ f(x) =
∫

Rm

f(λ)µx(dλ)

where {µx}x∈Ω is the family of parametrized measures on Rm independent on the
choice of f . Moreover, if K is a closed subset of Rm and uν → K in a measure,
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then an integral over Rm in (1.1) can be changed into an integral over K (see
e.g. [4], [12], [25], [27], [29]).

Young’s discovery became widely applicable in many disciplines of analysis,
e.g. in calculus of variations, partial differential equations, optimal control theory,
game theory, numerical analysis, see e.g. [3], [9], [10], [23], [25], [27] and their
references.

Nowadays many various generalizations of Young’s theorem are known (see
e.g. [27]). Of our particular interest are those which allow to deal with such
sequences of compositions {f(uν)}ν∈N that the function f may be discontinuous
with respect to the Euclidean topology in Rm. For deep abstract results in this
direction we refer to works by Balder [3], Chentsov [6] and Fattorini [10]. In
their approaches the space Rm can be substituted by an abstract metric space
M and one deals with sequences {uν}ν∈N with values in M . Assuming that
the sequence {f(uν)}ν∈N is weakly compact in L1(Ω) one describes limits of its
weakly convergent subsequences in the form (1.1) with M playing the role of
Rm and µx defined on M . In particular oscillations effects for compositions like
{f(uν)}ν∈N can be studied within the large class of f , but the concentration
effects cannot be explained by this theory.

The assumption that {f(uν)}ν∈N is weakly compact in L1(Ω) seems to be
often too strong in the applications. Therefore DiPerna and Majda introduced
such an approach where one can assume that the sequence {f(uν)}ν∈N is only
bounded in L1(Ω) ([7], see also [1], [17], [18]). Namely, assume that f : Rm → Rm

is continuous of growth p and {uν}ν∈N is an Lp-bounded sequence. DiPerna and
Majda showed that one can extract the subsequence of the {uν}ν∈N (denoted
by the same expression) such that the weak ∗ limit of the sequence of Radon
measures {f(uν)dx}ν∈N on a compact set Ω is given by the formulae( ∫

γRm

f0(λ)ν̂x(dλ)
)

σ(dx),

where γRm is the given compactification of Rm, f0 ∈ C(γRm) is the given
transform of f (independent on {uν}ν∈N), σ is the Radon measure on Ω, ν̂x

are probability measures on γRm defined for x ∈ Ω and both: σ and ν̂x are
independent on f but only on the sequence.

In particular not only oscillation effects but also concentrations of the se-
quence {f(uν)}ν∈N can be explained by DiPerna and Majda theory. On the
contrary to the mentioned abstract approaches the assumptions on f are less
general: it is defined on Rm and continuous with respect to the Euclidean topol-
ogy of Rm.

The author found the unified approach which allows to deal with discontin-
uous functions and study the oscillations of sequences {f(uν)}ν∈N as well, [14],
[15]. Abbreviating, the result obtained in [14] can be summarized as follows.
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Assume that µ is a Radon measure on a compact set Ω, g: Rm → R is positive
and {uν}ν∈N is a given sequence of µ-measurable Lg

µ(Ω)-bounded functions with
values in Rm, i.e.

sup
ν

∫
Ω

g(uν(x))µ(dx) < ∞.

Let further A1, . . . , Ak are Borel subsets of Rm called bricks forming the partition
of Rm and f : Rm → R be such that f/g has good properties, in particular it
is bounded and continuous on each Ai. Let γAi be the compactification of
Ai and γAi \ Ai be the reminder. The main theorem in [14] asserts that after
extracting the subsequence of {uν}ν∈N (which we denote by the same expression,
it is independent on f) the sequence of Radon measures {f(uν)µ}ν∈N converges
weakly ∗ in the space of measures to the measure represented by

(1.2)
k∑

i=1

( ∫
int Ai

f(λ)µx(dλ)µ(dx) +
∫

∂Ai∩Ai

f(λ)νi
x(dλ)mi(dx)

+
∫

γAi\Ai

f̃i(λ)νi
x(dλ)mi(dx)

)
,

where {µx}x∈Ω are classical Young measures generated by {uν}ν∈N (for µ being
the Lebesgue measure they are the same as that in (1.1)), νi

x and νi
x are proba-

bility measures defined on ∂Ai ∩Ai and γAi \Ai respectively, mi, mi are Radon
measures on Ω, while f̃i is certain transform of f defined on the compactification
γAi of Ai. The quantities: µx, νi

x, νi
x and also mi, mi are independent on f

while f̃i is independent on the sequence {uν}ν∈N. In the case when µ is the
Lebesgue measure, g(λ) = 1 + |λ|p and we deal with one brick A = Rm only, the
theorem reduces to the theorem by DiPerna and Majda.

Our goal now is to study more precisely the oscillation and concentration ef-
fects for sequences of compositions {f(uν)}ν∈N within the same class of functions
as in [14]. This issue mainly consists of three results.

At first we extend some of our previous results from [15] and study more
precisely the behaviour of supports of measures µx, νi

x and νi
x in the representa-

tion formulae (1.2), under some additional information on the behaviour of the
sequence. This results in three Theorems 3.1–3.3 presented in Section 3.

In Section 4 we find the necessary and sufficient condition for weak compact-
ness in L1

µ(Ω) of the sequence {f(uν)}ν∈N, which is described in terms of the
measures in (1.2) (Theorem 4.1).

Next we apply previous results to obtain the variant of the Young theo-
rem where one studies the weak L1

µ(Ω)-limit of the sequence of compositions
{f(uν)}ν∈N, under an additional information that uν → L in the measure µ,
where L is the closed subset of Rm. This results in Theorem 5.1 in Section 5. We
call it the generalization of Young theorem because here the sequence {f(uν)}ν∈N

is nonconcentrating like in the classical theorem of Young. Let me mention that
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such a theorem is the special case of the known abstract results, but it is special-
ized to functions defined on Rm with the prescribed discontinuities. Moreover,
the condition uν → L in a measure means that for an arbitrary V ⊇ L, where
V open in the Euclidean topology we have

(1.3) lim
ν→∞

µ({x ∈ Ω : uν(x) 6∈ V }) = 0.

In particular (1.3) uses the Euclidean topology of Rm, while f may be discontin-
uous with respect to the Euclidean topology. Therefore Young theorem obtained
here does not follow directly from abstract mentioned approaches.

Our motivations to study such a generalization of Young’s theorem are two
folded.

The first one comes from applications to mathematical physics and is dic-
tated by many physical models where one deals with PDE’s with discontinuous
constraints (see e.g. [11], [13], [20]–[22], [24], [26] or Chapter 4, pages 137–138
in [5]). Our measures are more sensitive as they can detect from which side the
sequence approaches the point. Therefore we believe that our generalization of
Young’s theorem can be applied to such PDE’s similarly as the classical theorem
of Young is applied to the more regular ones. See also [15] for the more detailed
explanation and references.

Our second motivation is linked with Convergence Theorem in set-valued
analysis (see e.g. [2]). For simplicity let µ be the Lebesgue measure, f be the
single-valued function which is continuous on each brick Ai in decomposition
Rm =

⋃k
i=1 Ai. Convergence Theorem reduced to such a case asserts that if

uν → u almost everywhere and f(uν) ⇀ w as ν → ∞ weakly in L1(Ω) then
for almost all x ∈ Ω the point w(x) belongs to the convex hull of accumulation
points of f at u(x). Here we explain the case when the sequence {uν}ν∈N does
not converge almost everywhere or the sequence {f(uν)}ν∈N does not converge
weakly in L1(Ω). Further extensions of this approach are in progress [16].

The last section is devoted to illustrations of the presented results.
For more illustrations and examples we refer to papers [14] and [15].

2. Preliminaries and notation

Let A be an arbitrary subset of Rm. By C(A) we denote the space of contin-
uous functions on A. The symbol χA denotes the characteristic function of A. If
the scalar function f is defined on A or its neighborhood then by fχA we mean
the function which is equal to f on A and 0 outside A. By C0(Rm) we denote
the space of all continuous functions on Rm which vanish at infinity. We denote:
Y c = Rm \ Y , the complement of Y ⊆ Rm in Rm. The closure of a set S ⊆ RK

is denoted by S. If K1,K2 are two closed subsets of RN such that K2 ⊆ K1, we
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denote

(2.1) ∂K1K2 = {x ∈ K2 : B(x, r) ∩ (K1 \K2) 6= ∅ for all r > 0}.

