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A MULTIPLICITY RESULT
FOR A SEMILINEAR MAXWELL TYPE EQUATION

Antonio Azzollini

Abstract. In this paper we look for solutions of the equation

δdA = f ′(〈A,A〉)A in R2k,

where A is a 1-differential form and k ≥ 2. These solutions are critical
points of a functional which is strongly indefinite because of the presence

of the differential operator δd. We prove that, assuming a suitable convexity
condition on the nonlinearity, the equation possesses infinitely many finite

energy solutions.

1. Introduction

It is well known that the Maxwell equations in the empty space, written by
the differential forms language, are the Euler–Lagrange equations of the following
action functional

(1.1) S =
∫

R4
〈dη, dη〉 σ.

Here

η =
3∑

i=1

Aidx
i + ϕdt, Ai, ϕ: R4 → R,
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is the gauge potential 1-form in the space-time R4, dη denotes the exterior de-
rivative of η, σ is the volume form, and for any differential form γ

〈γ, γ〉 := ∗(∗γ ∧ γ)

where ∗ is the Hodge operator with respect to the Minkowski metric in R4.
According to the classical theory of the electrodynamics, when the electro-

magnetic field is generated by an assigned source j (e.g. a particle matter), then
the action functional becomes

S =
∫

R4
(〈dη, dη〉 − 〈j, η〉)σ.

When instead the source of the field is not assigned but it is an unknown of
the problem, then there are two opposite mathematical models describing the
interaction between the electromagnetic field and its source: the dualistic model
and the unitarian model.

The dualistic model consists in coupling the Maxwell equation with another
field equation describing the dynamics of the source that is represented by a
travelling solitary wave (i.e. a solution of a field equation whose energy density
travels as a localized packet). This approach has been analyzed in many papers
and several existence and multiplicity results have been obtained (see e.g. [8],
[12]–[14]).

More recently, an unitarian field theory has been introduced by Benci and
Fortunato [6], following an idea from Born and Infeld (see [11]). According to this
theory (we refer to [6] and [7] for more details), electromagnetic field and matter
field are both expression of only one physical entity, and the interaction between
them is described by introducing a nonlinear Poincaré invariant perturbation in
the Maxwell Lagrangian in the empty space.

Following this new unitarian theory, we perturb the Lagrangian in (1.1)
adding a nonlinear term and obtaining the modified action functional

S =
∫

R4
(〈dη, dη〉 − f(〈η, η〉))σ

where f : R → R. The Euler–Lagrange equation is the following nonhomogeneous
Maxwell equation

(1.2) δdη = j(η)

where j(η) = f ′(〈η, η〉)η and δ = ∗d∗. The 1-form j representing the source
depends itself on the gauge 1-form η, so the equation (1.2) describes the dynamics
of the electromagnetic field in presence of an auto-induction phenomenon.

From now on, we will refer to (1.2) as the semilinear Maxwell equation (SME).
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In [3] the equation (1.2) has been considered in the magnetostatic case,
namely when it has the form

(1.3) δdA = f ′(〈A,A〉)A

where

A =
3∑

i=1

Ai dx
i, Ai: R3 → R,

and the metric on R3 is the euclidean one. In that paper a solution A, with
the property δA = 0, has been found. In [2], ignoring the physical origin of
the problem, the equation (1.3) has been studied in the more general context of
the k-forms on a n-Riemannian manifold M , and a multiplicity result has been
proved when M is compact.

In the same spirit of that paper, here we consider the problem just from a
mathematical point of view, looking for solution of

(1.4)


δdA = f ′(〈A,A〉)A,

A =
n∑

i=1

Aidx
i, Ai: Rn → R

where we consider Rn endowed with the euclidean metric. In the sequel we often
will use the notation A to denote also the vector field (A1, . . . , An).

Actually, equation (1.4) is the natural extension to the 1-forms of the well-
known scalar field equation with

−∆u = f ′(u2)u.

In fact, if we denote by Λ0(Rn) the set of the scalar fields on Rn, we have

ker(δ|Λ0) = Λ0(Rn)

and then the operator δd coincides with the Laplace–Beltrami operator.
Now we are going to introduce the main result of this paper. Consider n ≥ 1

even and denote by Λ1(Rn) the set of the 1-forms on Rn with compact support
and by T the group of transformations on Rn so defined:

(1.5) g ∈ T if and only if g ∈ O(n) and there exists (gi)1≤i≤n/2 in O(2) such
that

g =


g1 0 · · · 0
0 g2 · · · 0
...

...
. . .

...
0 0 · · · gn/2


where O(n) and O(2) are respectively the orthogonal groups in Rn and R2.

Moreover, denote by ( · | · ) the scalar product on Rn and assume that

(f1) f ∈ C1(R,R), f(0) = 0, for all t ≥ 0 such that f ′(t) ≥ 0,



86 A. Azzollini

and for 2 < p < 2∗ < q, with 2∗ = 2n/(n− 2),

(f2) there exists c1 > 0 such that for all x, y ∈ Rn

f((x|x))− f((y|y))− 2f ′((y|y))(y|x− y)

≥ c1 min((x− y|x− y)p/2, (x− y|x− y)q/2),

(f3) there exists c2 > 0 such that |f ′(t)| ≤ c2 min(tp/2−1, tq/2−1), for all
t ≥ 0,

(f4) there exists R > 0 and α > 2 such that 0 < (α/2)f(t) ≤ f ′(t)t, for all
t ≥ R.

The main result of this paper is the following

Theorem 1.1. Let n ≥ 4 be even and assume that f satisfies (f1)–(f4).
Then there exist infinitely many nontrivial weak solutions of (1.4). Moreover,
these solutions have the following particular symmetry:

A(x) = g−1A(gx), for all g ∈ T.

In the sequel we will assume (f1)–(f4) holding.

Remark 1.2. Set g(x) = f(x2) and suppose f ∈ C2(R,R). Observe that by
(f1) and (f3) we deduce g′′(0) = 0, and then we find the so called “zero mass”
case. This case has been dealt with by Berestycki and Lions [9], [10] and more
recently by Pisani [17], for the scalar version of the equation (1.2)

−∆u = f ′(u2)u.

Remark 1.3. For every x ∈ Rn we can define the scalar product 〈 · , · 〉x on
the vector space Λ1(Rn). The assumption (f2) is a condition on the convexity of
the functional

Ix(ξ) = f(〈ξ, ξ〉x).

