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ON THE STRUCTURE OF THE SOLUTION SET
FOR A CLASS OF NONLINEAR EQUATIONS

INVOLVING A DUALITY MAPPING

George Dinca — Mohamed Rochdi

Abstract. Sufficient conditions ensuring that the solution set of some
operator equations involving a duality mapping is non-empty, compact and

convex are given.

1. Introduction

Let X be a smooth real Banach space, ϕ: R+ → R+ a gauge function and
Jϕ:X → X∗ the duality mapping subordinated to ϕ (see the precise definition
in Section 2 below).

Suppose that X is compactly embedded in a real Banach space Z.
Finally, let N :Z → Z∗ be a demicontinuous operator:

zn → z ⇒ Nzn ⇀ Nz,

where we have denoted by “→” (respectively, “⇀”) the convergence in the strong
(respectively, weak) topology.

The aim of this paper is to formulate sufficient conditions ensuring that the
solution set of the equation

(1.1) Jϕu = Nu
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is non-empty, compact and convex. By solution for (1.1) we understand an
element u ∈ X, which satisfies

(1.2) Jϕu = (i∗Ni)u

where i:X → Z stands for the compact injection of X into Z and i∗ is its adjoint:

i∗:Z∗ → X∗, i∗z∗ = z∗ ◦ i, for all z∗ ∈ Z∗.

As usual, X∗ (resp. Z∗) denotes the dual space of X (resp. Z). We shall
denote by 〈 · , · 〉X,X∗ (resp. 〈 · , · 〉Z,Z∗) the duality pairing between X∗ and X

(resp. Z∗ and Z). We shall often omit to indicate the spaces in duality and we
shall simply write 〈 · , · 〉.

It should be noticed that in (1.2) the right operator K = i∗ ◦N ◦ i is compact
and also that a solution for (1.2) is equivalently defined by

(1.3) 〈Jϕu, v〉X,X∗ = 〈N(iu), i(v)〉Z,Z∗ , for all v ∈ X.

In what follows, the solution set of (1.1) will be denoted by S(Jϕ, N). Thus:

(1.4) S(Jϕ, N) = {u ∈ X : Jϕu = (i∗Ni)u}.

The adopted strategy is as follows: first, we shall formulate sufficient condi-
tions ensuring that Jϕ is bijective with a continuous inverse J−1

ϕ . Consequently,
S(Jϕ, N) rewrites as:

(1.5) S(Jϕ, N) = Fix(T ) = {u ∈ X : u = Tu}.

where T = J−1
ϕ (i∗Ni):X → X is compact.

Thus, the problem reduces to that of finding out sufficient conditions ensuring
that the fixed point set of the compact operator T defined by (1.5) is non-empty,
compact and convex.

A special geometry of X, monotonicity proprieties of Jϕ and some techniques
arising from the Leray–Schauder topological degree theory are the main ingre-
dients which are used in order to reach this last step of the strategy.

2. Duality mappings: definition and surjectivity properties

Let X be a real Banach space and ϕ: R+ → R+ be a gauge function, i.e. ϕ
is continuous, strictly increasing, ϕ(0) = 0 and ϕ(t) →∞ as t→∞.

By duality mapping corresponding to the gauge function ϕ we understand
the multivalued mapping Jϕ:X → P(X∗) defined as follows:

Jϕ0 = {0},
Jϕx = ϕ(‖x‖){u∗ ∈ X∗ : ‖u∗‖ = 1, 〈u∗, x〉 = ‖x‖} if x 6= 0.
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According to the Hahn–Banach theorem it is easy to see that the domain of
Jϕ is the whole space:

D(Jϕ) = {x ∈ X : Jϕx 6= ∅} = X.

By the preceding definition, it follows that if X is real and smooth, i.e. for
any x 6= 0 there is a unique element u∗(x) ∈ X∗ having the metric properties
〈u∗(x), x〉 = ‖x‖ and ‖u∗(x)‖ = 1, the duality mapping corresponding to a gauge
function ϕ is the single valued mapping Jϕ:X → X∗ defined as follows:

Jϕ0 = 0; Jϕx = ϕ(‖x‖)‖ · ‖′(x) if x 6= 0

where ‖ · ‖′(x) denotes the Gâteaux differential of the norm at x (see Diestel [11]
and Zeidler [20]).

The following surjectivity result will play an important role in what follows:

Theorem 2.1. If X is a real reflexive and smooth Banach space then any
duality mapping Jϕ:X → X∗ is surjective. Moreover, if X is also strictly convex
then Jϕ is a bijection of X onto X∗.

For the proof of the surjectivity of Jϕ see Beurling and Livingston [5], Brow-
der [8], Lions [19], Deimling [10], Zeidler [20].

On the other hand it can be shown that if X is a strictly convex real Banach
space then any duality mapping Jϕ:X → 2X∗

is strictly monotone, in the fol-
lowing sense: if x, y ∈ X and x 6= y then, for any x∗ ∈ Jϕx and y∗ ∈ Jϕy one has
〈x∗ − y∗, x − y〉 > 0. Clearly, the strict monotonicity implies the injectivity: if
x, y ∈ X and x 6= y then Jϕx∩ Jϕy 6= ∅. In particular, if the strictly convex real
Banach space X is also a smooth one then any duality mapping Jϕ:X → X∗ is
strictly monotone:

〈Jϕx− Jϕy, x− y〉 > 0, for all x, y ∈ X, x 6= y,

and, consequently, injective.

Corollary 2.2. Let X be an infinite dimensional reflexive and smooth real
Banach space. Then there are no compact duality mappings on X.