Let S be the Borel subset of the Euclidean space Rk. ByM(S) we denote the
space of Radon measures on S, while P(S) is its subset consisting of probability
measures. If µ ∈M(S) and f is µ-measurable, we denote (f, µ) :=

∫
S

f(λ)µ(dλ).
By suppµ we denote the support of µ.

Arrows →, ⇀, ∗
⇀ are used to denote the strong, weak, and weak ∗ conver-

gence respectively in the given topology.
Let Ω be a Borel subset of Rn, µ ∈ M(Ω) and L ⊆ Rm be a closed subset.

The sequence {uν}ν∈N where uν : Ω → Rm are µ-measurable is said to converge
to L in a measure if µ({x : dist(uν(x), L) > ε}) → 0 as ν →∞, whenever ε > 0.

Recall that the compact topological space γA is the compactification of the
topological space A if there is the dense homeomorphical embedding Φ:A →
Φ(A) ⊆ γA (see e.g. [19]). If not causing a misunderstanding we will also write
A instead of Φ(A) and γA \A instead of γA \ Φ(A).

If S is a Borel subset of Rk, by L∞w∗(Ω,M(S), µ) we denote the set of families
{µx}x∈Ω of Radon measures on S which are weakly ∗ µ-measurable in the sense
of Pettis i.e. for every f ∈ C(S) the mapping x 7→

∫
S

f(λ)µx(dλ) is µ-measurable
(see e.g. Definition 1 of Section V.4 in [28]). The symbol P(Ω, S, µ) stands for
such families of nonnegative measures {µx}x∈Ω ∈ L∞w∗(Ω,M(S), µ), which satisfy
‖µx‖M(S) = 1 for µ-almost all x.

We recall one version of the classical theorem of Young (see e.g. [1], [3,
Lemma 4.11 and Corollary 5.4], [4], [12]).

Theorem (Young’s Theorem). Let Ω be an open bounded subset of Rn and
{uν}ν∈N be a sequence of µ-measurable functions, uν : Ω → Rm. Then there exists
a subsequence of {uν}ν∈N still denoted by the same expression and a family of
measures {µx}x∈Ω ∈ L∞w∗(Ω,M(Rm), µ) such that ‖µx‖M(Rm) ≤ 1 for µ almost
all x and for every function f ∈ C0(Rm) we have

f(uν) ∗
⇀ f(x) = (f, µx) in L∞(Ω, µ), as ν →∞.

If additionally the sequence {uν}ν∈N satisfies the tightness condition:

lim sup
ν∈N

µ({x ∈ Ω : |uν(x)| ≥ r}) r→∞−−−→ 0.

Then ‖µx‖M(Rm) = 1 for µ almost all x.

Definition 2.2. The sequence {uν}ν∈N where uν : Ω → Rm is said to gen-
erate the Young measure {µx}x∈Ω ∈ L∞w∗(Ω,M(Rm), µ) if for every f ∈ C0(Rm)
the sequence {f(uν)}ν∈N converges weakly ∗ in L∞(Ω, µ) to the function f(x) :=∫

Rm f(λ)µx(dλ).
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In the sequel we will use the following general assumptions.

Assumption A1.

(a) There exist disjoint Borel subsets: A1, . . . , Ak, called bricks, such that
Rm =

⋃k
i=1 Ai.

(b) Each Ai is compactified by some γAi ⊆ RNi where Ni ∈ N, with the
help of the dense homeomorphic embedding Φi:Ai → Φi(Ai) ⊆ γAi. We
additionally assume that each mapping Φi has the following property:

(2.2)


if R > 0 is arbitrary and {zr}r∈N, {yr}r∈N ⊆ Ai ∩B(R)

then the condition dist(Φi(zr),Φi(yr))
r→∞−−−→ 0 in γAi

implies dist(zr, yr)
r→∞−−−→ 0

and the reminder γAi \Ai is a closed subset of γAi.
(c) The space Rm is equipped with density function g: Rm → (0,∞) such

that g|Ai ∈ C(Ai), g(λ) ≥ α for every λ ∈ Ai ∩ ∂Ai and some α > 0
and limλ→∞ g(λ) = ∞.

(d) We deal with the following Banach space of admissible functions:

(2.3) F := {f : Rm → R : f̃i := (f/g) ◦ Φ−1
i ∈ C(γAi) for i = 1, . . . , k},

equipped with the norm ‖f‖F =
∑k

i=1 ‖f̃i‖L∞(γAi).

The notation f̃i ∈ C(γAi) means that the function (f/g) ◦Φ−1
i : Φi(Ai) → R

is the restriction of some continuous function defined on γAi. As this function
is uniquely defined we will denote it by the same expression: f̃i.

We will also deal with the following condition which is stronger than As-
sumption A1.

Assumption A2.

(a) Assumption A1 is satisfied.
(b) The constant mapping h ≡ 1 belongs to F and for every i ∈ {1, . . . , k}

we define:

R∞i = G−1
i (0), Rb

i = (γAi \Ai) \R∞i ,

where Gi is the unique continuous extension of the function

1
g(Φ−1

i (λ))
: Φi(Ai) → R

to γAi. In particular R∞i is the closed subset of γAi \Ai.

Remark 2.3. Note that by definition of F the mapping Gi = (1/g) ◦
Φ−1

i : Φi(Ai) → R has a continuous extension to γAi if and only if χAi
∈ F .

In [14] we have obtained the following result (which is a particular case of
the more general statement, see Remark 2.1 in [15]).
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Theorem 2.4. Suppose that Ω ⊆ Rn is the compact set equipped with the
Radon measure µ and that Assumption A1 with bricks {Ai} and density function
g: Rm → (0,∞) is satisfied. Assume further that there is given the sequence
{uν}ν∈N of µ-measurable functions, uν : Ω → Rm, which satisfies the condition

(2.4) sup
ν

∫
Rm

g(uν)µ(dx) < ∞.

Then there exist

(a) a subsequence of {uν} denoted by the same expression,
(b) measures mi,mi ∈ M(Ω), such that mi is absolutely continuous with

respect to µ and supp mi ⊆ suppµ for i ∈ {1, . . . , k},
(c) families of probability measures {µx}x∈Ω ∈ P(Ω, Rm, µ), {νi

x}x∈Ω ∈
P(Ω, ∂Ai∩Ai, µ) and {νi

x}x∈Ω ∈ P(Ω, γAi\Ai,m
i) where i ∈ {1, . . . , k}

such that for an arbitrary f ∈ F the subsequence {f(uν(x))µ(dx)}ν∈N converges
weakly ∗ in the space of measures to the measure represented by

(2.5)
k∑

i=1

( ∫
int Ai

f(λ)µx(dλ)µ(dx) +
∫

∂Ai∩Ai

f(λ)νi
x(dλ)mi(dx)

+
∫

γAi\Ai

f̃i(λ)νi
x(dλ)mi(dx)

)
,

where f̃i is defined by (2.3). Moreover, measures {µx}x∈Ω are the classical Young
measures generated by the sequence {uν}.

Definition 2.5. If the sequence of µ-measurable functions is such that for
an arbitrary f ∈ F the subsequence {f(uν(x))µ(dx)}ν∈N converges weakly ∗ in
the space of measures to the measure represented by (2.5) then we will say that
measures: {µx}x∈Ω, (mi, {νi

x}x∈Ω)i=1,...,k, (mi, {νi
x}x∈Ω)i=1,...,k are generated

by {uν}ν∈N.

The following results were obtained in [15] (we refer there for discussion).

Theorem 2.6. Let the assumptions of Theorem 2.4 be satisfied and let the
sequence {uν}ν∈N and measures

{µx}x∈Ω, (mi, {νi
x}x∈Ω)i=1,...,k, (mi, {νi

x}x∈Ω)i=1,...,k

be the same as in its statement. Assume further that for a given i ∈ {1, . . . , k}
we have

(2.6) Ai
r := lim sup

ν→∞

∫
{x:uν(x)∈Ai∩V r}

g(uν(x))µ(dx) r→∞−−−→ 0,

for a given sequence {V r}r∈N of open nonempty subsets of Rn such that V
r+1 ⊆

V r. Define P = ∩r∈NV r. Then we have

(a) µx(P ∩ intAi) = 0 for µ-almost all x,
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(b) νi
x(P ∩ ∂Ai ∩Ai) = 0 for mi- almost all x,

(c) νi
x(K0

i ∩ (γAi \Ai)) = 0 for mi-almost all x, where

K0
i =

⋃
R∈N

⋂
r∈N

Φi(V r
R ∩Ai) and V r

R = V r ∩ {x : |x| < R + 1/r}.