In fact, if we take ξ, ψ ∈ Λ1(Rn), λ ∈ ]0, 1[ and set η = λξ+ (1−λ)ψ, by (f2) we
have

(1.6) λ(f(〈ξ, ξ〉x)− f(〈η, η〉x)− 2f ′(〈η, η〉x)〈η, ξ − η〉x)

≥ λc min(〈ξ − η, ξ − η〉p/2
x , 〈ξ − η, ξ − η〉q/2

x ) > 0

and

(1.7) (1− λ)(f(〈ψ,ψ〉x)− f(〈η, η〉x)− 2f ′(〈η, η〉x)〈η, ψ − η〉x)

≥ (1− λ)c min(〈ψ − η, ψ − η〉p/2
x , 〈ψ − η, ψ − η〉q/2

x ) > 0

Since
λf ′(〈η, η〉x)〈η, ξ − η〉x + (1− λ)f ′(〈η, η〉x)〈η, ψ − η〉x = 0,

adding (1.6) to (1.7) we obtain

λf(〈ξ, ξ〉x) + (1− λ)f(〈ψ,ψ〉x)− f(〈η, η〉x) > 0
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and then for every x ∈ Rn the functional Ix is strictly convex.
The function f : R → R defined by

f(x) =

{
a|x|p/2 + b if |x| > 1,

c|x|q/2 if |x| ≤ 1,

where 2 < p < 2∗ < q and (a, b, c) ∈ R2 × ]0,∞[ is any solution of the system{
a+ b = c,

ap = cq,

is an example of function satisfying (f2) (see the Appendix for details).
The paper is organized as follows: in Section 1, following [6], we will use

a new functional framework related to the Hodge decomposition of the vector
field A. We will be led to study the problem in the space

D(Rn) :=
{
u ∈ L6(Rn) :

∫
|∇u|2 dx <∞

}
and in the Orlicz space Lp + Lq (2 < p < 6 < q). We will recall some basic
theorems, obtained in [6], [17], describing the relations between these spaces,
and two results, proved respectively in [17] and [4], which will be necessary to
get regularity and compactness.

In Section 2, we will give a proof of Theorem 1.1, using a well known multi-
plicity abstract result (see [1], [5]). Assumption (f2) will play a key role in order
to get regularity.

Finally, in the appendix we will show an example of function satisfying the
assumptions of Theorem 1.1.

2. The functional setting

From now on, taken A =
∑n

i=1Ai dx
i a 1-form, by∇A we mean the Jacobian

matrix of the field (A1, . . . , An) and if B is another 1-form we will use the
notation (∇A|∇B) to mean the product

(∇A|∇B) = Tr[(∇A)(∇B)T ]

where (∇B)T is transposed of ∇B and Tr denotes the trace. Moreover in the
sequel we will write (A|B) to mean the scalar product between A and B and we
will use |A|2 and |∇A|2 in the place of (A|A) and (∇A|∇A).

The functional of the action associated to (1.3) is

(2.1) J(A) =
1
2

∫
R
〈dA, dA〉 dx− 1

2

∫
R
f(|A|2) dx

where dx = dx1 ∧ dx2 ∧ . . . ∧ dxn, being {dx1, . . . , dxn} the canonical basis
of Λ1(Rn). The strongly indefinite nature of the functional J doesn’t allow us
to approach this problem in a standard way. In other words, the functional
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J doesn’t present the geometry of the mountain pass in any space with finite
codimension. This strongly indefiniteness of the functional depends on the fact
that, in general, ∫

R
〈dA, dA〉 dx 6=

∫
R
|∇A|2 dx

since the equality holds only if δA = 0. As a consequence, we don’t have an a
priori bound on the norm ‖∇A‖L2 . To overcome this difficulty, we look to the
Hodge decomposition theorem of the differential forms in order to split

(2.2) A = u+ dw = u+∇w

where u is a 1-form such that

(2.3) δu = 0

and w is a 0-form, i.e. w: Rn → R.
Substituting the splitting (2.2) in (2.1), we obtain

(2.4) J(u,w) := J(u+ dw) =
1
2

∫
R
|∇u|2 dx− 1

2

∫
R
f(|u+∇w|2) dx.

Now we introduce the spaces where the functional J is defined.
For 2 < p < 2n/(n− 2) < q, denote by (Lp(Rn), | · |p) and (Lq(Rn), | · |q) the

Lebesgue spaces defined as the closure of Λ1(Rn) with respect to the norm

|ξ|h =
( ∫

R
|ξ|h dx

)1/h

, h = p, q.

Consider the space

Lp+Lq := {ξ | there exists ξ1 ∈ Lp(Rn) and ξ2 ∈ Lq(Rn) such that ξ = ξ1+ξ2}.

It is well known that Lp + Lq is a Banach space with the norm

(2.5) ‖ξ‖Lp+Lq = inf{‖ξ1‖Lp + ‖ξ2‖Lq : (ξ1, ξ2) ∈ Lp × Lq, ξ1 + ξ2 = ξ}

and its dual space is Lp′ ∩Lq′ , where p′ = p/(p− 1) and q′ = q/(q − 1), endowed
with the norm

‖ξ‖Lp′∩Lq′ := ‖ξ‖Lp′ + ‖ξ‖Lq′ .

Denote by C∞0 (Rn) the space of the smooth functions with compact support,
and set

D(Rn) := Λ1(Rn)
‖·‖

and Dp,q(Rn) := C∞0 (Rn)
‖·‖p,q

where, for every ξ ∈ Λ1(Rn),

‖ξ‖2 :=
∫

Rn

〈dξ, dξ〉 dx+
∫

R
〈δξ, δξ〉 dx

and for every g ∈ C∞0 (Rn)

‖g‖Dp,q := ‖∇g‖Lp+Lq .
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We recall some results on the space Lp + Lq.

Theorem 2.1.

(a) Λ1(Rn) is dense in Lp + Lq.
(b) Let ξ ∈ Lp + Lq and set

(2.6) Ωξ := {x ∈ Rn : |ξ(x)| > 1}.

Then

(2.7) max
(
‖ξ‖Lq(Rn−Ωξ) − 1,

1
1 + |Ωξ|1/r

‖ξ‖Lp(Ωξ)

)
≤ ‖ξ‖Lp+Lq ≤ max(‖ξ‖Lq(Rn−Ωξ), ‖ξ‖Lp(Ωξ))

where r = p q/(q − p).
(c) For every r ∈ [p, q]:Lr ↪→ Lp + Lq continuously.
(d) The embedding

(2.8) D(Rn) ↪→ Lp + Lq

is continuous.
(e) Set F := {ξ: Rn → Rn : ξ(gx) = gξ(x) for all g ∈ T and for almost

every x ∈ Rn} where T is defined by (1.5), and define the space Dr(Rn)
as follows

(2.9) Dr(Rn) := D(Rn) ∩ F .

Then Dr(Rn) ↪→ Lp + Lq compactly.

Proof. (a) It can be easily showed using the definition of the Lp +Lq-norm
and the density of Λ1(Rn) in the spaces Lp(Rn) and Lq(Rn).

(b) See Lemma 1 in [6].
(c) See Corollary 9 in [17].
(d) It follows from (c) and the Sobolev continuous embedding D(Rn) ↪→

L2n/(n−2).
(e) The proof follows combining a compactness theorem presented in [4] (see

Theorem A.1 in the Appendix) and Lemma 14 in [6]. �

For all A ∈ Lp + Lq, consider the functional F defined as follows

(2.10) F (A) :=
∫

Rn

f(|A|2) dx.