Proof. Let Jϕ:X → X∗ be a duality mapping. According to Theorem 2.1,
Jϕ is surjective.

Consequently, for any r > 0, Jϕ(∂BX,r) = ∂BX∗,ϕ(r), where ∂BX,r = {x ∈
X : ‖x‖ = r}, ∂BX∗,ϕ(r) = {x∗ ∈ X∗ : ‖x∗‖ = ϕ(r)}. Indeed, if x ∈ ∂BX,r, then
‖Jϕx‖ = ϕ(‖x‖) = ϕ(r), i.e. Jϕ(∂BX,r) ⊂ ∂BX∗,ϕ(r).

Reciprocally, let x∗ ∈ ∂BX∗,ϕ(r). By the surjectivity of Jϕ, there is x ∈ X

such that x∗ = Jϕx. It follows that ϕ(r) = ‖x∗‖ = ‖Jϕx‖ = ϕ(‖x‖), which
simply implies ‖x‖ = r.

Consequently, x∗ = Jϕx with x ∈ ∂BX,r, i.e. ∂BX∗,ϕ(r) ⊂ Jϕ(∂BX,r).
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Because of dimX∗ = ∞, ∂BX∗,ϕ(r) = Jϕ(∂BX,r) is not compact. Conse-
quently, Jϕ is not compact. �

The result given by Corollary 2.2 is not surprising. In fact, a more general
result holds (see Appell, De Pascale and Vignoli [3, Theorem 3b]): if X and Y

are infinite dimensional Banach spaces and F :X → Y is compact then F is not
onto.

The proof is based essentially on Baire’s category theorem. Notice also that
an estimation of the Kuratowski measure of noncompactness of a duality map-
ping is given in [12].

Corollary 2.3. If X is a reflexive and smooth real Banach space having
the Kadeč–Klee property then any duality mapping Jϕ:X → X∗ is bijective and
has a continuous inverse. Moreover,

(2.1) J−1
ϕ = χ−1J∗ϕ−1

where J∗ϕ−1 :X∗ → X∗∗ is the duality mapping on X∗ corresponding to the
gauge function ϕ−1 and χ:X → X∗∗ is the canonical isomorphism defined by
〈χ(x), x∗〉 = 〈x∗, x〉, for all x ∈ X and all x∗ ∈ X∗.

Proof. The existence of J−1
ϕ follows from Theorem 2.1. Regarding formula

(2.1), first we shall prove that, under the hypotheses of Corrolary 2.3, any duality
mapping on X∗ (in particular, that corresponding to the gauge function ϕ−1) is
single valued. This is equivalent with proving that X∗ is smooth.

The smoothness of X∗ will be proved by using the (partial) duality between
strict convexity and smoothness given by the following theorem due to Klee (see
Diestel [11, Chapter 2, §2, Theorem 2]):

if X∗ is smooth (strictly convex) then X is strictly convex (smooth).

Clearly, if X is reflexive, then

X∗ is smooth (strictly convex) if and only if X is strictly convex (smooth).

Now, by the hypotheses of Corollary 2.3, X is reflexive and smooth. Also,
by the same hypotheses, X possesses the Kadeč–Klee property, which means: X
is strictly convex and

if xn ⇀ x and ‖xn‖ → ‖x‖ then xn → x.

Consequently, X being reflexive, smooth and strictly convex so is X∗.
Let us prove that equality (2.1) holds or, equivalently, that

(2.2) χJ−1
ϕ x∗ = J∗ϕ−1x∗, for all x∗ ∈ X∗.
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By the definition of duality mappings, J∗ϕ−1x∗ is the unique element in X∗∗

having the metric properties

(2.3)
〈J∗ϕ−1x∗, x∗〉 = ϕ−1(‖x∗‖)‖x∗‖,

‖J∗ϕ−1x∗‖ = ϕ−1(‖x∗‖).

We shall show that χJ−1
ϕ x∗ possesses the same metric properties and then

the result follows by unicity. Putting x∗ = Jϕx it follows (by definition of Jϕ)
that

‖x∗‖ = ϕ(‖x‖),
〈x∗, x〉 = ϕ(‖x‖)‖x‖ = ϕ−1(‖x∗‖)‖x∗‖.

and, consequently, we deduce that:

(2.4)
〈χJ−1

ϕ x∗, x∗〉 = 〈χ(x), x∗〉 = 〈x∗, x〉 = ϕ−1(‖x∗‖)‖x∗‖,
‖χJ−1

ϕ x∗‖ = ‖χ(x)‖ = ‖x‖ = ϕ−1(‖x‖).

Equality (2.2) follows by comparing (2.3) and (2.4) and using the uniqueness
result evoked above. Formula (2.1) is fundamental in proving the continuity of
J−1

ϕ . Indeed, let x∗n → x∗ in X∗. As any duality mapping on a reflexive Banach
space, J∗ϕ−1 is demicontinuous, J∗ϕ−1x∗n ⇀ J∗ϕ−1x∗. Consequently, we deduce
that:

(2.5) J−1
ϕ x∗n = χ−1J∗ϕ−1x∗n ⇀ χ−1J∗ϕ−1x∗ = J−1

ϕ x∗.

On the other hand,

‖J−1
ϕ x∗n‖ = ‖χ−1J∗ϕ−1x∗n‖ = ‖J∗ϕ−1x∗n‖(2.6)

= ϕ−1(‖x∗n‖) → ϕ−1(‖x‖) = ‖J−1
ϕ x∗‖.

