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MULTIPLICITY RESULTS
FOR SUPERQUADRATIC DIRICHLET
BOUNDARY VALUE PROBLEMS IN R2

Anna Capietto — Walter Dambrosio

Abstract. In this paper it is studied the Dirichlet problem associated to
the planar system z′ = J∇F (t, z). We consider the situation where the

Hamiltonian F satisfies a superquadratic-type condition at infinity.

By means of a bifurcation argument we prove the existence of infinitely
many solutions. These solutions are distinguished by the Maslov index of

an associated linear system.

1. Introduction

We are concerned with a boundary value problem of the form

(1.1)

{
z′ = J∇F (t, z), z = (x, y) ∈ R2, t ∈ [0, π],

x(0) = 0 = x(π),

where J is the standard symplectic matrix and F ∈ C2([0, π]×R2; R+) satisfies
∇F (t, 0) = 0, for every t ∈ [0, π]. We prove a multiplicity result in the case when
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the nonlinear term F in (1.1) has a superquadratic growth. More precisely, we
assume in what follows that

lim
|z|→∞

λH(t, z) = ∞, uniformly in t ∈ [0, π],

where λH(t, z) is the minimum eigenvalue of H(t, z), the Hessian matrix of
F (t, z).

The problem of the existence of multiple solutions to superquadratic prob-
lems has been widely studied in the last decades.

In the framework of variational methods, Long [9] (generalizing a previous
result of Bahri–Berestycki [3]) has proved the existence of infinitely many periodic
solutions to an hamiltonian system in R2N , N ≥ 1, of the form ∇F (t, z) =
∇H(z) + f(t), being H a C1-function satisfying the Rabinowitz superlinearity
condition and such that there exist 1 < p1 ≤ p2 < 2p1 + 1, αi > 0, βi ≥ 0,
i = 1, 2 for which

α1|z|p1+1 − β1 ≤ H(z) ≤ α2|z|p2+1 + β2, for all z ∈ R2N .

In the particular case when system (1.1) arises from a second order scalar equa-
tion, several results are available in the literature. Here, we restrict ourselves to
considering some contributions based on an abstract bifurcation argument; we
refer indeed to the seminal paper by Rabinowitz [15] and, among others, to the
results by Esteban [8] and Rynne [16] (in which the case of 2m-th order equations
is also considered).

In these papers, multiplicity is achieved by means of estimates on the number
of zeros in [0, π] of (possible) solutions to second order equations.

In more recent years, some of the techniques developed in the above cited
works have been imported to the study of higher order equations, systems in
R2 and (under serious restrictions) in R2N , N ≥ 1, as well. More precisely,
Ward [17], [18] has used the concept of rotation number (cf. (2.9)) for the ob-
tention of a multiplicity result for planar systems. See also the work of C. Bere-
anu [4].

In [17], the proof is based on a global bifurcation result for a system of the
form

(1.2)

{
z′ = λJz + g(λ, t, z),

x(0) = 0 = x(π),

being g(λ, t, z) = o(|z|), |z| → 0.
Our result (Theorem 2.2) is based on a global bifurcation theorem that we

obtained in [5]. In that paper, we proved the existence of global continua of
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solutions to systems in R2N , N ≥ 1, of the form

(1.3)

{
z′ = λJS0(t)z + JG(t, z)z,

x(0) = 0 = x(π),

along which the Maslov index (cf. [1], [2]) is preserved.
In what follows, we assume that the Hessian matrix of F is positive definite

(cf. Remark 2.9). In this situation, the Maslov index is well-defined; moreover,
in the particular case of planar systems it coincides with the rotation number.
We are thus able to perform concrete estimates which lead (as an application of
the abstract bifurcation theorem) to the existence of infinitely many solutions
to (1.1).

2. Main result

Let us consider the Dirichlet problem

(2.1)

{
z′ = J∇F (t, z), z = (x, y) ∈ R2,

x(0) = 0 = x(π),

where F ∈ C2([0, π] × R2; R+) satisfies ∇F (t, 0) = 0, for every t ∈ [0, π]. We
denote by H(t, z) the Hessian matrix of F (t, z) and by λH(t, z) the minimum
eigenvalue of H(t, z); we assume that H(t, 0) is of class C1, H(t, z) is positive
definite and

(2.2) lim
|z|→∞

λH(t, z) = ∞, uniformly in t ∈ [0, π].

We observe that (2.2) is a superquadratic assumption on the Hamiltonian F .
Moreover, we suppose that there exist C > 0 and Z > 0 such that

(2.3)
∣∣∣∣∂F

∂t
(t, z)

∣∣∣∣ ≤ CF (t, z), for all t ∈ [0, π], |z| ≥ Z.