Theorem 2.7. Let the assumption of Theorem 2.6 is satisfied and assume
additionally that for every r ∈ N we have

(2.7) Φi(V r+1 ∩Ai) ∩ ∂γAiΦi(V r ∩Ai) = ∅.

Then νi
x(Ki∩(γAi\Ai)) = 0 for mi-almost all x, where Ki =

⋂
r∈N Φi(V r ∩Ai).

Theorem 2.8. Let the assumptions of Theorem 2.4 and Assumption A2 be
satisfied and let the sequence {uν}ν∈N and measures

{µx}x∈Ω, (mi, {νi
x}x∈Ω)i=1,...,k, (mi, {νi

x}x∈Ω)i=1,...,k

be the same as in the statement of Theorem 2.4. Then we have

(a) νi
x(R∞i ) = 1 for mi

s-almost all x, where mi
s is the singular part of mi

with respect to µ in the Lebesgue–Nikodym decomposition.
(b) If additionally

Ai
r := lim

ν→∞

∫
{x:uν(x)∈Ai∩V r}

g(uν(x))µ(dx) r→∞−−−→ 0,

for a given sequence {V r}r∈N of open nonempty subsets of Rn such that
V

r+1 ⊆ V r, then

(2.8) νi
x(Ki ∩Rb

i ) = 0 for mi-almost all x,

where Ki =
⋂

r∈N Φi(V r ∩Ai).

Remark 2.9. Obviously K0
i ⊆ Ki but Ki can be essentially bigger (see

Remark 3.1 in [15]). Example 3.1 in [15] shows that in general the set K0
i in

the statement (c) of Theorem 2.6 cannot be substituted by Ki. Moreover, (2.8)
is the consequence of the inclusion Ki \K0

i ⊆ R∞i and part (c) of Theorem 2.6
(see Remark 4.2 in [15]).

3. On supports of the parametrized measures

Our goal now is to obtain the following generalizations of Theorems 2.6, 2.7
and of part (b) in Theorem 2.8.
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Theorem 3.1. Let the assumptions of Theorem 2.4 be satisfied and let the
sequence {uν}ν∈N and measures

{µx}x∈Ω, (mi, {νi
x}x∈Ω)i=1,...,k, (mi, {νi

x}x∈Ω)i=1,...,k

be the same as in its statement. Assume further that f ∈ F and for a given
i ∈ {1, . . . , k} we have

(3.1) Bi
r := lim

ν→∞

∫
{x:uν(x)∈Ai∩V r}

|f(uν(x))|µ(dx) r→∞−−−→ 0,

for a given sequence {V r}r∈N of open nonempty subsets of Rn such that V
r+1 ⊆

V r. Define P =
⋂

r∈N V r. Then we have

(a)
∫

P∩int Ai
|f(λ)|µx(dλ) = 0 for µ-almost all x,

(b)
∫

P∩∂Ai∩Ai
|f(λ)|νi

x(dλ) = 0 for mi-almost all x,

(c)
∫

K0
i ∩(γAi\Ai)

|̃f |i(λ)νi
x(dλ) = 0 for mi-almost all x, where

K0
i =

⋃
R∈N

⋂
r∈N

Φi(V r
R ∩Ai) and V r

R = V r ∩ {x : |x| < R + 1/r}.

Theorem 3.2. Let the assumption of Theorem 3.1 is satisfied and assume
additionally that for every r ∈ N we have

(3.2) Φi(V r+1 ∩Ai) ∩ ∂γAiΦi(V r ∩Ai) = ∅.

Then ∫
Ki∩(γAi\Ai)

|̃f |i(λ)νi
x(dλ) = 0

for mi-almost all x, where Ki =
⋂

r∈N Φi(V r ∩Ai).

Theorem 3.3. Let the assumptions of Theorem 3.1 and Assumption A2 be
satisfied. Then for mi-almost all x∫

Ki∩Ri
b

|̃f |i(λ)νi
x(dλ) = 0, where Ki =

⋂
r∈N

Φi(V r ∩Ai).

Remark 3.4. Note that Theorem 3.1 implies Theorem 2.6 when we substi-
tute f = g in its assumption and use the fact that g is positive. By the same
argument Theorem 3.2 implies Theorem 2.7 and Theorem 3.3 implies part (b) of
Theorem 2.8. On the other hand, we could not just plug g = |f | in Theorems 2.6
and 2.8 to obtain Theorems 3.1 and 3.3 as |f | may not satisfy the assumptions
required in Assumption A1 (for example it may not be strictly positive).

Proof of Theorem 3.1. We use similar techniques as in Section 4 of [15].
Therefore we will refer to [15] for some of the details. We start with the following
assumption.
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Assumption B. The following two conditions are satisfied:

(a) Ω ⊆ Rn is the compact set equipped with the Radon measure µ, A

is the Borel subset of Rm embedded homeomorphically and densely in
the compact set γA ⊆ RN , with the help of homeomorphism Φ:A →
Φ(A) ⊆ γA, g ∈ C(A) is the nonnegative function such that g ≥ α on
∂A ∩A for some α > 0 and

FA := {f : Rm → R : f̃ := (f/g) ◦ Φ−1 ∈ C(γA)}.

(b) {uν}: Ω → Rm is the given sequence of µ-measurable functions which
satisfies the condition

sup
ν

∫
x:uν(x)∈A

g(uν)µ(dx) < ∞.

We will use the following lemmas.

Lemma 3.5 ([14, Lemma 3.1]). Suppose that Assumption B is satisfied and
define the sequence of measures {Lν}ν∈N on Ω× γA by expressions

(F,Lν) :=
∫
{x:uν(x)∈A}

F (x, Φ(uν(x)))g(uν(x))µ(dx), where F ∈ C(Ω× γA).

Then we have:

(a) There exists a subsequence of {Lν} still denoted by the same expression,
measures L ∈ M(Ω × γA), m̃ ∈ M(Ω) and a family of probability
measures {ν̃x}x∈Ω ∈ P(Ω, γA, m̃) such that

Lν ∗
⇀ L in M(Ω× γA),

(F,L) =
∫

Ω

∫
γA

F (x, λ)ν̃x(dλ))m̃(dx) where F ∈ C(Ω× γA),

supp m̃ ⊆ suppµ.

(b) Let m̃ = p(x)µ + m̃s be the Lebesgue–Nikodym decomposition of m̃ with
respect to µ. Then if γA \A 6= ∅ we have ν̃x(γA \A) = 1 for m̃s almost
all x ∈ Ω, while if γA \A = ∅ we have m̃s = 0.

Lemma 3.6 ([15, Lemma 4.2]). Let the Assumption B be satisfied and m̃

and {ν̃x}x∈Ω are the same as in Lemma 3.5. Suppose further that {Ur}r∈N is
a decreasing family of open subsets in γA such that U

r+1 ⊆ Ur and K =
⋂

r Ur.
Then for every f ∈ FA and every l ∈ C(Ω) there exists the subsequence of
{uν}ν∈N denoted by the same expression such that

lim
r→∞

(
lim

ν→∞

∫
{x:uν(x)∈A,Φ(uν(x))∈Ur}

l(x)f(uν(x))µ(dx)
)

=
∫

Ω

l(x)
∫

K

f̃(λ)ν̃x(dλ)m̃(dx).
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Now we prove the theorem. Substituting |f | by f we can assume that f is
nonnegative.

(a) Let K ⊆ P ∩ intAi be an arbitrary compact subset. As µx is a regular
measure for µ-almost every x, it suffices to prove that

∫
K

f(λ)µx(dλ) = 0 for
µ-almost all x. This follows from the same arguments as in the proof of part i)
in Theorem 3.1 given in [15] but instead of g we can substitute f .

(b) We apply Lemma 3.5 with A = Ai and Φ = Φi. This implies the existence
of measures ν̃i

x, m̃i such that∫
uν(x)∈Ai

F (x,Φi(uν(x)))g(uν)µ(dx) →
∫

Ω

∫
γAi

F (x, λ)ν̃i
x(dλ)m̃i(dx),

whenever F ∈ C(Ω× γAi).
Let V r

R := V r ∩ {x : |x| < R + 1/r}. Then (3.1) holds true with {V r
R}r∈N

used instead of {V r}r∈N and we also have V
r+1

R ⊆ V r
R.