From (2.5), (2.6) and the Kadeč–Klee property of X we infer that

J−1
ϕ x∗n → J−1

ϕ x∗. �

Corollary 2.4. If X is a weakly locally uniformly convex, reflexive and
smooth real Banach space then any duality mapping Jϕ:X → X∗ is bijective and
has a continuous inverse given by (2.1).

Proof. Since any weakly locally uniformly convex Banach space has the
Kadeč–Klee property (see Diestel [11, Chapter 2, §2, Theorems 3 and 4(iii)]) the
result follows from Corollary 2.3. �



34 G. Dinca — M. Rochdi

3. The main result

Theorem 3.1. Let X be a reflexive and smooth real Banach space having the
Kadeč–Klee property. Suppose that X is compactly embedded in the real Banach
space Z.

Denote by i:X → Z the compact injection of X into Z and by cZ — the best
constant in the inequality

(3.1) ‖ix‖Z ≤ c‖x‖X for all x ∈ X.

Let ϕ and ψ be gauge functions, Jϕ:X → X∗ be the duality mapping subordinated
to ϕ and N :Z → Z∗ be a demicontinous operator satisfying the growth condition:

(3.2) ‖Nz‖ ≤ c1ψ(‖z‖) + c2 for all z ∈ i(X),

with constants c1 ≥ 0, c2 ≥ 0. Suppose that there is a constant r > 0 such that

(3.3) ϕ(t)− c1cZψ(cZt)− c2cZ > 0 for all t ≥ r.

Then the solution set of the equation

(3.4) Jϕu = Nu

is nonempty, compact and contained in B(0, r).

The following result (Proposition 4 in [13]) will be involved in the proof.

Proposition 3.2. Let X be a real reflexive Banach space, compactly em-
bedded in the real Banach space Z. Denote by i the compact injection of X into
Z and, for any p ∈ [1,∞), define

(3.5) λ1,p := inf
{

‖x‖p
X

‖i(x)‖p
Z

: x ∈ X \ 0
}
.

Then λ1,p is attained and λ
−1/p
1,p is the best constant cZ in inequality (3.1). In

particular, ‖i‖ = ‖i∗‖ = λ
−1/p
1,p = cZ .

Proof of Theorem 3.1. According to Corollary 2.3, Jϕ is bijective and
has a continuous inverse J−1

ϕ given by (2.1). Consequently, the solution set of
(3.4) (defined by (1.4)) coincides with the fixed point set of the compact operator

(3.6) T = J−1
ϕ (i∗Ni):X → X.

Thus the problem reduces to that of proving, under the hypotheses of Theo-
rem 3.1, that the fixed point set of the compact operator T defined by (3.6) is
nonempty, compact and contained in B(0, r).

We shall prove this by using the method of a priori estimate, namely we shall
show that

(3.7) {x ∈ X : ∃ t ∈ [0, 1], x = tTx} ⊂ B(0, r),
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with r given by (3.3). As for t = 0 the only point in X which satisfies x = tTx

is x = 0, let t ∈ (0, 1] and x ∈ X be such that

x = tTx = tJ−1
ϕ (i∗Ni)x.

It follows that

(3.8) ϕ(‖x‖) ≤ ϕ

(
‖x‖
t

)
=

∥∥∥∥Jϕ

(
x

t

)∥∥∥∥ = ‖(i∗Ni)x‖.

By using the growth condition (3.2) we infer that

‖(i∗Ni)x‖ ≤ ‖i∗‖‖N(ix)‖ ≤ ‖i∗‖[c1ψ(‖ix‖) + c2]

≤ ‖i∗‖[c1ψ(‖i‖‖x‖) + c2] = c1cZψ(cZ‖x‖) + c2cZ .

Thus, we have obtained

(3.9) ‖(i∗Ni)x‖ ≤ c1cZψ(cZ‖x‖) + c2cZ .

By combining (3.8) and (3.9) one obtains

ϕ(‖x‖)− c1cZψ(cZ‖x‖)− c2cZ ≤ 0

and from this, by virtue of (3.3), it follows that ‖x‖ < r.
Once the a priori estimate (3.7) obtained, the invariance under homotopy of

compact transforms of the Leray–Schauder degree gives,

dLS(I − (tT ), B(0, r), 0) = dLS(I,B(0, r), 0) = 1, for all t ∈ [0, 1],

where I denotes the identity.
Consequently, Fix(tT ) 6= ∅ and Fix(tT ) ⊂ B(0, r) for any t ∈ [0, 1].
Since Fix(tT ) is closed and bounded, by standard arguments, the compact-

ness of (tT ) implies the compactness of Fix(tT ).
We conclude that, under the hypotheses of Theorem 3.1, Fix(tT ) is nonempty,

compact and included in B(0, r), for any t ∈ [0, 1]. For t = 1, we derive the
conclusion of Theorem 3.1. �

Remark 3.3. An alternative proof of Theorem 3.1 may be given by using
the Schauder’s fixed point theorem.

Remark 3.4. Clearly, if the hypotheses of Theorem 3.1 are satisfied with X
infinite dimensional then the solution set of equation (3.4) has empty interior.
This follows by S(Jϕ, N) being a compact set in an infinite dimensional Banach
space.
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Corollary 3.5. Suppose that the Banach spaces X and Z and the functions
ϕ, ψ and Jϕ are like in Theorem 3.1. Suppose that N :Z → Z∗ satisfies the
following generalized Lipschitz condition:

(3.10) ‖Nu−Nv‖ ≤ c1ψ(‖u− v‖) for all u and v ∈ i(X)

with constant c1 ≥ 0. If

(3.11) ϕ(t)− c1cZψ(cZt) →∞ as t→∞

then the solution set of the equation

Jϕu = Nu

is nonempty, compact and contained in B(0, r), where r is a positive constant
such that

ϕ(t)− c1cZψ(cZt) > cZ‖N0‖ for all t ≥ r.