Example 2.1. We give an explicit example of a function F satisfying the
above assumptions.

Let us consider a function α ∈ C2([0, π]) such that

(2.4) α(t) > α0 > 0, for all t ∈ [0, π].

Moreover, for every z = (z1, z2) ∈ R2, let

A(z) = z1|z1|p−1 + z2|z2|q−1 + β(z),

where p > 2, q > 2 and β ∈ C2(R2; R+) is a scalar field whose Hessian is positive
definite and such that ∇β(0) = 0. Then, the function F defined by

F (t, z) = α(t)A(z), for all t ∈ [0, π], z ∈ R2,

satisfies the assumptions of Theorem 2.2.
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Indeed, F ∈ C2([0, π] × R2; R+) and ∇F (t, 0) = α(t)∇A(0) = 0, for every
t ∈ [0, π]. Moreover, the Hessian matrix of F (t, z) is

H(t, z) = α(t)HA(z),

where HA denotes the Hessian matrix of A. It is easy to check that

HA(z) = H∗(z) + Hβ(z),

where

H∗(z) =
(

p(p− 1)|z1|p−2 0
0 q(q − 1)|z2|q−2

)
and Hβ is the Hessian matrix of β. From the fact that the Hessian matrix of β

is positive definite we deduce that

HA(z) > H∗(z), for all z ∈ R2,

in the sense that the difference between the two matrices is positive definite. As
a consequence, from (2.4) we infer that

H(t, z) > α0H
∗(z), for all t ∈ [0, π], z ∈ R2.

This is sufficient to ensure that H is definite positive and that (2.2) holds true.
Finally, a straighforward computation, together with (2.4), proves that also

(2.3) is fulfilled.
We observe that the boundary value problem (2.1) can be written in the form

(2.5)

{
z′ = JS(t, z)z,

x(0) = 0 = x(π),

where S(t, z) is the symmetric matrix defined by

S(t, z) =
∫ 1

0

H(t, sz) ds, for all t ∈ [0, π], z ∈ R2.

Moreover, it is easy to see that assumption (2.2) implies that

(2.6) lim
|z|→∞

λS(t, z) = ∞, uniformly in t ∈ [0, π],

where λS(t, z) denotes the minimum eigenvalue of S(t, z).

For every solution z of (2.5) let us consider the Maslov index ([1], [2], [5]
and [13]) of the linear system

w′ = JS(t, z(t))w, w = (u, v),

with respect to the boundary conditions u(0) = 0 = u(π). Under the above
conditions, we will prove the following:
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Theorem 2.2. There exists k0 ∈ N such that for every integer k ≥ k0 there
exists a solution zk of (2.1) such that the Maslov index of w′ = JS(t, zk(t))w is
k − 1.

Remark 2.3. As for Hamiltonian systems, Theorem 2.2 improves Theorem 8
in [17]; indeed, in [17]–[19] the author studied a problem of the form (2.5) with
S a diagonal matrix.

Both these results are obtained through a bifurcation argument based on
the study of (1.3) and (1.2), respectively. However, it has to be pointed out
that in [17] the periodic BVP and general separated boundary conditions are
considered; moreover, in [17] an extension of the main result to some particular
system in R2N is treated as well. The reason why we mainly treat Hamiltonian
systems is explained in Remark 2.6.

We also point out that the paper [9] deals with the periodic problem in
R2N , N ≥ 1; on the other hand, the nonlinearity we consider in (1.1) need not
be a bounded perturbation of an autonomous function.

Finally, we observe that Theorem 2.2 is not comparable with results deal-
ing with a second order scalar equation of the form u′′ + g(u) = p(t), with
lim|x|→∞ g(x)/x = ∞. In fact, under this condition the hypothesis (2.2) might
fail.

In order to prove the result we use a bifurcation argument. First of all,
we observe that S(t, 0) := S0(t) is positive definite; let us then consider the
boundary value problem

(2.7)

{
z′ = λJS0(t)z + JG(t, z)z,

x(0) = 0 = x(π),

where G(t, z) = S(t, z) − S0(t) and λ ∈ [1,∞). We are interested in finding
solutions of (2.7) with λ = 1.

Since the matrix S0(t) is positive definite, for every t ∈ [0, π], there exists
an unbounded sequence µk, k ∈ Z, of (simple) eigenvalues of z′ = λJS0(t)z,
x(0) = 0 = x(π), such that µk → ±∞, as k → ±∞; in particular, there exists
k0 ∈ N such that µk > 1, for every k ≥ k0.