Consider the following subsets of γAi (see (2.1)):

Ur
R = Φi(V r

R ∩Ai) \ ∂γAi
Φi(V r

R ∩Ai).

We observe that every set Ur
R is open in γAi and U

r+1

R ⊆ Ur
R for every r ∈ N.

This is justified in Steps 1 and 2 in the proof of part ii) of Theorem 3.1 in [15].
Next, we show that

(3.3) lim
r→∞

(
lim

ν→∞

∫
{x:uν(x)∈Ai,Φi(uν(x))∈Ur

R}
f(uν(x))µ(dx)

)
= 0.

To prove this at first we observe that Ur
R ∩ Φi(Ai) ⊆ Φi(V r−1

R ∩ Ai). This was
shown in Step 3 in the proof of part ii) of Theorem 3.1 in [15]. Then we use
condition (3.1).

Let KR =
⋂

r Ur
R. Lemma 3.6 and (3.3) give∫

Ω

∫
KR

f̃i(λ)ν̃i
x(dλ)m̃i(dx) = 0.

After letting R → ∞ and using Lebesgue’s Dominated Convergence Theorem
we get

(3.4)
∫

K0
i

f̃i(λ)ν̃i
x(dλ) = 0 m̃i-almost everywhere.

Now we use change of variable formulae linking the measures m̃i, ν̃i
x with mi

and νi
x, see the formulae (18), (21) and (22) in the proof of Theorem 3.1 in [14].

We have
mi(dx) = wi(x)pi(x)µ(dx),

where
wi(x) =

∫
Φi(∂Ai∩Ai)

1
g(Φ−1

i (λ))
ν̃i

x(dλ),
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and pi is the same as in Lebesgue–Nikodym decomposition of m̃i with respect
to µ, i.e. m̃i = pi(x)µ + m̃i

s,

(3.5) (G, νi
x) =


1

wi(x)

∫
Φi(∂Ai∩Ai)

(G/g)(Φ−1
i (λ))ν̃i

x(dλ) if wi(x) > 0,

G(a) if wi(x) = 0,

for µ-almost all x, whenever G ∈ C(∂Ai∩Ai), where a ∈ ∂Ai∩Ai can be chosen
arbitrary.

We use the functions Gε ∈ C(Rm) such that 0 ≤ Gε ≤ 1 and Gε → χP ,
Gε ◦Φ−1

i → χΦi(P ) as ε → 0 in the pointwise sense and plug Gεf to the formulae
(3.5). This gives∫

∂Ai∩Ai

Gε(λ)f(λ)νi
x(dλ) =

1
wi(x)

∫
Φi(∂Ai∩Ai)

Gε(Φ−1
i (λ))f̃i(λ)ν̃i

x(dλ),

for µ-almost all x such that wi(x) 6= 0. After letting ε → 0 we obtain

(3.6)
∫

∂Ai∩Ai∩P

f(λ)νi
x(dλ) =

1
wi(x)

∫
Φi(∂Ai∩Ai)∩Φi(P )

f̃(λ)ν̃i
x(dλ),

for mi-almost all x.
Next we observe that Φi(P ) ∩Φi(Ai) ⊆ K0

i . This follows from the following
sequence of inclusions

Φi(P ) ∩ Φi(Ai) =Φi(P ∩Ai)

=Φi

(( ⋃
R

⋂
r

V
r

R

)
∩Ai

)
=

⋃
R

Φi

( ⋂
r

V
r

R ∩Ai

)
⊆

⋃
R

⋂
r

Φi(V
r

R ∩Ai) ⊆
⋃
R

⋂
r

Φi(V r
R ∩Ai) = K0

i .

Therefore according to (3.4) the right hand in (3.6) is zero. This justifies (b).
(c) We use the following formulae linking measures mi, νi

x and m̃i, ν̃i
x (see

(18)–(20) in the proof of Theorem 3.1 in [14])

mi(dx) =hi(x)m̃i(dx), where hi(x) = ν̃i
x(γAi \Ai),

(G, νi
x) =


1

hi(x)

∫
γAi\Ai

G(λ)ν̃i
x(dλ) if hi(x) 6= 0,

G(y) if hi(x) = 0,

(3.7)

for m̃i almost all x, where y ∈ γAi \ Ai can be chosen arbitrary and G ∈
C(γAi \Ai).

Let us take such x that hi(x) > 0. Formulae (3.7) gives

(3.8)
∫

γAi\Ai

G(λ)f̃i(λ)νi
x(dλ) =

1
hi(x)

∫
γAi\Ai

G(λ)f̃i(λ)ν̃i
x(dλ),

whenever G ∈ C(γAi). As the reminder γAi \ Ai is closed, Tietze’s extension
theorem (see e.g. [8]) implies that identity (3.8) folds for every G ∈ C(γAi \Ai).
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Let x be such that hi(x) 6= 0 and define two measures on γAi \Ai:

α = f̃iν
i
x and β =

1
hi(x)

f̃iν̃
i
x∠(γAi \Ai),

where the symbol µ∠R stands for the restriction of the measure µ ∈ M(S) to
the Borel subset R ⊆ S, i.e. µ∠R(A) = µ(R∩A). Identity (3.8) applied to every
G ∈ C(γAi \Ai) gives∫

γAi\Ai

G(λ)α(dλ) =
∫

γAi\Ai

G(λ)β(dλ).

Hence α = β as functionals on C(γAi \Ai). Therefore by Riesz Theorem we see
that α = β as regular measures on γAi \Ai. In particular α((γAi \Ai)∩K0

i ) =
β((γAi \Ai) ∩K0

i ), which reads as∫
(γAi\Ai)∩K0

i

f̃i(λ)νi
x(dλ) =

1
hi(x)

∫
(γAi\Ai)∩K0

i

f̃i(λ)ν̃i
x(dλ).

According to (3.4) the right hand side above is 0 for m̃i-almost all x. As the set
{x ∈ Ω: hi(x) = 0} is of mi measure 0, therefore the statement (c) follows. �

Proof of Theorem 3.2.. It follows the same line as the proof of Theo-
rem 2.7 presented in [15]) (see the proof of Theorem 3.2 on page 1321). The only
difference is that we have to substitute g by f . Therefore we omit it. �

Proof of Theorem 3.3.. We use the fact that Ki ∩ Rb
i = K0

i ∩ Rb
i (see

Remark 4.2 in [15]) and the statement (c) in Theorem 3.1 which asserts that for
mi-almost all x ∫

K0
i ∩Rb

i

|̃f |i(λ)νi
x(dλ) = 0. �

4. Compactness criterion

Our goal now is to obtain the following theorem.

Theorem 4.1. Suppose that Ω ⊆ Rn is the compact set equipped with the
Radon measure µ and that Assumption A2 with bricks {Ai}i=1,...,k and density
function g: Rm → (0,∞) is satisfied. Assume further that there is given the
sequence {uν}ν∈N of µ-measurable functions, uν : Ω → Rm such that

(4.1) supν∈N

∫
Rm

g(uν)µ(dx) < ∞

and {uν}ν∈N generates measures

{µx}x∈Ω, (mi, {νi
x}x∈Ω)i=1,...,k, (mi, {νi

x}x∈Ω)i=1,...,k

(see Definition 2.5). Then for an arbitrary f ∈ F the following conditions are
equivalent to each other:

(a) The sequence {f(uν)}ν∈N is weakly compact in L1(Ω, µ).
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(b) For every i ∈ {1, . . . , k}, we have

(4.2) Ai
ε = lim

ν→∞

∫
{x∈Ω:uν(x)∈Ai:dist(Φi(uν(x)),R∞i )<ε}

|f(uν(x))|µ(dx) ε→0−−−→ 0.

(c) For every i ∈ {1, . . . , k} we have

(4.3)
∫

Ω

∫
R∞i

|̃f |i(λ)νi
x(dλ)mi(dx) = 0.