Proof. Clearly, condition (3.10) implies

‖Nu‖ ≤ c1ψ(‖u‖) + ‖N0‖, for all u ∈ i(X),

i.e. N satisfies the growth condition (3.2) with c2 = ‖N0‖.
By virtue of (3.11), there is a constant r > 0 such that

ϕ(t)− c1cZψ(cZt)− cZ‖N0‖ > 0 for all t ≥ r,

saying that condition (3.3) of Theorem 3.1 is also satisfied. The result follows
from Theorem 3.1. �

Remark 3.6. Suppose that the hypotheses of Corollary 3.5 are satisfied
with ψ = ϕ, the gauge function ϕ being, in addition, a-positively homogeneous:
ϕ(αt) = αaϕ(t) for some constant a > 0 and all α, t ≥ 0. Then condition
(3.11) is satisfied if and only if c1 < λ1,a+1. That’s because, under the above
assumptions, we have

ϕ(t)− c1cZϕ(cZt) = (1− c1c
a+1
Z )ϕ(t) and cZ = λ

−1/(a+1)
1,a+1 .

Notice that this remark will be evoked later in proving the next corollary of
Theorem 3.1 (see Corollary 3.11 below).

Indeed, in what follows we shall derive some consequences of Theorem 3.1
assuming that the gauge function ϕ is a-positively homogeneous.

Some influences of this assumption on the properties of Jϕ are described
below.
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Proposition 3.7. A duality mapping Jϕ:X → P(X∗) on a real Banach
space is a-positively homogeneous (i.e. Jϕ(αx) = αaJϕx for all α ∈ R+ and
x ∈ X) if and only if ϕ is a-positively homogeneous.

Proof. Suppose that Jϕ(αx) = αaJϕx, for all α ≥ 0 and all x ∈ X. Taking
the norm we derive that ϕ(α‖x‖) = αaϕ(‖x‖), i.e. ϕ is a-positively homogeneous.

Conversely, suppose that ϕ is a-positively homogeneous and let us show that
Jϕ(αx) = αaJϕx, for all α ≥ 0 and all x ∈ X. Since the equality is obvious for
α = 0 or x = 0, we shall prove it assuming that α > 0 and x 6= 0.

In order to prove that Jϕ(αx) ⊂ αaJϕx, take x∗ ∈ Jϕ(αx) and show that
x∗

αa
∈ Jϕx. That is true because of:〈

x∗

αa
, x

〉
=

1
αa+1

〈x∗, αx〉 =
1

αa+1
ϕ(α‖x‖)α‖x‖ = ϕ(‖x‖)‖x‖

and
‖x∗‖
αa

=
ϕ(α‖x‖)
αa

= ϕ(‖x‖).

In order to prove that αaJϕx ⊂ Jϕ(αx), take x∗ ∈ Jϕx and show that
αax∗ ∈ Jϕ(αx). That is true because of:

〈αax∗, αx〉 = αa+1〈x∗, x〉 = αa+1ϕ(‖x‖)‖x‖ = ϕ(α‖x‖)α‖x‖

and

‖αax∗‖ = αa‖x∗‖ = αaϕ(‖x‖) = ϕ(α‖x‖). �

A more general result is given by the next proposition:

Proposition 3.8 (see [15]). Let X be a real Banach space, ϕ and ψ two
gauge functions and Jϕ:X → P(X∗) the duality mapping subordinated to ϕ.
Then Jϕ is ψ-homogeneous,

Jϕ(αx) = ψ(α)Jϕx, for all α ≥ 0 and all x ∈ X,

if and only if ϕ(t) = ϕ(1)ta with a > 0 and ψ(t) = ta, for all t ≥ 0. In particular,
Jϕ is ϕ-homogeneous if and only if ϕ(t) = ta with a > 0, for all t ≥ 0.

Proposition 3.9. Let X be a smooth real Banach space and ϕ a gauge
function.

(a) If the duality mapping Jϕ satisfies the accretivity condition

(3.12) 〈Jϕu− Jϕv, u− v〉 ≥ αϕ(‖u− v‖)‖u− v‖

for some constant α > 0 and any u, v ∈ X then, necessarily, α ≤ 1.
(b) If, in addition, ϕ is a-positively homogeneous then α ≤ 1/2a−1.



38 G. Dinca — M. Rochdi

Proof. Indeed, putting v = 0 and any u 6= 0 in (3.12) it easily follows that
α ≤ 1.

If, in addition, ϕ is a-positively homogeneous then, by putting v = −u for
any u 6= 0 in (3.12) and taking into account the oddness of Jϕ and the a-positive
homogeneity of ϕ it easily follows that α ≤ 1/2a−1. �

Remark 3.10. It follows from Proposition 3.9 that if ϕ is a-positively ho-
mogeneous with a > 1 and Jϕ satisfies (3.12) then, necessarily, α < 1.

If ϕ is a-positively homogeneous with a = 1 (in this case, we shall simply
say that ϕ is positively homogeneous) there are duality mappings Jϕ satisfying
(3.12) with α = 1.