From [5, Theorem 3.9] we deduce that every point of the form (µk, 0) is
a global bifurcation point for (2.7); indeed, let us denote by Σ the closure of
the set of nontrivial solutions of (2.7). Then, for every k ≥ k0, Σ contains an
unbounded continuum Ck such that (µk, 0) ∈ Ck and m(λ, z) = k − 1, for every
(λ, z) ∈ Ck, where m(λ, z) is the Maslov index of the linear system

(2.8) w′ = λJS0(t)w + JG(t, z(t))w.
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In this framework, the fact that Ck is unbounded means that one of the
following conditions holds true:

(a) there exists (λn, zn) ∈ Ck such that λn →∞;
(b) there exists (λn, zn) ∈ Ck such that ||zn|| → ∞;
(c) there exists (λn, zn) ∈ Ck such that λn → 1+.

We will show that (a) and (b) cannot occur; this implies that the bifurcating
branch Ck must intersect the line λ = 1, giving rise to a solution to (2.1).

To this aim, let us first observe that in the case of planar systems the Maslov
index is strictly related to the rotation number; indeed, let (λ, z) be a solution
of (2.7) and let w = (u, v) be the solution of (2.8) such that (u(0), v(0)) = (0, 1).
The rotation number of (2.8) is defined as

(2.9) rot(λ, z) =
1
π

∫ π

0

u(t)v′(t)− u′(t)v(t)
u(t)2 + v(t)2

dt;

if we denote by qλ,z the quadratic form associated to the symmetric matrix
λS0(t) + G(t, z(t)), then it is easy to see that

(2.10) rot(λ, z) =
1
π

∫ π

0

qλ,z(u(t), v(t))
u(t)2 + v(t)2

dt.

By adapting the argument in [10] it is possible to check that

m(λ, z) = rot(λ, z)− 1.

Using this fact we are able to prove the following result:

Proposition 2.4. There exists Mk > 0 such that for every (λ, z) ∈ Ck we
have λ ≤ Mk.

Proof. For every (λ, z) ∈ Ck we have m(λ, z) = k − 1 and

(2.11) rot(λ, z) = k.

We denote by q(λ−1)S0 and qSz the quadratic forms associated to the matrices
(λ− 1)S0(t) and S(t, z(t)), respectively.

From assumption (2.6) we deduce that there exists M > 0 such that

qSz
(u, v) ≥ −M(u2 + v2), for all (u, v) ∈ R2;

therefore we obtain

qλ,z(u, v) ≥ q(λ−1)S0(u, v)−M(u2 + v2), for all (u, v) ∈ R2.

Moreover, since S0(t) is positive definite, we conclude that there exists λ0 > 0
such that

(2.12) qλ,z(u, v) ≥ ((λ− 1)λ0 −M)(u2 + v2), for all (u, v) ∈ R2.
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From (2.10) and (2.12) we infer that

rot(λ, z) ≥ (λ− 1)λ0 −M ;

using now (2.11) we get

λ ≤ k + M

λ0
+ 1.

This concludes the proof. �

In order to exclude also alternative (b), we need to prove more properties of
the solutions to (2.7) and of the Maslov index.

Proposition 2.5. Then, for every R1 > 0 there exists R2 > 0 such that for
every solution (λ, z) of (2.7) we have

if |z(0)| ≤ R1 then |z(t)| ≤ R2, for all t ∈ [0, π].

Proof. The proof is based on [7, Lemma 3]; accordingly, it is sufficient to
find a positive function Vλ ∈ C1([0, π]×R2), λ ≥ 1, for which there exist K > 0
and Z > 0 such that

(2.13)
∣∣∣∣∂Vλ

∂t
(t, z) + 〈∇Vλ(t, z), λJS0(t)z + JG(t, z)z〉

∣∣∣∣ ≤ KVλ(t, z),

for all t ∈ [0, π], |z| ≥ Z, λ ≥ 1. To this aim, let

Vλ(t, z) = F (t, z) +
1
2
(λ− 1)〈S0(t)z, z〉+ 1, for all (t, z) ∈ [0, π]× R2, λ ≥ 1.

We observe that since S0(t) is positive definite, for every t ∈ [0, π], then

(2.14) |〈S′0(t)z, z〉| ≤ c1||z||2 ≤ c2〈S0(t)z, z〉, for all z ∈ R2,

for some positive constants c1 and c2; (2.14) and (2.3) ensure that there exists
c3 > 0 such that

(2.15)
∣∣∣∣∂Vλ

∂t
(t, z)

∣∣∣∣ ≤ c3Vλ(t, z), for all t ∈ [0, π], |z| ≥ Z, λ ≥ 1.