Proof. Substituting f by |f | we may assume that f is nonnegative.
(b)⇒ (a) It suffices to show that for every i ∈ {1, . . . , k} two conditions in

Dunford–Pettis criterion

sup
ν

∫
{uν∈Ai}

f(uν(x))µ(dx) < ∞,

and

lim
l→∞

(
lim sup

ν→∞

∫
{uν∈Ai,f(uν(x))>l}

f(uν(x))µ(dx)
)

= 0

are satisfied.
The first condition follows from inequality f(λ) ≤ g(λ)‖f/g‖L∞(Ai) and as-

sumption (4.1). To check the second condition we take an arbitrary ε > 0, and
let

Dl
ν = {x : uν(x) ∈ Ai, f(uν(x)) > l}.

Then Dl
ν = Bl

ν,ε ∪ Cl
ν,ε where

Bl
ν,ε = {x ∈ Dl

ν : dist(Φi(uν(x)), R∞i ) < ε},
Cl

ν,ε = {x ∈ Dl
ν : dist(Φi(uν(x)), R∞i ) ≥ ε}.

It suffices to prove that both expressions:

I l
ε = lim sup

ν→∞

∫
Bl

ν,ε

f(uν(x))µ(dx) and II l
ε = lim sup

ν→∞

∫
Cl

ν,ε

f(uν(x))µ(dx)

can be arbitrary small if we take l is large enough. Let us take an arbitrary
δ > 0. Using assumption (b) we find ε = ε0 small enough, so that I l

ε0
< δ. The

second expression vanishes for k large enough. Indeed, let us define

Ai
ε = {λ ∈ Ai: dist(Φi(λ), R∞i ) ≥ ε}.

We show that there exists a constant Cε such that

(4.4) g(λ) ≤ Cε if λ ∈ Ai
ε.

To see that we use the continuity of the function χ̃Ai
extending the mapping

1/g(Φ−1
i (λ)): Φi(Ai) → R to γAi and prove by contradiction that there exists the
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number Lε > 0 such that G(m) ≥ Lε for every m ∈ {m ∈ γAi: dist(m,R∞i ) ≥ ε}.
This gives (4.4). Let us define

El
ε = {λ ∈ Ai : f(λ) > l, dist(Φi(λ), R∞i ) ≥ ε}.

The condition (4.4) implies that for every λ ∈ El
ε we have

l < f(λ) ≤ ‖f/g‖L∞(Ai)g(λ) ≤ Cε‖f/g‖L∞(Ai) := bε.

Therefore El = ∅ and also Cl
ν,ε = ∅ for every ν if we take l > bε. Therefore

II l
ε0

= 0 for every l > bε0 and property (a) follows.
(a) ⇒ (b) Continuity of the function χ̃Ai

(defined on γAi) implies the fol-
lowing condition:

for all l ∈ N there exists εl > 0 such that

for all λ ∈ Ai if dist(Φi(λ), R∞i ) < εl then g(λ) > l.

We may assume that the sequence {εl}l∈N defined above converges to 0 as l →∞.
Let us denote

Bl = {λ ∈ Ai : dist(Φi(λ), R∞i ) < εl}.

Then Bl ⊆ {λ ∈ Ai : g(λ) > l} := Cl. Therefore

(4.5) Ai
εl

=
∫
{x:uν(x)∈Bl}

f(uν(x))µ(dx) ≤
∫
{x:uν(x)∈Cl}

f(uν(x))µ(dx)

and Chebyshev inequality yields

sup
ν

µ({x : uν(x) ∈ Cl}) ≤ sup
ν

µ({x ∈ Ω : g(uν(x)) > l})

≤ 1
l

sup
ν

∫
Ω

g(uν)µ(dx) l→∞−−−→ 0.

Uniform integrability condition for the sequence {f(uν)}ν∈N implies that the
supremum over ν on the right hand side of (4.5) converges to 0 as l → ∞ and
property (4.2) follows.

(c)⇔ (b) Denote by B the left hand side in (4.3). Let hε:Ai → [0, 1] be
defined by

hε(λ) =


0 if dist(Φi(λ), R∞i ) > ε,

−2ε−1dist(Φi(λ), R∞i ) + 2 if dist(Φi(λ), R∞i ) ∈ [ε/2, ε],

1 if dist(Φi(λ), R∞i ) < ε/2,

and consider

fε(λ) = f(λ)hε(λ)χAi(λ).
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Then fε ∈ F and according to Theorem 2.4 the sequence {fε(uν(x))µ(dx)}ν∈N

converges weakly ∗ in measures to the measure

Bε(dx) =
∫

int Ai

fε(λ)µx(dλ)µ(dx)

+
∫

∂Ai∩Ai

fε(λ)νi
x(dλ)pi(x)µ(dx) +

∫
γAi\Ai

f̃ε(λ)νi
x(dλ)mi(dx),

where f̃ε ∈ C(γAi) is the unique continuous extension of (fε/g) ◦ Φ−1
i defined

on Φi(Ai) and mi(dx) = pi(x)µ(dx). Note that

hε(λ) ≤ χ{λ∈Ai:dist(Φi(λ),R∞i )<ε} ≤ h2ε(λ).

Therefore for µ-almost every x

fε(uν(x)) ≤ (fχ{λ∈Ai:dist(Φi(λ),R∞i )<ε})(uν(x)) ≤ f2ε(uν(x)).

After integrating this over Ω and letting ν →∞ we get Bε(Ω) ≤ Ai
ε ≤ B2ε(Ω).

Now we let ε → 0 and observe that

fε → 0, fε ≤ f and f̃ε → f̃iχR∞i
, f̃ε ≤ ‖f̃i‖L∞(γAi).

Lebesgue Dominated Convergence Theorem yields

lim
ε→0

Ai
ε = lim

ε→0
Bε(Ω) =

∫
Ω

∫
R∞i

f̃iνx(dλ)m(dx) = B.

The above identity shows that (a) is equivalent to (c). �

As an immediate corollary we obtain the following result.

Corollary 4.2. Let the assumptions of Theorem 4.1 be satisfied. Then the
following conditions are equivalent to each other:

(a) The sequence {g(uν)}ν∈N is weakly compact in L1(Ω, µ).
(b) For every i ∈ {1, . . . , k} and for mi-almost all x we have νi

x(R∞i ) = 0
and mi is absolutely continuous with respect to µ.

Proof. We plug f = g in Theorem 4.1 and use part (a) of Theorem 2.8. �

Remark 4.3. In the case k = 1 (i.e. A1 = Rm) when Rm is compactified
by adding the sphere and g(λ) = 1 + |λ| the result was was obtained in part (ii)
in Theorem 2.9 in [1]. For k = 1 and an arbitrary compactification of Rm with
g(λ) = 1 + |λ|p, 1 ≤ p < ∞ this is Lemma 3.2.14 in [27]. The other cases were
not discussed.
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5. The oscillation effects

Our goal now is to obtain the following generalization of Young’s theorem.

Theorem 5.1. Suppose that Ω ⊆ Rn is the compact set equipped with the
Radon measure µ and Assumption A2 with bricks {Ai} and density function g

on Rm is satisfied. Assume further that there is given the sequence {uν}ν∈N of
µ-measurable functions, uν : Ω → Rm such that

sup
ν

∫
Rm

g(uν)µ(dx) < ∞ and uν(x) → L in a measure µ,

where L ⊆ Rm is given closed subset. Then there exist

(a) a subsequence of {uν}ν∈N denoted by the same expression,
(b) the functions pi(x), qi(x) ∈ L1(µ) where i ∈ {1, . . . , k},
(c) families of probability measures {µx}x∈Ω ∈ P(Ω, Rm, µ), {νi

x}x∈Ω ∈
P(Ω, ∂Ai∩Ai, µ) and {νi

x}x∈Ω ∈ P(Ω, γAi \Ai, µ) where i ∈ {1, . . . , k},

such that if f ∈ F and the sequence {f(uν(x))}ν∈N is weakly compact in L1(Ω, µ)
then it weakly converges in L1(Ω, µ) to

(5.1) f(x) =
k∑

i=1

( ∫
L∩int Ai

f(λ)µx(dλ)

+ pi(x)
∫

L∩∂Ai∩Ai

f(λ)νi
x(dλ) + qi(x)

∫
Xi

f̃i(λ)νi
x(dλ)

)
,

where f̃i is defined by (2.3), Xi = Rb
i \

⋃
ε>0 Φi(Lc

ε ∩Ai), Lε = {x ∈ Rm :
dist(x, L) ≤ ε}. Moreover, the measures {µx}x∈Ω, {νi

x}x∈Ω and {νi
x}x∈Ω are the

same as that in Theorem 2.4 and the measures mi and mi in Theorem 2.4 are
linked with pi, qi by:

mi = pi(x)µ, mi = qi(x)µ + mi
s,

where mi
s is the singular part in the Lebesgue’s–Nikodym decomposition of mi.