For example, the duality mapping on
◦
H1(Ω) subordinated to the identity

gauge function ϕ(t) = t is the minus Laplacian, −∆:
◦
H1(Ω) → H−1Ω, defined

by

〈−∆u, v〉 =
∫

Ω

∇u · ∇v dx for all u, v ∈
◦
H1(Ω).

Clearly, for any u, v ∈
◦
H1(Ω) one has

〈−∆u− (−∆v), u− v〉 = ‖u− v‖2
◦
H1(Ω)

= ϕ(‖u− v‖ ◦
H1(Ω)

)‖u− v‖ ◦
H1(Ω)

,

i.e. condition (3.12) is satisfied with equality and α = 1.

Corollary 3.11. Suppose that the Banach spaces X and Z as well and the
functions ϕ, ψ and Jϕ are like in Theorem 3.1. Suppose, in addition, that ϕ is
(p − 1)-positively homogeneous with p ∈ [2,∞) and Jϕ satisfies the accretivity
condition (3.12). Suppose that N :Z → Z∗ satisfies the following generalized
Lipschitz condition:

(3.13) ‖Nu−Nv‖ ≤ cϕ(‖u− v‖), for all u, v ∈ i(X).

Then, either

(a) p ∈ [2,∞) and 0 ≤ c1 < λ1,pα,

or

(b) p ∈ (2,∞) and c1 = λ1,pα,

implies that the solution set of the equation

(3.14) Jϕu = Nu

is nonempty, compact, convex and contained in B(0, r) with

(3.15) r > λ
1/p
1,p ϕ

−1(1)
(

‖N0‖
λ1,p − c1

)1/(p−1)

.
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Moreover, if condition (a) is satisfied, then the solution set of equation (3.14)
reduces to one point.

Proof. First, let us remark that the hypotheses of Corollary 3.11 entail the
fulfillment of those of Corollary 3.5.

Indeed, we deduce from (3.13) that condition (3.10) is satisfied with ψ = ϕ.
Since ψ = ϕ and ϕ is (p−1)-positively homogeneous one has that condition (3.11)
is satisfied if and only if c1 < λ1,p (see Remark 3.6). Under the hypotheses of
any of the alternative statements of Corollary 3.11, this condition is satisfied.
Indeed, if p ∈ [2,∞) and c1 < λ1,pα condition c1 < λ1,p is satisfied since α ≤ 1
(see Proposition 3.9). If p ∈ (2,∞) and c1 = λ1,pα, condition c1 < λ1,p is also
satisfied since, by Proposition 3.9 again, α ≤ 1/2p−2 < 1.

According to Corollary 3.5 we infer that, in both situation, S(Jϕ, N) is
nonempty compact and contained in B(0, r), the positive constant r being such
that

ϕ(t)− c1cZϕ(cZt) > cZ‖N0‖ for all t ≥ r.

Since ϕ is (p − 1)-positively homogeneous and cZ = λ
−1/p
1,p , the previous

inequality rewrites as ϕ(t) > (λ1/p−1
1,p /(λ1,p − c1))‖N0‖ for all t ≥ r, which is

equivalent with (3.15).
Now we shall prove the convexity of S(Jϕ, N). As it was already shown,

S(Jϕ, N) = Fix(T ) with T = J−1
ϕ K:X → X compact. Recalling that K =

(i∗Ni):X → X∗, using (3.13), the fact that ‖i‖ = ‖i∗‖ = λ
− 1

p

1,p and the (p − 1)-
positive homogeneity of ϕ one obtains that K satisfies

(3.16) ‖Ku−Kv‖ ≤ c1
λ1,p

ϕ(‖u− v‖) for all u, v ∈ X.

On the other hand, it follows from (3.12) that

‖Jϕu− Jϕv‖ ≥ αϕ(‖u− v‖) for all u, v ∈ X,

which is equivalent with

(3.17) ‖J−1
ϕ u∗ − J−1

ϕ v∗‖ ≤ ϕ−1

[
1
α
‖u∗ − v∗‖

]
=

1
α1/(p−1)

ϕ−1(‖u∗ − v∗‖)

for all u∗, v∗ ∈ X∗.
Finally, by putting u∗ = Ku and v∗ = Kv in (3.17) we deduce that the

compact operator T = J−1
ϕ K satisfies

(3.18) ‖Tu− Tv‖ ≤
(

c1
λ1,pα

)1/(p−1)

‖u− v‖ for all u, v ∈ X.

Assume that Fix(T ) would contain at least two different points, say u and v.
Then, from ‖u−v‖ = ‖Tu−Tv‖ and (3.18) it follows that λ1,pα ≤ c1. We deduce
that if c1 < λ1,pα then Fix(T ) contains at most one point. Corollary 3.11 just
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says that if p ∈ [2,∞) and c1 < λ1,pα then Fix(T ) contains precisely one point,
namely the unique fixed point of the strict contraction T defined by (3.18).

If p ∈ (2,∞) and c1 = λ1,pα then it follows from (3.18) that T is nonexpan-
sive. Consequently, since X is strictly convex, S(Jϕ, N) = Fix(T ) is convex (see
Brezis [6, Theorem 1.2]). �

Remark 3.12. Under the hypotheses of Corollary 3.11 and, in addition, if
N0 = 0, then the only solution of equation (3.14) is the trivial one. Indeed,
since Jϕ0 = 0 it follows that, if N0 = 0, 0 ∈ S(Jϕ, N). On the other hand,
S(Jϕ, N) ⊂ B(0, r) (see (3.15)) for any r > 0, thus S(Jϕ, N) = {0}.