The following results have been proved in [17].
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Theorem 2.2. If f3) holds, then the functional F is continuously differen-
tiable, and its Frechet differential is the continuous and bounded map

(2.11) DF :A ∈ Lp + Lq 7→ 2
∫

R
f ′(|A|2)(A|·) dx ∈ (Lp + Lq)′.

Using the fact that f(0) = 0, from (f2) we deduce that for every ξ ∈ Lp +Lq

f(〈ξ, ξ〉) ≥ c1 min(〈ξ, ξ〉p/2, 〈ξ, ξ〉q/2)

pointwise almost everywhere in Rn. On the other hand, from (f1) and (f3) it
follows that

f(〈ξ, ξ〉) ≤ c2 min(〈ξ, ξ〉p/2, 〈ξ, ξ〉q/2),

pointwise almost everywhere in Rn. So, for every ξ ∈ Lp + Lq

c1 min(〈ξ, ξ〉p/2, 〈ξ, ξ〉q/2) ≤ f(〈ξ, ξ〉) ≤ c2 min(〈ξ, ξ〉p/2, 〈ξ, ξ〉q/2),

and then we deduce that for any ξ ∈ Lp + Lq:

(2.12) c1

( ∫
Ωξ

|ξ|p dx+
∫

Rn−Ωξ

|ξ|q dx
)

≤
∫

R
f(ξ) ≤ c2

( ∫
Ωξ

|ξ|p dx+
∫

Rn−Ωξ

|ξ|q dx
)

By (2.7) and (2.8),

(2.13) J(u,w) <∞ for all u ∈ D(Rn), w ∈ Dp,q(Rn).

In order to have compactness for J , we are going to restrict the domain of the
functional to a subspace H ⊂ D(Rn)×Dp,q(Rn) such that for all (u,w) ∈ H we
have that u+∇w ∈ F .

It is easy to see that, if we set

F ′ := {w: Rn → R : w(gx) = w(x) for all g ∈ T and for almost every x ∈ Rn},

then, for w: Rn → R sufficiently smooth, we have

if w ∈ F ′ then ∇w ∈ F .

So, taking (2.3) into account, we set

V := {u ∈ Dr(Rn) : δu = 0} and W := Dp,q(Rn) ∩ F ′,

and we take H = V ×W.
Observe that H is nonempty. In fact, W 6= ∅ and for any (ai)1≤i≤n/2 in

C∞0 (Rn) ∩ F ′ the 1-form

ξ =
n/2∑
i=1

ai(x2i−1dx2i − x2idx2i−1)

belongs to V.
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Now, for every u ∈ V and w ∈ W, set

Fu:w ∈ W 7→ F (u+∇w) ∈ R,(2.14)

Fw:u ∈ V 7→ F (u+∇w) ∈ R,

Ju:w ∈ W 7→ J(u,w) ∈ R,

Jw:u ∈ V 7→ J(u,w) ∈ R.

Remark 2.3. Observe that, by Theorem 2.2, for every u ∈ V and w ∈ W
the functionals J , Ju, Jwm Fu and Fw are continuously differentiable, and the
respective Frechet differentials are:

DJ :V ×W → (V ×W)′,
DJu

DFu
:W →W ′,

DJw

DFw
:V → V ′.

Moreover, if we set

∂J

∂w
(u,w) := DJu(w) ∈ W ′(2.15)

∂J

∂u
(u,w) := DJw(u) ∈ V ′,(2.16)

by some computations we can see that, for every u, u ∈ V and w,w ∈ W,

(2.17)
∂J

∂w
(u,w)[w] = DJ(u,w)[0, w]

= −
∫

R
f ′(|u+∇w|2)(u+∇w|∇w) dx,

(2.18)
∂J

∂u
(u,w)[u] = DJ(u,w)[u, 0]

=
∫

R
(∇u|∇u) dx−

∫
R
f ′(|u+∇w|2)(u+∇w|u) dx.

Using (2.15) and (2.16), we can show the variational nature of the problem
(1.4)

Theorem 2.4. If the couple (u,w) ∈ V ×W solves the system

∂J

∂w
(u,w) = 0,(2.19)

∂J

∂v
(u,w) = 0(2.20)

then A = u+∇w ∈ F is a finite energy, weak solution of (1.4).
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Proof. Let (u,w) ∈ V × W be a solution of (2.19) and (2.20). Then, by
(2.17) and (2.18), for any u ∈ V and w ∈ W∫

R
f ′(|u+∇w|2)(u+∇w|∇w) dx = 0,(2.21) ∫

R
(∇u|∇u) dx−

∫
R
f ′(|u+∇w|2)(u+∇w|u) dx = 0.(2.22)

We want to show that A = u + ∇w is a weak solution of (1.4), namely for all
ϕ ∈ Λ1(Rn)

(2.23) DJ(A)[ϕ] =
∫

R
〈dA, dϕ〉 dx−

∫
R
f ′(|A|2)(A|ϕ) dx = 0.

Actually, it is enough to prove (2.23) just for every ϕ ∈ Dr, since Dr is a natural
constraint for J . In fact observe that, if we denote by T the group of isometric
transformations on D(Rn) defined as follows

G ∈ T if and only if there exists g ∈ T such that G(A)(x) = g−1A(gx)

for all A ∈ D and for almost every x ∈ Rn.

then Dr is the subspace of the fix points of D(Rn) under the action of T and

J(G(A)) = J(A) for all G ∈ T and all A ∈ D(Rn).

Then, by the Palais’ Principle of symmetric criticality (see [16]), Dr is a natural
constraint. Let ϕ ∈ Dr. As in (2.2), we can split the function ϕ and obtain

(2.24) ϕ = v + dh = v +∇h

where v ∈ V and h ∈ W. Writing (2.21) and (2.22) with respectively u = v and
w = h, we get ∫

R
f ′(|u+∇w|2)(u+∇w|∇h) dx = 0,(2.25) ∫

R
(∇u|∇v) dx−

∫
R
f ′(|u+∇w|2)(u+∇w|v) dx = 0,(2.26)

so, subtracting (2.25) from (2.26), by (2.24) we have

(2.27)
∫

R
(∇u|∇v) dx−

∫
R
f ′(|u+∇w|2)(u+∇w|ϕ) dx = 0.

Since δv = 0, then

(2.28) δdϕ = δd(v + dh) = δdv = −∆v,
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where −∆ := dδ+ δd is the Laplace–Beltrami operator. From (2.27) and (2.28),
we deduce that∫

R
〈du,dϕ〉 dx−

∫
R
f ′(|u+∇w|2)(u+∇w|ϕ) dx

=
∫

R
〈u, δdϕ〉 dx−

∫
R
f ′(|u+∇w|2)(u+∇w|ϕ) dx

= −
∫

R
(u|∆v) dx−

∫
R
f ′(|u+∇w|2)(u+∇w|ϕ) dx

=
∫

R
(∇u|∇v) dx−

∫
R
f ′(|u+∇w|2)(u+∇w|ϕ) dx = 0.