Proof. Let f ∈ F and assume at first that the sequence {f(uν)}ν∈N is
weakly compact in L1(Ω, µ). Using Theorem 2.4 we may extract the subsequence
(also denoted by {uν}ν∈N) such that {f(uν)µ(dx)}ν∈N converges weakly ∗ in the
space of measures to the measure

M =
k∑

i=1

( ∫
int Ai

f(λ)µx(dλ)µ(dx) +
∫

∂Ai∩Ai

f(λ)νi
x(dλ)mi(dx)

+
∫

γAi\Ai

f̃i(λ)νi
x(dλ)mi(dx)

)
=

k∑
i=1

(Ai + Bi + Ci).

It suffices to show that M = fµ.
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As mi is absolutely continuous with respect to µ, it represents as

(5.2) mi = pi(x)µ,

with some pi ∈ L1(Ω, µ). Let us assume that L 6= Rm and define

V i
r,s = Rm \ L1/s−1/r = Lc

1/s−1/r for r > s.

We easily check that V
i

r+1,s ⊆ V i
r,s. Moreover, the condition uν → L in a measure

implies that for every i ∈ {1, . . . , k} and for every r, s ∈ N such that r > s

lim
ν→∞

µ({x : uν(x) ∈ Vr,s ∩Ai}) = 0.

This and uniform integrability of the sequence {f(uν)}ν∈N implies

Bi
r = lim

ν→∞

∫
{x∈Ω:uν(x)∈Vr,s∩Ai}

|f(uν(x))|µ(dx) = 0 as r →∞.

According to parts (a) and (b) of Theorem 3.1, for

Ps :=
⋂

r:r>s

V i
r,s = {x ∈ Rm : dist(x, L) ≥ 1/s}

and every i ∈ {1, . . . , k}

(5.3)

∫
Ps∩(

S
i int Ai)

|f(λ)|µx(dλ) = 0, for µ-almost all x,∫
Ps∩∂Ai∩Ai

|f(λ)|νi
x(dλ) = 0 for mi-almost all x.

As
⋃

s Ps = Rm \ L, we can substitute

Ai =
∫

L∩int Ai

f(λ)µx(dλ)µ(dx) and Bi = pi(x)
∫

L∩∂Ai∩Ai

f(λ)νi
x(dλ)µ(dx).

The above identities remain valid also if L = Rm. Now we deal with the expres-
sion Ci. Using Theorem 4.1 we recognize that, for every i ∈ {1, . . . , k},( ∫

R∞i

|f̃i|(λ)νi
x(dλ)

)
mi(dx) = 0.

Therefore

Ci =
( ∫

Rb
i

f̃i(λ)νi
x(dλ)

)
mi(dx).

The statement (a) in Theorem 2.8 asserts that for mi
s almost all x the measure

νi
x is supported in R∞i . Therefore

Ci = qi(x)
( ∫

Rb
i

f̃i(λ)νi
x(dλ)

)
µ(dx),

where qi ∈ L1(Ω, µ) is such that

(5.4) mi = qiµ + mi
s
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in the Lebesgue’s–Nikodym decomposition of mi. Let

Ks
i =

⋂
r:r>s

Φi(V i
r,s ∩Ai).

Theorem 3.3 implies that for every i = 1, . . . , k and mi-almost all x∫
Ks

i ∩Ri
b

|̃f |i(λ)νi
x(dλ) = 0.

Consequently

(5.5)
∫
S

s Ks
i ∩Ri

b

|̃f |i(λ)νi
x(dλ) = 0,

for mi-almost all x, whenever i ∈ {1, . . . , k}. Therefore

Ci = qi(x)
( ∫

eXi

f̃i(λ)νi
x(dλ)

)
µ(dx),

where
X̃i = Rb

i \
⋃
s

⋂
r:r>s

Φi(Lc
1/s−1/r ∩Ai).

Inequalities 1/(s(s + 1)) ≤ 1/s− 1/r ≤ 1/s satisfied for every r > s imply

Φi(Lc
1/(s(s+1)) ∩Ai) ⊇ Φi(Lc

1/s−1/r ∩Ai) ⊇ Φi(Lc
1/s ∩Ai).

Therefore for Y =
⋃

ε>0 Φi(Lc
ε ∩Ai) we get

Y =
⋃
s

Φi(Lc
1/(s(s+1)) ∩Ai)(5.6)

⊇
⋃
s

⋂
r:r>s

Φi(Lc
1/s−1/r ∩Ai) ⊇

⋃
s

Φi(Lc
1/s ∩Ai) = Y.

Hence X̃i = Rb
i \ Y = Xi, which implies (5.1). The last statement follows from

(5.2) and (5.4). �

Remark 5.2. The set Xi consists of elements x ∈ Rb
i that if {yl}l∈N ⊆ Ai

is such that Φi(yl) → x as l →∞, then limit of {yl}l∈N belongs to L∩Ai. From
the very definition of Rb

i every such a sequence {yl}l∈N is bounded. Therefore
according to the condition (2.2) the limit of {yl}l∈N exists.

Our next result deals with supports of the resulting measures, provided that
the given sequence converges to the closed set L in the measure.

Theorem 5.3. Let the assumptions of Theorem 5.1 be satisfied and the quan-
tities {µx}x∈Ω, {νi

x}x∈Ω, {νi
x}x∈Ω, pi, qi and Xi be as in its statement. Then

we have

(a) suppµx ⊆ L for µ-almost every x;
(b) supp νi

x ⊆ L ∩ ∂Ai ∩Ai for pi(x)µ almost every x;
(c) supp νi

x ⊆ (Xi ∩Rb
i ) ∪R∞i for qi(x)µ-almost every x.
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Proof. The first statement is the known property of Young measures (see
e.g. Theorem 1 in [12]). To prove the second statement we recognize that the
function f ≡ 1 belongs to F and for that the sequence {f(uν)} is weakly compact
in L1(Ω). Taking into account (5.3) applied with f ≡ 1 we get νi

x((∂Ai∩Ai)\L) =
0 for mi almost every x, which implies the thesis. To prove the last statement
we deduce from (5.5) and (5.6) that∫

Rb
i\Xi

|f̃i|(λ)νi
x(dλ) = 0,

for every i = 1, . . . , k and for mi-almost every x, if only {f(uν)} is weakly
compact in L1(Ω). We substitute f ≡ 1 and note that for that f the function
f̃i = 1/g ◦ Φ−1

i is strictly positive on Rb
i . Therefore νi

x(Rb
i \Xi) = 0 for mi-almost

every x, in particular also for qi(x)µ-almost every x. �

6. Illustrations

In this section we illustrate Theorems: 2.4, 3.1–3.3, 4.1, 5.1 and 5.3 on
examples. We start with the illustration of Theorem 2.4.

Example 6.1 (Illustration of Theorem 2.4). Let k = 2, m = 2, A1 =
R2 \ {(0, 0)}, A2 = {(0, 0)}, Φ1(x) := x/(1 + |x|), Φ2(x) = x. In particular
Φ1: R2 \{(0, 0)} → B(1) ⊆ R2 is an embedding into a unit ball: γA1 = B(1) and
γA1 \A1 = S1 ∪ {(0, 0)} is the reminder (where S1 is the unit sphere in R2).

Consider Ω = [0, 1], let µ = dx be the Lebesgue measure and g(λ) = 1 + |λ|.
Define the sequence uν : Ω → R2 by the formulae:

(6.1) uν(x) =



−νe1 for x ∈
[
0,

1
1 + ν

)
,

νe1 for x ∈
[

1
1 + ν

,
2

1 + ν

)
,

1
ν

e1 for x ∈
[

2
1 + ν

, 1
]
.

Let us compute the resulting measures

{µx}x∈Ω, (mi, {νi
x}x∈Ω), (mi, {νi

x}x∈Ω)

generated by the sequence where i = 1, 2. We start with the computation of the
Young measure {µx}x∈Ω. An easy computation gives that for every g ∈ L1(0, 1)
and f ∈ C0(R2) we have∫

[0,1]

g(x)f(uν(x)) dx =
∫

[0,1/(1+ν))

g(x)f(−νe1) dx

+
∫

[1/(1+ν),2/(1+ν))

g(x)f(νe1) dx +
∫

[2/(1+ν),1]

g(x)f
(

1
ν

e1

)
dx.
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This converges to
∫
[0,1]

g(x)f((0, 0)) dx, whatever g and f we take. We conclude
that

(6.2) µx = δ(0,0) (Dirac delta concentrated at (0, 0)), for every x ∈ [0, 1].