A direct proof of this result may be given as follows. Suppose that, even one
has N0 = 0, it would exist u ∈ S(Jϕ, N), u 6= 0. Then, from Jϕu = Ku and
(3.16) we derive that

ϕ(‖u‖) = ‖Jϕu‖ = ‖Ku‖ = ‖Ku−K0‖ ≤ c1
λ1,p

ϕ(‖u‖),

which implies λ1,p ≤ c1, contradiction.

4. Applications

In the sequel, Ω will be a bounded domain in RN , N ≥ 2, with regular
boundary. For p ∈ (1,∞) we shall use the standard notations

W 1,p(Ω) =
{
u ∈ Lp(Ω) :

∂u

∂xi
∈ Lp(Ω), i = 1, . . . N

}
equipped with the norm

‖u‖p
W 1,p(Ω) = ‖u‖p

Lp +
N∑

i=1

∥∥∥∥ ∂u∂xi

∥∥∥∥p

Lp

.

It is well known that (W 1,p(Ω), ‖ · ‖W 1,p(Ω)) is separable, reflexive and uniformly
convex (see Adams [1], Brezis [7]). We need the space

W 1,p
0 (Ω) = the closure of C∞0 (Ω) in the space W 1,p(Ω)

= {u ∈W 1,p(Ω) : u = 0 on ∂Ω},

the value of u on ∂Ω being understood in the sense of the trace.
The dual space (W 1,p

0 (Ω))∗ will be denoted by W−1,p′ , when 1/p+ 1/p′ = 1.
For each u ∈W 1,p(Ω) we put

∇u =
(
∂u

∂x1
, . . . ,

∂u

∂xN

)
, |∇u| =

( N∑
i=1

(
∂u

∂xi

)2)1/2

and let us remark that

|∇u| ∈ Lp(Ω), |∇u|p−2 ∂u

∂xi
∈ Lp′(Ω) for i = 1, . . . , N.
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Therefore, by the theorem concerning the form of the elements of W−1,p′(Ω)
(see Brezis [7] or Lions [19]) it follows that the operator −∆p (usually called the
minus p-Laplacian) defined by

−∆pu = −div(|∇u|p−2∇u)

may be seen acting from W 1,p
0 into W−1,p′(Ω) by

(4.1) 〈−∆pu, v〉 =
∫

Ω

|∇u|p−2∇u∇v dx for all u, v ∈W 1,p
0 (Ω).

By virtue of the Poincaré inequality

‖u‖Lp ≤ Const.(Ω, n)‖|∇u|‖Lp for all u ∈W 1,p
0 (Ω),

the functional W 1,p
0 (Ω) 3 u→ ‖u‖1,p := ‖|∇u|‖Lp is a norm on W 1,p

0 (Ω), equiv-
alent with ‖ · ‖W 1,p(Ω)-norm. Moreover, (W 1,p

0 (Ω), ‖ · ‖1,p) is reflexive smooth
and uniformly convex (see e.g. [14, Theorems 6 and 7]).

Being uniformly convex, (W 1,p
0 (Ω), ‖·‖1,p) has, in particular, the Kadeč–Klee

property.
Moreover, −∆p = Jϕ where Jϕ: (W 1,p

0 (Ω), ‖ · ‖1,p) → (W 1,p
0 (Ω), ‖ · ‖1,p)∗ =

W−1,p′ is the duality mapping corresponding to the gauge function, ϕ(t) = tp−1.
The idea to present the operator −∆p, 1 < p < ∞, as a duality mapping

Jϕ: (W 1,p
0 , ‖·‖1,p) →W−1,p′ , 1/p+ 1/p′ = 1 corresponding to the gauge function

ϕ(t) = tp−1 originates in the well known book of Lions [19]. This presentation
allows us to apply the results of the preceding sections (given for duality map-
pings) to the particular case of the p-Laplacian. It is what we shall do in the
last part of this paper.

Below, the space W 1,p
0 (Ω) will always be considered to be endowed with the

norm ‖·‖1,p. Some detours concerning the Nemytskĭı (or superposition) operator
are needed. Let f : Ω× R → R be a Caratheodory function, i.e.

(a) for each s ∈ R, the function x→ f(x, s) is Lebesque measurable in Ω;
(b) for almost every x ∈ Ω, the function s→ f(x, s) is continuous in R.

We make the convention that in the case of a Caratheodory function, the asser-
tion “x ∈ Ω” to be understood in the sense “almost every x ∈ Ω”.

Let S be the set of all measurable functions u: Ω → R.

Proposition 4.1. If f : Ω × R → R is Caratheodory then, for each u ∈ S,
the function (Nfu): Ω → R defined by

(Nfu)(x) = f(x, u(x)) for x ∈ Ω

belongs to S too.

In view of this proposition, a Caratheodory function f : Ω×R → R defines an
operator Nf :S → S, which is called Nemytskĭı (or superpositions) operator. The
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following proposition states a necessary and sufficient condition that a Nemytskĭı
operator maps a Lp space into another Lq space.

Proposition 4.2. Let f : Ω × R → R be Caratheodory, and 1 ≤ p < ∞,
1 ≤ q <∞. Then Nf maps the space Lp(Ω) into the space Lq(Ω) if and only if
f satisfies the growth condition

|f(x, s)| ≤ c1|s|p/q + b(x), x ∈ Ω, s ∈ R

for some b ∈ Lq and c1 = constant ≥ 0. Moreover, in this case Nf is always
continuous and bounded and satisfies the growth condition

‖Nfu‖Lq ≤ c1‖u‖
p
q

Lp + ‖b‖Lq for all u ∈ Lp.