Since u ∈ D(Rn) and w ∈ Dp,q(Rn), by (2.13) the energy of A is finite.
Finally, since u,∇w ∈ F , also A ∈ F . �

3. Proof of the main theorem

Set

C1 :=
{

(u,w) ∈ V ×W :
∂J

∂w
(u,w) = 0

}
,(3.1)

C2 :=
{

(u,w) ∈ V ×W :
∂J

∂u
(u,w) = 0

}
.(3.2)

By Theorem 2.4, we are interested in finding the couples (u,w) ∈ C1 ∩ C2. Ren-
dering (3.2) explicit we have that

(3.3) (u,w) ∈ C2 for all u ∈ V∫
R
(∇u|∇u) dx−

∫
R
f ′(|u+∇w|2)(u+∇w|u) dx = 0.

The following theorem characterizes the set C1

Theorem 3.1. There exists a compact map Φ:V → W such that

(3.4) C1 = {(u,Φ(u)) : u ∈ V}.

Moreover the map Φ is characterized by the following property:

(3.5) for every u ∈ V, Φ(u) is the unique function in W such that

Fu(Φ(u)) = min
w∈W

Fu(w).

Before we prove the Theorem 3.1, we need the following

Lemma 3.2. If

(3.6) ζn ⇀ ζ in Lp + Lq and F (ζn) → F (ζ),

then

(3.7) ζn → ζ in Lp + Lq.
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Proof. Let (ζn)n be a sequence in Lp +Lq and ζ ∈ Lp +Lq such that (3.6)
hold. Using (f2) for (ζn)x and (ζ)x for all x ∈ Rn and n ≥ 1, we have that the
following inequality holds pointwise:

(3.8) f(|ζn|2)− f(|ζ|2)− 2f ′(|ζ|2)(ζ|ζn − ζ) ≥ c1 min(|ζn − ζ|p, |ζn − ζ|q).

Set Ωn := {x ∈ Rn : |ζn − ζ| > 1}. Integrating in inequality (3.8), by Theorem
2.2 we get

F (|ζn|2)−F (|ζ|2)−DF (ζ)(ζn − ζ)(3.9)

≥ c1

∫
Ωn

|ζn − ζ|p dx+ c1

∫
Rn−Ωn

|ζn − ζ|q dx

= c1 (‖ζn − ζ‖p
Lp(Ωn) + ‖ζn − ζ‖q

Lq(Rn−Ωn)),

By (3.6) and (3.9) we have that

‖ζn − ζ‖p
Lp(Ωn) + ‖ζn − ζ‖q

Lq(Rn−Ωn) → 0,

and then we get (3.7) by (2.7). �

Proof of Theorem 3.1. Let u ∈ V and consider Fu defined as in (2.14).
By Remarks 2.3 and 1.3, Fu is continuous and strictly convex. Then Fu is weakly
lower semicontinuous.

Moreover, Fu is also coercive. In fact, if w ∈ W and we set

Ω := {x ∈ Rn : |u(x) +∇w(x)| > 1},

then, by (2.12), we have

Fu(w) =
∫

R
f(|u+∇w|2) dx(3.10)

=
∫

Rn−Ω

f(|u+∇w|2) dx+
∫

Ω

f(|u+∇w|2) dx

≥ c1

∫
Rn−Ω

|u+∇w|q dx+ c1

∫
Ω

|u+∇w|p dx.

By (3.10) and (2.7) we deduce that Fu is coercive and then, by Weierstrass
theorem, Fu possesses a minimizer in W. So, let Φ be the map defined as follows

(3.11) Φ:V → W such that, for all u ∈ V,Φ(u) minimizes Fu.

Since Fu is strictly convex, for all u ∈ V the minimizer of the functional Fu is
unique, and then the map Φ is well defined and satisfies (3.5).

Now, before we prove the compactness of Φ:V → W, first we show that the
functional

(3.12) u ∈ V 7→
∫

Rn

f(|u+∇Φ(u)|2) dx
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is weakly continuous. Let

(3.13) un ⇀ u in V,

then, by Theorem 2.1(e),

(3.14) un → u in Lp + Lq.

Since
0 ≤ F (un +∇Φ(un)) = Fun(Φ(un)) ≤ Fun(0) = F (un),

by (3.14) and the continuity of F , the sequence {F (un +∇Φ(un))} is bounded.
Since F is coercive, then

un +∇Φ(un) is bounded in Lp + Lq,

so, by (3.14),

(3.15) ∇Φ(un) is bounded in Lp + Lq.

Set

αn :=
∫

R
f(|un +∇Φ(un)|2) dx−

∫
R
f(|u+∇Φ(un)|2) dx

βn :=
∫

R
f(|un +∇Φ(un)|2) dx−

∫
R
f(|u+∇Φ(u)|2) dx

γn :=
∫

R
f(|un +∇Φ(u)|2) dx−

∫
R
f(|u+∇Φ(u)|2) dx

By (3.11), certainly we have

(3.16) αn ≤ βn ≤ γn.

Moreover, by Lagrange theorem,

αn =
∫

R
(f(|un +∇Φ(un)|2)− f(|u+∇Φ(un)|2)) dx(3.17)

= 2
∫

R
f ′(|θn|2)(θn|un − u) dx

where θn is a suitable convex combination of un+∇Φ(un) and u+∇Φ(un). Since
{un} and {∇Φ(un)} are bounded in Lp + Lq, certainly also {θn} is bounded in
Lp + Lq. Then, by Theorem 2.2 and (3.14), from (3.17) we deduce that

(3.18) αn → 0.

Analogously we also have that

(3.19) γn → 0,

so, by (3.16), (3.18) and (3.19), we get βn → 0 and then (3.12) is weakly contin-
uous.
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Now, we prove the compactness of Φ. Consider again (un)n≥1 in V such that
(3.13) holds. By (3.15), there exists w ∈ W such that (up to a subsequence)

(3.20) ∇Φ(un) ⇀ ∇w in Lp + Lq.

From (3.14) and (3.20) we deduce that

(3.21) un +∇Φ(un) ⇀ u+∇w in Lp + Lq

so, using the weak continuity of (3.12) and the weak lower semicontinuity of F
we have

Fu(Φ(u)) = F (u+∇Φ(u))
(3.22)

= lim
n
F (un +∇Φ(un)) ≥ F (u+∇w) = Fu(w).

By the uniqueness of the minimizer of Fu, from (3.22) we deduce that w = Φ(u),
so, by (3.21), we have

(3.23) un +∇Φ(un) ⇀ u+∇Φ(u) in Lp + Lq.

But using the weak continuity of (3.12), by (3.13) we also have

(3.24)
∫

R
f(|un +∇Φ(un)|2) dx→

∫
R
f(|u+∇Φ(u)|2) dx

so, by Lemma 3.2, from (3.23) and (3.24) we deduce that

(3.25) un +∇Φ(un) −→ u+∇Φ(u) in Lp + Lq.

Now, comparing (3.25) with (3.14), we deduce that Φ(un) −→ Φ(u) in W and
then Φ is compact.

Finally, we prove (3.4). Observe that, since (∂J/∂w)(u,w) = DFu(w), then

(3.26) (u,w) ∈ C1 if and only if DFu(w) = 0.