To proceed further we need to explain the structure of set F in Assumption A1.
As Φ−1

1 (y) = y/(1− |y|), we need to explain when the function

f̃1(y) = f

(
y

1− |y|

)
(1− |y|):B(1) \ {(0, 0)} → R

has continuous extension to B(1). At first we note that the extension of this
function to zero is equivalent to the fact that f |R2\{(0,0)} has limit at (0, 0).
Moreover, the radial limits at ∞: limt→∞ f(tθ)/t =: f∞(θ) exist and define the
continuous function on the sphere S1.

Now we compute the resulting measures for i = 1. For this we proceed
similarly as in Example 3.1 in [15]. As ∂A1 ∩ A1 = ∅, it follows that measures
m1, ν1

x will not appear in the representation formulae (2.5). Let us take an
arbitrary h ∈ C([0, 1]) and f ∈ F such that f((0, 0)) = 0. Then we have

Iν =
∫

[0,1]

h(x)f(uν(x)) dx

=
∫

[0,1/(1+ν))

h(x)f(−νe1) dx +
∫

[1/(1+ν),2/(1+ν))

h(x)f(νe1) dx

+
∫

[2/(1+ν),1]

h(x)f
(

1
ν

e1

)
dx =: Iν

1 + Iν
2 + Iν

3 .

As f = (f/g) · g and g(−νe1) = 1 + ν =: 1/kν , we compute that

Iν
1 =

f(Φ−1
1 (zν))

g(Φ−1
1 (zν))

1
kν

∫
[0,kν)

h(x) dx = f̃1(zν)−
∫

[0,kν)

h(x) dx,

where zν = −νe1/(1 + ν) = Φ1(−νe1) → −e1 as ν → ∞ (here symbol –
∫

A

denotes the barintegral over A). By the continuity of the function f̃1 we get
Iν
1 → f̃1(−e1)h(0) as ν →∞.

By similar arguments

Iν
2 = f̃1(wν)−

∫
[kν ,2kν)

h(x) dx
ν→∞−−−→ f̃1(e1)h(0), where wν =

νe1

1 + ν

ν→∞−−−→ e1,

Iν
3 = f̃1(rν)

(
1 +

1
ν

) ∫
[2kν ,1]

h(x) dx
ν→∞−−−→ f̃1((0, 0))

∫
[0,1]

h(x)dx,

where rν =
(1/ν)e1

1 + 1/ν

ν→∞−−−→ (0, 0).
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Therefore

(6.2) Iν ν→∞−−−→ f̃1((0, 0))
∫

[0,1]

h(x) dx + h(0)(f̃1(−e1) + f̃1(e1)) := I

According to Theorem 2.6

I =
∫

[0,1]

h(x)
( ∫

R2\{(0,0)}
f(λ)µx(dλ)

)
dx(6.4)

+
∫

[0,1]

h(x)
( ∫

S1∪{(0,0)}
f̃1(λ)ν1

x(dλ)
)

m1(dx)

=
∫

[0,1]

h(x)
( ∫

S1∪{(0,0)}
f̃1(λ)ν1

x(dλ)
)

m1(dx),

where the last equation follows from (6.2). Taking into account (6.3) and (6.4)
we get

(6.5) f̃1((0, 0))
∫

[0,1]

h(x) dx + 2h(0)
1
2

(
f̃1(−e1) + f̃1(e1)

)
=

∫
[0,1]

h(x)
( ∫

S1∪{(0,0)}
f̃1(λ)ν1

x(dλ)
)

m1(dx),

no matter what f ∈ F (such that f((0, 0)) = 0) and h ∈ C([0, 1]) we take. This
allows to define ν1

x uniquely. Namely, taking f = gχA1 , we recognize that f̃1 ≡ 1,
so the left hand side above reads as

∫
[0,1]

h(x) dx + 2h(0), while the right hand
side is the same as

∫
[0,1]

h(x)m1(dx). This and (6.5) implies

(6.6)

m1(dx) = dx + 2δ(0),

ν1
x = δ(0,0) for L1 almost all x ∈ (0, 1],

ν1
0 =

1
2
δe1 +

1
2
δ−e1 .

Now let us compute the measures: (m2, {ν2
x}x∈Ω), (m2, {ν2

x}x∈Ω) generated by
{uν}ν∈N. This case is simpler. As intA2 = ∅ and γA2 \ A2 = ∅, only the
measures: ν2

x and m2 = p2(x) dx can appear in the representation formulae.
Moreover, ∂A2 ∩ A2 = {(0, 0)}, therefore we get: ν2

x = δ(0,0). But p2 ≡ 0.
Indeed, the limit of {χ{uν∈A2} dx} equals 0 in the space of measures, as the set
{uν ∈ A2} is empty. At the same time by Theorem 2.4 it is the same as( ∫

∂A2∩A2

χA2ν
2
x(dλ)

)
p2(x) dx =

( ∫
{(0,0)}

χ(0,0)δ(0,0)(dλ)
)

p2(x)dx = p2(x) dx.

Therefore we have

(6.7) ν2
x = δ(0,0), p2 ≡ 0 almost everywhere.

All our remaining examples will be based on the model presented in Exam-
ple 6.1.
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Example 6.2 (Illustration of Theorem 3.1). We consider the same sequence
as discussed in Example 6.1. Let us fix i = 1 and consider the family of open
sets:

V r := {x = (x1, x2) ∈ R2 : x1 > r} ∪ {x ∈ R2 : |x| < 1/r}.

According to the notation in Theorem 3.1 we have P = {(0, 0)} and P ∩ intA1 =
∅ = ∂A1 ∩ A1. In particular the conditions (a) and (b) in its formulation are
trivially satisfied whatever sequence we chose. Now we discuss condition (c)
for our sequence. As K0

1 = {(0, 0)} ∈ γA1 \ A1, we deduce from (6.6) that
ν1

x(K0
1 ∩ (γA1 \ A1)) = 1 for L1 almost every x ∈ [0, 1]. Therefore condition (c)

in Theorem 2.6 does not hold. In particular it is not true that∫
K0

1∩(γA1\A1)

|f̃1(λ)|ν1
x(dλ) = 0 m1-almost everywhere,

for every f ∈ F as it is not true for f = g.
Moreover, direct computation shows that for the given r and sufficiently big

ν we have

(6.8) {x : uν(x) ∈ A1 ∩ V r} =
[

1
1 + ν

, 1
]
.

Therefore according to the notation in Theorem 2.6 the expression

A1
r = lim sup

ν→∞

∫
{x:uν(x)∈A1∩V r}

g(uν(x)) dx

= lim sup
ν→∞

( ∫
[1/(1+ν),2/(1+ν))

(1 + ν) dx +
∫

[2/(1+ν),1]

(
1 +

1
ν

)
dx

)
= 2

does not converge to 0 as r → ∞. The assumption (2.6) in Theorem 2.6 is not
satisfied.

We show how to chose f ∈ F admitted to (3.1). From (6.1) and (6.8) we get

B1
r = lim

ν→∞

∫
{x:uν(x)∈A1∩V r}

|f(uν(x))| dx

= lim
ν→∞

∫
[1/(1+ν),2/(1+ν))∪[2/(1+ν),1]

|f(uν(x))| dx

= lim
ν→∞

(
|f |(νe1)
g(νe1)

+
∣∣∣∣f(

1
ν

e1

)∣∣∣∣(1− 2
1 + ν

))
= |f̃1(e1)|+ |f̃1(0)|.

Consequently,

(6.9) lim
r→∞

B1
r = 0 if and only if f̃1(e1) = f̃1((0, 0)) = 0.
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The above implies

0 = |f̃1((0, 0))|ν1
x({(0, 0)}) =

∫
{(0,0)}

|f̃1(λ)|ν1
x(dλ)

=
∫

K0
1∩(γA1\A1)

|f̃1(λ)|ν1
x(dλ).

This illustrates part (c) in Proposition 3.1.