Now, recalling that

λJS0(t)z +JG(t, z)z = (λ−1)JS0(t)z +JS(t, z)z = (λ−1)JS0(t)z +J∇F (t, z),

it is easy to see that

(2.16) 〈∇Vλ(t, z), λJS0(t)z + JG(t, z)z〉
= 〈∇F (t, z) + (λ− 1)S0(t)z, (λ− 1)JS0(t)z + J∇F (t, z)〉 = 0.

From (2.15) and (2.16) we deduce that (2.13) holds true. �

Remark 2.6. We observe that the fact that the system under consideration
is Hamiltonian is used only in the proof of Proposition 2.5, in order to find
a suitable function Vλ satisfying (2.13).
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It is possible to prove a multiplicity result on the lines of Theorem 2.2 for
a more general boundary value problem of the form (2.5); indeed, it is sufficient
to require (2.3) and the existence of a “guiding-type” function Vλ (cf. [11]) for
which (2.13) holds true.

Proposition 2.7. For every N > 0 there exists ZN > 0 such that for every
solution (λ, z) of (2.7) we have

(2.17) if |z(0)| ≥ ZN then m(λ, z) > N.

Proof. Let us denote by mz and mN the Maslov indices of the systems
w′ = JS(t, z(t))w and w′ = (N + 1)Jw, respectively. It is immediate to see that
mN = N .

The monotonicity property of the Maslov index (see [14, Theorem 5.7]) en-
sures that

(2.18) if S0(t) is positive definite then m(λ, z) ≥ mz.

Now, from (2.6) we deduce that there exists Z∗
N such that

(2.19) if |z| ≥ Z∗
N then λS(t, z) > N + 1, for all t ∈ [0, π].

Moreover, from Proposition 2.5 we infer that there exists ZN such that for every
solution (λ, z) of (2.7) we have

(2.20) if |z(0)| ≥ ZN then |z(t)| ≥ Z∗
N , for all t ∈ [0, π].

From (2.18)–(2.20) and using again the monotonicity property of the Maslov
index we deduce that

if |z(0)| ≥ ZN then m(λ, z) ≥ mz > mN = N. �

Using these results we can prove the following:

Proposition 2.8. There exists Rk > 0 such that for every (λ, z) ∈ Ck we
have ||u|| ≤ Rk.

Proof. By contradiction, assume that for every R > R2(Zk) (with Zk given
in Proposition 2.7 and R2(Zk) as in Proposition 2.5) there exists (λ, z) ∈ Ck such
that ||z|| ≥ R. For the solution z we necessarily have |z(0)| ≥ Zk; hence, from
(2.17) we infer that m(λ, z) > k. This contradicts the fact that m(λ, z) = k− 1,
for every (λ, z) ∈ Ck. �

From Propositions 2.4 and 2.8 we are able to exclude conditions (a) and (b);
as already observed, this proves Theorem 2.2.

Remark 2.9. Theorem 2.2 can be proved also in the case when H(t, z) is
not positive definite for every (t, z) ∈ [0, π]× R2.
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Indeed, the existence of a bifurcating unbounded branch Ck is obtained in [5]
using the following facts:

(a) the fact that H(t, z) is positive definite, for every (t, z) ∈ [0, π] × R2,
implies that it is possible to define the Maslov index of (2.8), for every
solution (λ, z) of (2.7);

(b) the functional φ(λ, z) = m(λ, z) is defined and continuous on the set of
all the solutions of (2.7).

When H(t, z) is not positive definite for every (t, z) ∈ [0, π]×R2, it is not possible,
in general, to define m(λ, z) for every solution (λ, z) of (2.7). However, in this
situation we can define

φ̃(λ, z) =

{
m(λ, z) if defined,

−1 otherwise.

It is possible to see that φ̃(λ, z) = −1 if and only if rot(λ, z) = 0; hence the
relation

φ̃(λ, z) = rot(λ, z)− 1, for all (λ, z),

is satisfied and the continuity of φ̃ follows from the continuity of the rotation
number.

Remark 2.10. We observe that it is possible to obtain a multiplicity result
on the lines of Theorem 2.2 by assuming instead of (2.2) the following

lim
||z||→∞

λH(t, z) = −∞, uniformly in t ∈ [0, π],

where λH(t, z) is the maximum eigenvalue of H(t, z).
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Università di Torino

Via Carlo Alberto 10

10123 Torino, ITALY

E-mail address: anna.capietto@unito.it, walter.dambrosio@unito.it

TMNA : Volume 31 – 2008 – No 1