But since Fu is convex, its critical points are minimizers, and then

(3.27) DFu(w) = 0 if and only if w = Φ(u),

so we have (3.4) by (3.26) and (3.27). �

Consider the functional Ĵ :V → R

(3.28) Ĵ(u) := J(u,Φ(u)) =
1
2

∫
R
|∇u|2 dx− 1

2
F (u+∇Φ(u)).

The following regularity result holds:
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Theorem 3.3. The functional Ĵ is continuously differentiable and its Fre-
chet differential DĴ :V → V ′ has this expression

(3.29) DĴ(u)[u] =
∫

R
(∇u|∇u) dx−

∫
R
f ′(|u+∇Φ(u)|2)(u+∇Φ(u)|u) dx.

Proof. Set F̂ :u ∈ V 7→ F (u+∇Φ(u)). We will prove that F̂ ∈ C1 so that,
clearly, also Ĵ ∈ C1.

Let u ∈ V. We claim that for all u ∈ V −{0} the functional F̂ is derivable at
u in the direction u, and the directional derivative (i.e. the Gâteaux derivative
DGF̂ ) is

(3.30) DGF̂ (u)[u] = 2
∫

R
f ′(|u+∇Φ(u)|2)(u+∇Φ(u)|u) dx.

In fact, let t ∈ R− {0} and set

α(t) := F (u+ tu+∇Φ(u+ tu))− F (u+∇Φ(u+ tu)),

β(t) := F (u+ tu+∇Φ(u+ tu))− F (u+∇Φ(u)),

γ(t) := F (u+ tu+∇Φ(u))− F (u+∇Φ(u)).

By (3.5) we know that

F (u+ tu+∇Φ(u+ tu)) ≤ F (u+ tu+∇Φ(u)),

F (u+∇Φ(u)) ≤ F (u+∇Φ(u+ tu)),

and then, certainly, for every t ∈ R− {0}

(3.31) α(t) ≤ β(t) ≤ γ(t).

Now, for every t ∈ R− {0}, set

α̃(t) =
α(t)
t
, β̃(t) =

β(t)
t
, γ̃(t) =

γ(t)
t

and observe that (3.30) means that

(3.32) lim
t→0

β̃(t) = 2
∫

R
f ′(|u+∇Φ(u)|2)(u+∇Φ(u)|u) dx.

From (3.31) we deduce that

α̃(t) ≤ β̃(t) ≤ γ̃(t) if t > 0,

γ̃(t) ≤ β̃(t) ≤ α̃(t) if t < 0,

and then

(3.33) min(α̃(t), γ̃(t)) ≤ β̃(t) ≤ max(α̃(t), γ̃(t)).
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Now, by Lagrange theorem, we have that

(3.34) α̃(t) =
1
t

∫
R
(f(|u+ tu+∇Φ(u+ tu)|2)− f(|u+∇Φ(u+ tu)|2)) dx

=
2
t

∫
R
f ′(|θt|2)(θt|tu) dx = 2

∫
R
f ′(|θt|2)(θt|u) dx = DF (θt)[u]

where θt is a suitable convex combination of u+ tu+∇Φ(u+ tu) and u+∇Φ(u+
tu).

Since Φ is continuous, we have that

lim
t→0

u+ tu+∇Φ(u+ tu) = u+∇Φ(u) in Lp + Lq,

lim
t→0

u+∇Φ(u+ tu) = u+∇Φ(u) in Lp + Lq,

and then

(3.35) lim
t→0

θt = u+∇Φ(u) in Lp + Lq.

By continuity, from (3.34) and (3.35) we deduce that

lim
t→0

α̃(t) = DF (u+∇Φ(u))[u](3.36)

= 2
∫

R
f ′(|u+∇Φ(u)|2)(u+∇Φ(u)|u) dx.

By the same arguments, we can see that

(3.37) lim
t→0

γ̃(t) = 2
∫

R
f ′(|u+∇Φ(u)|2)(u+∇Φ(u)|u) dx,

so, by (3.33), (3.36) and (3.37) we get (3.32), i.e. and the existence of the direc-
tional derivative.

Now observe that from (3.30) we have

DGF̂ (u) ∈ V ′, for all u ∈ V

and the map

(3.38) DF̂G:u ∈ V 7→ 2
∫

R
f ′(|u+∇Φ(u)|2)(u+∇Φ(u)| · ) dx ∈ V ′

is continuous by Theorem 2.2 and the continuity of Φ. Then F̂ is Frechet differ-
entiable, and, for all u, u ∈ V

(3.39) DF̂ (u)[u] = 2
∫

R
f ′(|u+∇Φ(u)|2)(u+∇Φ(u)|u) dx.

From (3.39) we have (3.29). �
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Theorem 3.4. If u ∈ V is a nontrivial critical point of Ĵ , then A = u +
∇Φ(u) ∈ F is a finite energy, nontrivial weak solution of (1.4).

Proof. Let u ∈ V be a critical point of Ĵ . By (3.29) we have that∫
R
(∇u|∇u) dx−

∫
R
f ′(|u+∇Φ(u)|2)(u+∇Φ(u)|u) dx = 0

so, by (3.3), the couple (u,Φ(u)) ∈ C2. Since by Theorem 3.1 we also have that
(u,Φ(u)) ∈ C1, then, by Theorem 2.4, A = u + ∇Φ(u) is a finite energy, weak
solution. Moreover, if u 6= 0, then

(3.40) u+∇Φ(u) 6= 0.

In fact, if

(3.41) u = −∇Φ(u),

then
−∆Φ(u) = ∇ · u = 0,

and this should imply ∫
R
|∇Φ(u)|2 dx = 0,

that is

(3.42) ∇Φ(u) = 0.

But (3.41) and (3.42) contradict the fact that u 6= 0, so (3.40) holds. �

By Theorem 3.4 we are reduced to find the critical points of Ĵ , so we are
going to study the geometry and the compactness properties of the functional in
order to apply the symmetrical mountain pass theorem (see [1], [5]).

Theorem 3.5. Ĵ satisfies the following Palais–Smale condition:

(PS) if {un} ∈ V is a sequence such that for M ≥ 0

(3.43) Ĵ(un) ≤M, for all n ≥ 1

and

(3.44) DĴ(un) → 0,

then {un} ∈ V is precompact.

Proof. Let {un} ∈ V be a sequence such that (3.43) and (3.44) hold. Since
Φ is compact and the embedding V ↪→ Lp + Lq is compact, we have that the
map (3.38) is compact, so, by standard arguments we are reduced to prove that
{un} is bounded.
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Rendering (3.43) explicit, we have

(3.45)
1
2

∫
R
|∇un|2 dx−

1
2

∫
R
f(|un +∇Φ(un)|2) dx ≤M.

Moreover, from (3.44) we deduce that DĴ(un)[un/‖un‖D] −→ 0, that is, there
exists εn → 0 such that

(3.46)
∫

R
|∇un|2 dx−

∫
R
f ′(|un +∇Φ(un)|2)(un +∇Φ(un)

∣∣un) dx

= εn‖un‖D.