For the proof of Propositions 3.2 and 3.7 as well as that for other properties
of the superposition operator acting in some function spaces see, for example,
Appell [2], Appell and Zabreyko [4] and the references therein.

Theorem 4.3. Let p ∈ [2,∞) and

λ1,p = inf:
{ ‖u‖p

1,p

‖i(u)‖p
Lp

: u ∈W 1,p
0 (Ω) \ {0}

}
where i stands for the compact embedding of W 1,p

0 (Ω) into Lp(Ω). Suppose that
f : Ω× R → R is a Caratheodory function such that:

(a) Nf acts from Lp(Ω) into Lp′(Ω), 1/p+ 1/p′ = 1;
(b) ‖Nfu−Nfv‖Lp′ ≤ c1‖u− v‖p−1

Lp , for all u, v ∈ Lp(Ω).

Let α(p) be the best constant for which the inequality

(4.2) 〈−∆pu− (−∆pv), u− v〉 ≥ α(p)‖u− v‖p
1,p

is satisfied for all u and v in W 1,p
0 (Ω). Under these hypotheses, consider the

Dirichlet problem

(P)
−∆pu = f(x, u) in Ω,

u = 0 on ∂Ω.

Then, if either

(i) p ∈ [2,∞) and c1 < λ1,pα(p)

or

(ii) p ∈ (2,∞) and c1 = λ1,pα(p),

the weak solution set of problem (P) is nonempty, compact, convex and contained
in B(0, r) with

r > λ
1/p
1,p

(
‖Nf0‖Lp′

λ1,p − c1

)1/(p−1)

.
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Moreover, if (i) is satisfied, the weak solution set of problem (P) reduces to one
point.

Proof. It is well known that the weak solution set of problem (P) is the
set of all elements u ∈W 1,p

0 (Ω), which satisfies

(4.3)
∫

Ω

|∇u|p−2∇u · ∇v dx =
∫

Ω

f(x, u)v dx

for any v ∈ W 1,p
0 (Ω). It may be easily shown that the weak solution set of

problem (P) coincides with the solution set of the equation

(4.4) −∆pu = Nfu

where −∆p:W
1,p
0 (Ω) → W−1,p′(Ω) is defined by (4.1) and Nf :Lp(Ω) → Lp′(Ω)

is the Nemytskĭı operator defined by the Carathéodory function f , which satisfies
(a) and (b).

Since −∆p defined by (4.1) is the duality mapping on W 1,p
0 (Ω) corresponding

to the gauge function ϕ(t) = tp−1, W 1,p
0 (Ω) is compactly embedded in Lp(Ω) and

Nf :Lp(Ω) → Lp′(Ω) is continuous then the solution set of (4.4) is the set of all
solutions in W 1,p

0 (Ω) of the operator equation

(4.5) −∆pu = (i∗Nf i)u

where i stands for the compact injection of W 1,p
0 (Ω) into Lp(Ω) and i∗ is its

adjoint (see (1.4)). Finally, u ∈ W 1,p
0 (Ω) satisfies (4.5) if and only if it satisfies

(4.3).
Before giving the proper proof of Theorem 4.3, we discuss about the exis-

tence of strictly positive constants α satisfying (4.2). If p ∈ [2,∞) is given, the
existence of a strictly positive constant α satisfying (4.2) was first proved by
Glowinski and Marocco [16]. In fact, such a constant is depending on p.

First, since −∆p is the duality mapping on W 1,p
0 (Ω) corresponding to the

gauge function ϕ(t) = tp−1 (which is (p − 1)-positively homogeneous) one has
α ≤ 1/2p−2 (Proposition 3.9).

On the other hand, for a given p ∈ [2,∞), α = min(1/2p+1, 1/5p−2) is a
constant that satisfies (4.2) (see [17]). This constant is not the best one (one
can see that by considering the case p = 2 for which the above estimation gives
α = 1/8 while the best constant satisfying (4.2) in this case is α = 1).

Thus, for a given p ∈ [2,∞), the best constant α(p) in (4.2) satisfies

min
(

1
2p+1

,
1

5p−2

)
≤ α(p) ≤ 1

2p−2
.

Handling these preliminaries, the proof of theorem is as follows.
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The hypotheses of Theorem 4.3 entail the satisfaction of the hypotheses of
Corollary 3.11 under the following choices:

• (X, ‖ · ‖X) = (W 1,p
0 (Ω), ‖ · ‖1,p); (Z, ‖ · ‖Z) = (Lp(Ω), ‖ · ‖Lp), p ∈ [2,∞);

• ϕ(t) = tp−1, t ≥ 0; Jϕ = −∆p:W
1,p
0 (Ω) →W−1,p′(Ω);

• N = Nf :Lp → Lp′ , (1/p+ 1/p′ = 1);
• λ1,p = inf{‖u‖p

1,p/‖i(u)‖
p
Lp : u ∈W 1,p

0 (Ω) \ {0}}, i being the compact
injection of W 1,p

0 (Ω) into Lp(Ω)

Indeed, since p ∈ [2,∞), the reflexive smooth and uniformly convex Banach
space (W 1,p

0 (Ω), ‖ · ‖1,p) is compactly embedded in (Lp(Ω), ‖ · ‖Lp(Ω)) (in fact,
all these properties are valid for any p ∈ (1,∞)). Moreover, being uniformly
convex, (W 1,p

0 (Ω), ‖ · ‖1,p) has, in particular, the Kadeč–Klee property.
The gauge function ϕ(t) = tp−1 is (p− 1) positively homogeneous and Jϕ =

−∆p:W
1,p
0 (Ω) → W−1,p′(Ω) satisfies the accretivity condition (3.12) by virtue

of (4.2) (notice again that constants α satisfying (4.2) exist and the best one
satisfies min(1/2p+1, 1/5p−2) ≤ α(p) ≤ 1/2p−2).