Example 6.3 (Illustration of Theorem 3.2). We consider the same sequence
and admitted function as in Example 6.1. One easily shows that the topological
condition (3.2) is satisfied. Moreover, K1 = {(0, 0)} ∪ {e1}. Therefore if f

satisfies (3.1) we get from (6.9) that∫
K1∩(γA1\A1)

|f̃1(λ)|ν1
x(dλ) = |f̃1((0, 0))|ν1

x({(0, 0)}) + |f̃1(e1)|ν1
x({e1}) = 0

as we have claimed. Note that the statement is not true with f substituted by
g (see (6.6)).

Example 6.4 (Illustration of Theorem 3.3). We study the same model as
before and start with the verification of Assumption A2. For this, we have to
verify if the function

Gi =
1

1 + |Φ−1
i (λ)|

: Φ1(Ai) → R

has the unique continuous extension to γAi. As A2 = Φ2(A2) is just one point
there is nothing to check (the reminder is empty). Let us deal with case i = 1. We
have Φ−1

1 (y) = y/(1− |y|), so that G1(y) = 1−|y|:B(1)\{(0, 0)} = Φ1(A1) → R
has a continuous extension to γA1 = B(1). Moreover,

(6.10) R∞1 = G−1
1 (0) = S1, Rb

1 = (S1 ∪ {(0, 0)}) \ S1 = {(0, 0)}.

As we have verified in (6.9) the function f ∈ F satisfies (3.1) provided that
f̃1(e1) = f̃1((0, 0)) = 0. Moreover, K1 = {(0, 0)} ∪ {e1} and K1 ∩Rb

1 = {(0, 0)}.
Therefore the statement of Theorem 3.3 holds.

We are now to illustrate conditions (4.2) and (4.3) in Theorem 4.1.

Example 6.5 (Illustration of Theorem 4.1). We consider the sequence from
Example 6.1. At first we note that the sequence {1 + |uν |}ν∈N is not compact in
L1(Ω). Indeed, for an arbitrary ε > 0 and the sufficiently big ν∫

[0,ε)

(1 + |uν |) dx ≥ ε +
∫

[0,1/(1+ν))

ν dx = ε +
ν

1 + ν

ν→∞−−−→ ε + 1,

therefore the equintegrability condition is not satisfied. Let us verify the validity
of the condition (4.2) equivalent to the fact that the sequence {f(uν)} is weakly
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compact in L1(Ω). For i = 1 we have R∞1 = S1 (as computed in previous
example) and

lim
ε→0

A1
ε = lim

K→∞
lim

ν→∞

∫
{x∈Ω:|uν(x)|>K}

|f(uν(x))| dx

= lim
ν→∞

∫
[0,2/(1+ν))

|f(uν(x))| dx

= lim
ν→∞

|f(−νe1)|
1

1 + ν
+ |f(νe1)|

1
1 + ν

= |f̃(−e1)|+ |f̃(e1)|.

Hence condition (4.2) for i = 1 is equivalent to the fact that f̃(−e1) = f̃(e1) = 0.
For i = 2 it is trivially satisfied (set {uν ∈ A2} is empty). Now we verify the
condition (4.3). When i = 2 it is trivially satisfied (R∞2 = ∅) while when i = 1
we have R∞1 = S1 and according to (6.6) we have∫

Ω

∫
R∞1

|f̃1(λ)|ν1
x(dλ)m1(dx) =

∫
Ω

∫
S1
|f̃1(λ)|ν1

x(dλ)(dx + 2δ0)

=
∫

Ω

∫
S1
|f̃1(λ)|δ(0,0)(dλ)dx + 2

∫
S1
|f̃1(λ)|ν1

0(dλ) == |f̃1(−e1)|+ |f̃1(e1)|.

We see that the conditions (4.2) and (4.3) are equivalent. Direct computation
shows that their validity is equivalent to the weak compactness in L1(Ω) of the
sequence {f(uν)}.

Example 6.6 (Illustration of Theorem 5.1). We consider the sequence from
Example 6.1. It is clear that uν → {(0, 0)} := L in the measure. Measures
{µx}x∈Ω, (mi, {νi

x}x∈Ω), (mi, {νi
x}x∈Ω) (where i = 1, 2) have already been con-

structed in Example 6.1. Assume now that the sequence {f(uν)} is weakly
compact in L1(Ω). By previous example this is equivalent to the fact that
f̃1(e1) = f̃1(−e1) = 0, but we will not use this fact here. Theorem 5.1 asserts
that {f(uν)} weakly converges in L1(Ω) to

f(x) =
2∑

i=1

( ∫
L∩int Ai

f(λ)µx(dλ) + pi(x)
∫

L∩∂Ai∩Ai

f(λ)νi
x(dλ)

+ qi(x)
∫

Xi

f̃i(λ)νi
x(dλ)

)
:=

2∑
i=1

(Ii).

Let us compute X1. It is clear that Lε = {x ∈ R2 : |x| < ε} and so Lc
ε = {x ∈

R2 : |x| ≥ ε} = Lc
ε ∩ A1, Φ1(Lc

ε ∩ A1) = {x ∈ B(1) : ‖x‖ ≥ ε/(1 + ε)} ⊆ R2.
Therefore Y :=

⋃
ε>0 Φ1(Lc

ε ∩A1) = B(1) \ {(0, 0)}. By (6.10) we have Rb
1 =

{(0, 0)}, which gives

(6.11) X1 = Rb
1 \ Y = {(0, 0)}.
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Moreover, the formulae (6.6) implies q1(x) ≡ 1, and therefore (as L ∩ intA1 = ∅
and ∂A1 ∩A1 = ∅)

I1 = q1(x)
∫

X1
f̃1(λ)ν1

x(dλ) =
∫

(0,0)

f̃1(λ)δ(0,0)(dλ) = f̃1((0, 0)).

Now we compute I2. Obviously, only the second term:

p2(x)
∫

L∩∂A2∩A2

f(λ)ν2
x(dλ)

appears in decomposition. It is zero, as we have shown in (6.7) that p2 ≡ 0. We
get: I2 = 0.

We have verified using Theorem 5.1 that if the sequence {f(uν)} is weakly
compact in L1(Ω) then its weak limit equals f̃1((0, 0)) = limλ→(0,0),λ6=(0,0) f(λ),
in particular it is the constant function.

This can be verified directly, without the use of an advanced Young mea-
sure theory, as we show below. For this purpose, let us decompose: f(uν) =
f(uν)χ{uν>ε} + f(uν)χ{uν≤ε}, take an arbitrary g ∈ L∞(Ω) and compute the
limits of

Aν
ε =

∫
Ω

g(x)f(uν(x))χ{uν(x)>ε} dx and Bν
ε =

∫
Ω

g(x)f(uν(x))χ{uν(x)≤ε} dx

separately as ν → ∞. The function inside the integral in Aν
ε converges to 0 in

a measure and is dominated by ‖g‖L∞(Ω)|f(uν(x))| forming an equiintegrable
sequence. Lebegue’s Dominated Convergence Theorem implies that Aν

ε → 0 as
ν →∞. For fixed ε and the sufficiently big ν the second term equals

Bν
ε =

∫
[2/(1+ν),1]

g(x)f(
1
ν

e1) dx
ν→∞−−−→

∫
[0,1]

g(x)f̃1((0, 0)) dx.

This shows by another methods that the weakly compact sequence {f(uν)} con-
verges weakly in L1(Ω) to the constant function: f̃1((0, 0)).

Our last goal is to illustrate the last result.

Example 6.7 (Illustration of Theorem 5.3). We deal with the sequence from
Example 6.1. As computed in (6.6) we have µx = δ(0,0) and L = {(0, 0)} so
indeed µx is supported in L as we have claimed in the first statement. To
comment part (b) of the statement we observe that the measures ν1

x will not
appear in Theorem 2.4. Moreover, according to (6.7) the measure p2(x) dx is
zero, so that all the interval [0, 1] is of measure 0 and we have nothing to check.
However, ν2

x = δ(0,0) is supported in L ∩ ∂A2 ∩A2 = {(0, 0)}.
To deal with the last statement we use the formulae (6.6) which gives q1 ≡

1 while q2 is an empty object (as γA2 \ A2 = ∅). Using again (6.6) we get
ν1

x = δ(0,0) for L1 almost every x. According to (6.10) and (6.11) we have
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Z := (X1 ∩ Rb
1) ∪ R∞1 = {(0, 0)} ∪ S1, therefore ν1

x is supported in Z for L1

almost every x as claimed in the last statement of the theorem.
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