Now, by (3.5), certainly we have that, for every w ∈ W,

0 = DFun
(Φ(un))[w] =

∫
R
f ′(|un +∇Φ(un)|2)(un +∇Φ(un)|∇w) dx,

so (3.46) can be written as follows

(3.47)
∫

R
|∇un|2 dx−

∫
R
f ′(|vn|2)|vn|2 dx = εn‖un‖D,

where we have set vn = un + ∇Φ(un). Now, multiplying (3.45) by α and sub-
tracting (3.47) we get

(3.48)
(
α

2
− 1

) ∫
R
|∇un|2 dx+

∫
R

[
f ′(|vn|2)|vn|2 −

α

2
f(|vn|2)

]
dx

≤M − εn‖un‖D.

Using (f4), from (3.48) we deduce that {un} is bounded. �

Theorem 3.7. There exist ρ > 0 and C > 0 such that

Ĵ(u) > C, for all u ∈ V ∩ Sρ,

where Sρ := {u ∈ D : ‖u‖D = ρ}.

Proof. Let u ∈ V and consider Ωu defined as in (2.6). Since p < 2∗ < q we
have that

|u(x)|p ≤ |u(x)|2
∗

if x ∈ Ωu,(3.49)

|u(x)|q ≤ |u(x)|2
∗

if x ∈ Rn − Ωu,(3.50)

so, by (3.49) and (3.50), using (2.12), (3.5) and the continuous embedding

(D, ‖ · ‖D) ↪→ (L2∗ , | · |2∗),
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for a suitable k > 0 we have

Ĵ(u) =
1
2

∫
R
|∇u|2 dx− 1

2

∫
R
f(|u+∇Φ(u)|2) dx

≥ 1
2

∫
R
|∇u|2 dx− 1

2

∫
R
f(|u|2) dx

≥ 1
2

∫
R
|∇u|2 dx− c2

2

∫
Ωu

|u|p dx− c2
2

∫
Rn−Ωu

|u|q dx

≥ 1
2

∫
R
|∇u|2 dx− c2

2

∫
Ωu

|u|2
∗
dx− c2

2

∫
Rn−Ωu

|u|2
∗
dx

=
1
2
‖u‖2

D −
c2
2
|u|2

∗

2∗ ≥
1
2
‖u‖2

D − k‖u‖2∗

D .

Then Ĵ(u) > C for u ∈ Sρ with ρ small enough. �

Now, before we prove that also the second geometrical assumption of the
symmetrical mountain pass theorem is satisfied, we need a preliminary result.
For every γ > 1 and u ∈ V set

F̃u:w ∈ W 7→ ‖u+∇w‖γ
Lp+Lq .

We have the following:

Lemma 3.8. For every u ∈ V there exists a unique Φγ(u) ∈ W such that

F̃u(Φγ(u)) = min
w∈W

F̃u(w).

Moreover, for every V ⊂ V such that dimV <∞ we have

(3.51) there exists C̃γ(V ) > 0 such that ‖u+∇Φγ(u)‖γ
Lp+Lq ≥ C̃γ‖u‖γ

D

uniformly for u ∈ V .

Proof. Since F̃u is strictly convex, continuous and coercive onW, by Weier-
strass theorem there exists a unique minimizer Φγ(u).

Actually the minimizing map Φγ :u→ Φγ(u) is compact from V into W.
In fact, consider un ⇀ u in V. Since V ↪→ Lp + Lq compactly, certainly

(3.52) un → u in Lp + Lq.

Moreover, by the definition of Φγ ,

0 ≤ ‖un +∇Φγ(un)‖γ
Lp+Lq ≤ ‖un‖γ

Lp+Lq

so,

(3.53) un +∇Φγ(un) is bounded in Lp + Lq.
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From (3.52) and (3.53) we deduce that {Φγ(un)} is bounded in W, so there
exists w ∈ W such that (up to a subsequence)

(3.54) ∇Φγ(un) ⇀ ∇w in Lp + Lq.

Now we prove that

(1) limn ‖un +∇Φγ(un)‖Lp+Lq = ‖u+∇Φγ(u)‖Lp+Lq ;
(2) ∇Φγ(un) ⇀ ∇Φγ(u) in Lp + Lq.

Observe that, by the definition of Φγ and the triangular inequality,

‖u+∇Φγ(u)‖γ
Lp+Lq ≤ ‖u+∇Φγ(un)‖γ

Lp+Lq

≤ (‖u− un‖Lp+Lq + ‖un +∇Φγ(un)‖Lp+Lq )γ

and then, by (3.52)

(3.55) ‖u+∇Φγ(u)‖γ
Lp+Lq ≤ lim inf

n
‖un +∇Φγ(un)‖γ

Lp+Lq .

On the other hand, by definition of Φγ

‖un +∇Φγ(un)‖γ
Lp+Lq ≤ ‖un +∇Φγ(u)‖γ

Lp+Lq

and then, by (3.52)

(3.56) lim sup
n

‖un +∇Φγ(un)‖γ
Lp+Lq ≤ ‖u+∇Φγ(u)‖γ

Lp+Lq .

The claim (1) follows from (3.55) and (3.56).
Since ‖ · ‖γ

Lp+Lq is weakly lower semicontinuous, from (3.52), (3.54) and the
claim (1) we deduce

(3.57) ‖u+∇w‖γ
Lp+Lq ≤ lim inf

n
‖un +∇Φγ(un)‖γ

Lp+Lq = ‖u+∇Φγ(u)‖γ
Lp+Lq .

By the uniqueness of the minimizer of F̃u, the inequality (3.57) implies that
w = Φγ(u) and then the claim (2) is a consequence of (3.54).

By a well known theorem, the claims (1) and (2) and (3.52) imply that

∇Φγ(un) → ∇Φγ(u) in Lp + Lq

and then Φγ is compact.
Now, let V ⊂ V such that dimV <∞. By Weierstrass theorem there exists

C̃γ := min
‖u‖D=1

u∈V

‖u+∇Φγ(u)‖γ
Lp+Lq ≥ 0.

Actually, C̃γ > 0. In fact, if C̃γ = 0, then there should exist u ∈ V such that
‖u‖D = 1 and u+∇Φγ(u) = 0, but it is not possible as we have already seen in
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the proof of Theorem 3.4. Now, if we consider u ∈ V −{0} and set ũ = u/‖u‖D,
since ‖ũ‖D = 1, we have that

(3.58)
‖u+∇Φγ(u)‖γ

Lp+Lq

‖u‖γ
D

=
∥∥∥∥ũ+∇

(
Φγ(u)
‖u‖D

)∥∥∥∥γ

Lp+Lq

≥ ‖ũ+∇Φγ(ũ)‖γ
Lp+Lq ≥ C̃γ .

So (3.51) follows from (3.58). �

Theorem 3.9. For all V ⊂ V such that dimV <∞ we have

sup
u∈V

Ĵ(u) <∞.