Finally, from (b) we deduce that inequality (3.13) in Corollary 3.11 is satisfied
with N = Nf and ϕ(t) = tp−1.

The thesis of Corollary 3.11 stated in the particular framework imposed by
the above indicated choices becomes the thesis of Theorem 4.3. �

Example 4.4. Consider the problem

(P2)
−∆u = ah(u) + b in Ω,

u|∂Ω = 0,

where a ∈ L∞(Ω), a(x) ≥ 0 almost everywhere in Ω, b ∈ L2(Ω) and h: R → R is
defined by

h(s) =


sq−1 for s ≥ 1,

s for − 1 ≤ s < 1,

−|s|q−1 for s < −1,
q being a given number, which satisfies 1 < q < 2.

Let i be the compact injection of
◦
H1(Ω) into L2(Ω). If

‖a‖L∞ < λ1,2 = inf
{ ‖u‖2

◦
H1(Ω)

‖i(u)‖2
L2(Ω)

: u ∈
◦
H1(Ω) \ {0}

}
,

the problem (P2) admits a unique weak solution.
The result follows from Theorem 4.3 for p = 2 f(x, s) = a(x)h(s) + b(x) and

c1 = ‖a‖L∞ . The only things that have to be proved are: the Nemytskĭı operator
Nf generated by f is well defined from L2(Ω) into L2(Ω) and satisfies

(4.6) ‖Nfu−Nfv‖L2(Ω) ≤ ‖a‖L∞‖u− v‖L2(Ω), for all u, v ∈ L2(Ω).
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This is elementary but not trivial. First, we shall prove that:

|h(s)| =


|s| < |s|q−1 if 0 < |s| < 1,

|s| = |s|q−1 if |s| = 0 and |s| = 1,

|s|q−1 < |s| if |s| > 1.

Indeed, if 0 < |s| < 1, out of 1 < 1/|s| and 2−q > 0 it follows that 1 < (1/|s|)2−q,
which is equivalent with |s| < |s|q−1.

Let |s| > 1. Since 0 < q − 1 < 1 we infer that |h(s)| = |s|q−1 < |s|.
Now, since |h(s)| ≤ |s| for any s ∈ R, we deduce that, for any u ∈ L2(Ω),

|f(x, u(x))| ≤ a(x)|u(x)|+ |b(x)|

with a ∈ L∞(Ω) and b ∈ L2(Ω), thus (Nfu) ∈ L2(Ω).
In order to prove that (4.6) is true, it is sufficient to prove that f satisfies

(4.7) |f(x, s1)− f(x, s2)| ≤ a(x)|s1 − s2|, x ∈ Ω, s1, s2 ∈ R.

Indeed, by simple computations, it may be shown that (4.7) implies (4.6). Since

|f(x, s1)− f(x, s2)| = a(x)|h(s1)− h(s2)|,

the problem reduces to proving that h satisfies

|h(s1)− h(s2)| ≤ |s1 − s2|, for all s1, s2 ∈ R.

Let s1, s2 ∈ R. We shall examine successively the situations: s1, s2 ∈ R+,
s1, s2 ∈ R−, s1 ∈ R−, s2 ∈ R+. Let s1, s2 ∈ R+. If s1, s2 ∈ [0, 1] then, by
definition of h,

|h(s1)− h(s2)| = |s1 − s2|.

If 0 ≤ s1 ≤ 1 ≤ s2, then

|h(s1)− h(s2)| = |s1 − sq−1
2 |.

Since s2 ≥ 1 and 0 < q − 1 < 1 it follows that sq−1
2 ≥ 1 ≥ s1. Consequently,

|h(s1)− h(s2)| = sq−1
2 − s1 ≤ s2 − s1 = |s1 − s2|.

If s1, s2 ≥ 1, s1 6= s2 the result follows immediately by the mean value theorem.
Indeed, suppose that 1 ≤ s1 < s2. There is ξ ∈ (s1, s2) such that

|h(s1)− h(s2)| = |h′(ξ)||s1 − s2| < |s1 − s2|.

as much as 0 < h′(ξ) = (q − 1)/ξ2−q < 1.
We conclude that (4.7) is true for s1, s2 ∈ R+.
Due to the oddness of h, (4.7) is valid for s1, s2 ∈ R−.
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Finally, if s1 ∈ R+ and s2 ∈ R−, the oddness of h, the fact that h is positive
over R+ and inequality |h(s)| ≤ |s| for any s ∈ R enables us to write

|h(s1)− h(s2)| = |h(|s1|) + h(|s2|)| = h(s1) + h(|s2|)
≤ s1 + |s2| = |s1 + |s2|| = |s1 − s2|.

Acknowledgements. The first author acknowledges support from the Ro-
manian Ministry of Education and Research through CERES Programm (con-
tract no. C4-187/2004).

References

[1] R. A. Adams, Sobolev Spaces, Academic Press, 1975.

[2] J. Appell, The superposition operator in function spaces — A survey, Expo. Math. 6

(1988), 209–270.

[3] J. Appell, E. De Pascale and A. Vignoli, A semilinear Furi–Martelli–Vignoli spec-

trum, J. Anal. Appl. 20 (2001), 565–577.
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