Proof. Let V ⊂ V such that dimV <∞. Consider u ∈ V and set

Ω := {x ∈ Rn : |(u+∇Φ(u))(x)| > 1}.

Since inequality (2.7) implies that

‖u+∇Φ(u)‖p
Lp+Lq ≤ |u+∇Φ(u)|pLp(Ω)

or
‖u+∇Φ(u)‖q

Lp+Lq ≤ |u+∇Φ(u)|qLq(Rn−Ω),

certainly

(3.59) min(‖u+∇Φ(u)‖p
Lp+Lq , ‖u+∇Φ(u)‖q

Lp+Lq )

≤ max(|u+∇Φ(u)|pLp(Ω), |u+∇Φ(u)|qLq(Rn−Ω)).

By (3.59) and Lemma 3.8∫
R
f(|u+∇Φ(u)|2) dx

≥ c1

∫
Ω

|u+∇Φ(u)|p dx+ c1

∫
Rn−Ω

|u+∇Φ(u)|q dx

= c1|u+∇Φ(u)|pLp(Ω) + c1|u+∇Φ(u)|qLq(Rn−Ω)

≥ c1 max(|u+∇Φ(u)|pLp(Ω), |u+∇Φ(u)|qLq(Rn−Ω))

≥ c1 min(‖u+∇Φ(u)‖p
Lp+Lq , ‖u+∇Φ(u)‖q

Lp+Lq )

≥ c1 min(‖u+∇Φp(u)‖p
Lp+Lq , ‖u+∇Φq(u)‖q

Lp+Lq )

≥ c1 min(C̃p‖u‖p
D, C̃q‖u‖q

D)

≥ c1 min(C̃p, C̃q)min(‖u‖p
D, ‖u‖

q
D),

and then

Ĵ(u) =
1
2
‖u‖2

D −
1
2

∫
R
f(|u+∇Φ(u)|2) dx(3.60)

≤ 1
2
‖u‖2

D − c1 min(C̃p, C̃q) min(‖u‖p
D, ‖u‖

q
D).



104 A. Azzollini

Since 2 < p < q, we get our conclusion from (3.60). �

Proof of Theorem 1.1. Since Ĵ is C1 and even, by Theorems 3.5, 3.7, 3.9
and the symmetrical version of the mountain pass theorem (see [1], [5]) certainly
it possesses infinitely many critical points. Then the conclusion is a consequence
of Theorem 3.4. �

4. Appendix

As we have seen, in order to have infinitely many solutions for the problem
(1.4) we need some assumptions on the growth and on the convexity of the
nonlinearity. Here we want to show an example of function satisfying those
assumptions.

Consider the function f : [0,∞[→ R such that

(4.1) f(x) =

{
axp + b if x > 1,

cxq if x ≤ 1.

where 2 < p < 2∗ < q and the set of three numbers (a, b, c) ∈ R2 × ]0,∞[ is any
solution of the system

(4.2)

{
a+ b = c,

ap = cq.

Lemma 4.1. There exist δ > 0 and K1 > 0 such that

(4.3) f(x)− f(y)− (f ′(y)|x− y) ≥ K1|x− y|q

for all (x, y) ∈ ]1, 1 + δ×]1− δ, 1[.

Proof. Consider the function h: ]1,∞[× ]0, 1] such that

(4.4) h(x, y) =
f(x)− f(y)− (f ′(y)|x− y)

|x− y|q
.

that is

h(x, y) =
axp + b+ (q − 1)cyq − qcxyq−1

|x− y|q
.

Dividing numerator and denominator by yq and setting z = x/y, we get the new
function

h̃(z, y) =
azpyp−q + by−q + (q − 1)c− qcz

|z − 1|q

defined in the domain {(z, y) ∈ ]1,∞[× ]0, 1] : y > 1/z}.
We claim that

h̃(z, 1) = min
y>1/z

h̃(z, · ) for all z > 1.
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We compute

∂h̃

∂y
(z, y) =

a(p− q)zpyp−q−1 − bqy−q−1

|z − 1|q
(4.5)

=
a(p− q)zpyp − bq

yq+1|z − 1|q
=

g(zy)
yq+1|z − 1|q

where g(t) = a(p− q)tp − bq. By (4.2) we deduce that

g(1) = 0,

g′(t) < 0 if t > 1,

so g(zy) < 0 because zy > 1. By (4.5) we can conclude that the function h̃(z, · )
is decreasing in ]1/z, 1] and then

(4.6) h̃(z, y) ≥ h̃(z, 1) for all z > 1.

Now, by (4.6) and using twice De l’Hôpital’s rule, we compute

lim
(x,y)→(1+,1−)

h(x, y) = lim
(z,y)→(1+,1−)

h̃(z, y) ≥ lim
(z,y)→(1+,1−)

h̃(z, 1)

= lim
z→1+

azp + b+ (q − 1)c− qcz

(z − 1)q

= lim
z→1+

ap(p− 1)zp−2

q(q − 1)(z − 1)q−2
= ∞.

The inequality (4.3) is a consequence of the previous limit. �

Theorem 4.2. There exists K2 > 0 such that for every nonnegative numbers
x, y

(4.7) f(x)− f(y)− f ′(y)(x− y) ≥ K2 min(|x− y|p, |x− y|q).

Proof. We distinguish the following three cases:

(1) 0 ≤ y ≤ 1 < x or 0 ≤ x ≤ 1 < y;
(2) 1 < x, y;
(3) 0 ≤ x, y ≤ 1.

(1) If 0 ≤ y ≤ 1 < x, then we consider these three possibilities

• (x, y) ∈ ]1, 1 + δ[× ]1− δ, 1[,
• (x, y) ∈ ]1, 1 + δ]× [0, 1− δ],
• (x, y) ∈ [1 + δ,∞[×[0, 1],

where δ is the same as in Lemma 4.1.
By Lemma 4.1, certainly (4.7) holds in ]1, 1 + δ[× ]1− δ, 1[.
Since the function h defined in (4.4) is continuous in [1, 1 + δ]× [0, 1− δ], by

Weierstrass’ theorem there exists min{h(x, y) | (x, y) ∈ [1, 1+ δ]× [0, 1− δ]} and
then the inequality (4.7) holds also in ]1, 1 + δ]× [0, 1− δ].



106 A. Azzollini

Finally, suppose (x, y) ∈ [1 + δ,∞[× [0, 1]. Since, for every x ∈ [1 + δ,∞[,

min
y∈[0,1]

yq−1(c(q − 1)y − cqx) = c(q − 1)− cqx,

then, by (4.2),

(4.8) f(x)− f(y)− f ′(y)(x− y) = axp + b+ yq−1(c(q − 1)y − cqx)

≥ axp + b+ c(q − 1)− cqx = axp − ap(x− 1)− a.

But

(4.9) C1 := inf
x≥1+δ

axp − ap(x− 1)− a

xp
> 0

so, by (4.8) and (4.9),

f(x)− f(y)− f ′(y)(x− y) ≥ C1x
p ≥ C1(x− y)p

and then the inequality (4.7) holds also in [1 + δ,∞[× [0, 1].
We can use similar arguments for the case 0 ≤ x ≤ 1 < y.
(2) Suppose 1 < x, y. We have that

(4.10) f(x)− f(y)− f ′(y)(x− y) = a(xp − yp − pyp−1(x− y)).

In [15] (see the proof of Theorem 4, Chapter VIII) the following inequality has
been proved: for all r > 2 there exists a positive constant C2(r) such that for
any u ∈ R

(4.11) |u+ 1|r ≥ 1 + ru+ C2(r)|u|r.

If we set r = p and replace u by (x− y)/y, then by some calculus we get

(4.12) xp ≥ yp + pyp−1(x− y) + C2(p)|x− y|p.

Inequality (4.7) follows from (4.10) and (4.12).
(3) Suppose 0 ≤ x, y ≤ 1. Then

f(x)− f(y)− f ′(y)(x− y) = c(xq − yq − qyq−1(x− y))

so we get again (4.7) using (4.11) as before. �

Theorem 4.3. Let f̂ be the even extension of f , i.e.

f̂(x) =

{
f(x) if x ≥ 0,

f(−x) if x < 0,

Then there exists K3 > 0 such that for all (x, y) ∈ R2

(4.13) f̂(x)− f̂(y)− f̂ ′(y)(x− y) ≥ K3 min(|x− y|p, |x− y|q).

Proof. We distinguish some cases.
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(1) x, y ≤ 0. Since f̂ is even, certainly f̂ ′ is odd and then, by (4.7),

f̂(x)− f̂(y) − f̂ ′(y)(x− y)

= f̂(−x)− f̂(−y)− f̂ ′(−y)(−x− (−y))
= f(−x)− f(−y)− f ′(−y)(−x− (−y))
≥K2 min(| − x− (−y)|p, | − x− (−y)|q)
=K2 min(|x− y|p, |x− y|q).

(2) x ≤ 0 and y ≥ 0. We have that

(4.14) f̂(x)− f̂(y)− f̂ ′(y)(x− y) = f̂(x)− f̂ ′(y)x− f̂(y) + f̂ ′(y)y.

Since f̂ ′(y) ≥ 0, the property (f3) (that can be easily proved) implies that

(4.15) f̂(x)− f̂ ′(y)x ≥ f̂(x) ≥ c1 min(|x|p, |x|q),

and, on the other hand, by (4.7)

(4.16) widehatf(y) + f̂ ′(y)y = f(0)− f(y)− f ′(y)(0− y) ≥ K2 min(|y|p, |y|q).

Comparing (4.14), (4.15) and (4.16) we get

f̂(x)− f̂(y) − f̂ ′(y)(x− y)

≥C3(min(|x|p, |x|q) + min(|y|p, |y|q))
≥C4 min(|x|p + |y|p, |x|q + |y|q)
≥C5 min((|x|+ |y|)p, (|x|+ |y|)q)

=C5 min(|x− y|p, |x− y|q)

where C3, C4 and C5 are positive constants.
(3) x ≥ 0 and y ≤ 0. The inequality (4,13) can be proved by similar argu-

ments as before.
(4) x, y ≥ 0. The inequality (4,13) follows directly from (4.7). �

Finally, define f : Rn → R as the radial extension of f , namely

(4.17) f(x) = f(|x|), for all x ∈ Rn.

Theorem 4.4. The function f defined by (4.17) and (4.1) satisfies the in-
equality

(4.18) f(x)− f(y)− (f ′(y)|x− y) = c1 min(|x− y|p, |x− y|q)

for some positive constant c1 which doesn’t depend on x, y ∈ Rn.

Proof. It is very easy to verify that f satisfies the inequality

(4.19) f(x) ≥ c1 min(|x|p, |x|q) for all x ∈ Rn.

If y = 0, then (4.18) follows trivially from (4.19).
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If y 6= 0, observe that for all x ∈ Rn

(4.20) f(x)− f(y)− (f
′
(y)|x− y) = f(|x|)− f(|y|)− f ′(|y|)

|y|
(x|y) + f ′(|y|)|y|.

Now consider the following three cases

(1) x = ty, t ≥ 0;
(2) x = ty, t < 0;
(3) x 6= ty, t ∈ R.

If x = ty for t ≥ 0, then (x|y) = |x||y| and |x− y| = ||x| − |y|| so, by (4.20) and
(4.7),

f(x)− f(y)− (f
′
(y)|x− y) = f(|x|)− f(|y|)− f ′(|y|)(|x| − |y|)

≥ K2 min(||x| − |y||p, ||x| − |y||q) = K2 min(|x− y|p, |x− y|q).

If x = ty for t < 0, then (x|y) = −|x||y| and |x− y| = |x|+ |y| so, by (4.20) and
(4,13),

f(x)− f(y)− (f ′(y)|x− y) = f̂(|x|)− f̂(−|y|)− f̂ ′(−|y|)(|x| − (−|y|))
≥ K3 min(||x|+ |y||p, ||x|+ |y||q) = K3 min(|x− y|p, |x− y|q).

Finally, if x 6∈ {ty : t ∈ R}, then x = x1 + x2 where x1 ∈ {ty : t ∈ R} and
(x2|y) = 0. Since x1 ‖ y, from the previous cases we have

(4.21) f(x1)− f(y)− (f ′(y)
∣∣x1 − y) ≥ C6 min(|x1 − y|p, |x1 − y|q)

where C6 = min(K2,K3). Moreover, observe that for all a, b ≥ 0 the following
inequality holds

(4.22) f(
√
a+ b) ≥ f(

√
a) + f(

√
b),

so, by (4.22), (4.21) and property (f3), we have

f(x)− f(y) − (f
′
(y)|x− y)

= f(
√
|x1|2 + |x2|2)− f(y)− f

′
(y)|x1 − y)

≥ f(|x1|) + f(|x2|)− f(y)− (f
′
(y)|x1 − y)

= f(x1)− f(y)− (f
′
(y)|x1 − y) + f(x2)

≥C6 min(|x1 − y|p, |x1 − y|q) + c1 min(|x2|p, |x2|q)
≥C7 min((|x1 − y|2)p/2 + (|x2|2)p/2, (|x1 − y|2)q/2 + (|x2|2)q/2)

≥C8 min((|x1 − y|2 + |x2|2)p/2, (|x1 − y|2 + |x2|2)q/2)

=C8 min(|x− y|p, |x− y|q)

where C7 and C8 are suitable positive constants. �
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Now, consider the function f : R → R such that

f(x) =

{
a|x|p/2 + b if |x| > 1,

c|x|q/2 if |x| ≤ 1,

where 2 < p < 2∗ < q and (a, b, c) ∈ R2 × ]0,∞[ is any solution of the system{
a+ b = c,

ap = cq.

It is easy to verify that f satisfies (f1), (f3) and (f4). Moreover, applying Theo-
rem 4.1 to the function

g: ξ ∈ Rn 7→ f((ξ|ξ)) ∈ R,

we verify that f satisfies also (f2).
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