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ON PAIRS OF POLYNOMIAL PLANAR FOLIATIONS

REGILENE D. S. OLIVEIRA — MARCO ANTONIO TEIXEIRA

ABSTRACT. In this article we deal with pairs of polynomial planar folia-
tions. The main results concern global and local structural stability as well
as the finite determinacy for these pairs. These results can be applied to
study a special class of quadratic differential forms in the plane.

1. Introduction

The geometric-qualitative study of flows and general dynamical systems on
surfaces has been during many decades the object of growing interest in many
branches of pure and applied mathematics. After the work of Poincaré, Lyapunov
and Bendixson this has become a well-established subject in mathematics and
the focus of considerable attention. Moreover, nowadays it is fairly accessible for
a broad scientific audience. From different point of views attention has been paid
to the concept of structural stability and to the classification of phase portraits
of the systems up to C%-equivalence.

In this paper topological aspects of pairs of foliations in the plane represented
by polynomial 1-forms are considered. As a matter of fact we are concerned with
the simultaneous behavior of such pairs.
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Pairs of 1-forms appear naturally in several mathematical contexts. For ex-
ample in quadratic differential forms (QDF) or Binary Equations [2], Differential
Geometry (see [23])) and Partial differential equations (see [14]).

Guinez, in [11], introduced the set F,, of the planar polynomial positive QDF
with degree less than or equal to a positive integer m. He characterized the
structurally stable elements in F,,. We emphasize that in [11] the case where the
pair of foliations f;(i = 1 and/or 2) associated to the form has no characteristic
directions is not considered.

Recently many authors have worked in planar homogeneous polynomial vec-
tor fields; for example, Sibirsky [21], Cima and Llibre [15], Collins [5], Llibre,
Del Rio and Rodrigues [4], among others. All of them treat the problem of the
classification of homogeneous polynomial vector fields.

Concerning QDF, Guinez and Bruce-Tari worked on stability and normal
forms of families of QDF. In [8]-[11] Guifiez restricted the analysis to homoge-
neous systems of order m and related problems. In a recent paper, Gutierrez,
Oliveira and Teixeira [12] classified the singularities of a special class of QDF
via Newton diagrams. In this context the papers of Bruce-Fidal [3], Michel [16],
Davydov [7], Teixeira [24] and Oliveira and Tari [19], [20] should also be men-
tioned. In all these works the classification problem of pairs of foliations were
treated but systems without characteristic orbits were avoided.

If a 1-form « is a planar homogeneous differential form of degree m we
say that a belongs to the set H,,, while a pair in similar conditions belong to
A* = H,, x H,, where k = m +n. To each pair (a, 3) we associate Sing the set
of the points where o and ( are tangent.

We obtain the concept of structural stability in our class of pairs from the
following definition: Two pairs (a1, (1) and (az, 82) in Ay, are equivalent if there
exists a homeomorphism h that is a simultaneous equivalence between the pair
of foliations. As a consequence this equivalence takes the singular set of (a1, 1)
to the singular set of (ag, f2).

In this paper we give a complete characterization of the structural stability
in A*. It is worthwhile to mention that the case where a and /3 are global foci
is extensively studied here. Problems related with finite determinacy of pair of
foliations are also considered.

In the remainder of this section we present basic definitions and results nec-
essary throughout this paper and we state our main results. In Section 2 we
study pairs of planar homogeneous foci. We exhibit a topological invariant for
the structural stability of such pairs and give necessary and sufficient conditions
for these pairs to be structurally stable. Local and global aspects are considered.
We do the same for those pairs where « and/or § are not foci, in Section 3.
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We also present conditions on a planar polynomial pair of 1-forms to be finite
determined in Section 4.

1.1. Setting the problem. A vector field X = (P, Q) € H,, in differential

systems terminology is written as
& =Pry), 9=0Q(y).
In polar coordinates x = r cos#, y = rsin 6, the above expressions go over to
(1.1) r=7r"f(9), 6 =r""1g(0),
where

f(0) =cos@ - P(cosf,sinf) + sin6 - Q(cos b, sinb),
g(0) = cosf - Q(cosb,sinf) —sinf - P(cosb,sinb).

If s satisfies $ = r™~ !, then the system can be written as

r=rf(0), 0 =g(0),

where 7’ and 6’ denote the derivative of r and 6, respectively, with respect to s.
Throughout the paper we are assuming that g(f) has only zeros with mul-
tiplicity k = 1. We also assume that f(6p) # 0 provided that g(6y) = 0. This
means that we always get a linear system with hyperbolic critical points.
Finally, considering the change of variable p = r/(1 + r) we are able to study
the system in a neighbourhood of the infinity and we have:

(1.2) p'=p1-p)f®), O =g),

when (p, 0) is taken in the open disk D = {(p,0):0 < p < 1}. Observe that
this system is also defined for p > 1. We also observe that the boundary of
D is an invariant circle under the flow of the system. This circle corresponds
to the infinity of the first system. So the induced vector field F(X) defined in
a neighbourhood U of D is an analytic extension of the vector field X at infinity.

The concept of structural stability in A¥ = H,, x H, is the following:
(X,Y) € A* is structurally stable with respect to perturbations in H,, x H,
if there exists a neighbourhood V = U x V of (X,Y) in A¥ such that for all
(XY eV, (X,Y) and (X', Y’) are topologically equivalent.

We shall say that two pairs of vector fields (X,Y) and (X', Y”’) are locally
topologically equivalent at the origin (resp. at infinity) if there exist two neigh-
bourhoods U and V of the origin (resp. infinity) and a homeomorphism h: U — V
that carries orbits of the pair of flows induced by (X,Y") onto orbits of the pair
of flow induced by (X', Y”’). As usual, we derive the concept of local equivalence
between two pairs of vector fields at a point p.
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Denote by AF = ¥ x %37 where 37 is the set of all planar structurally stable
homogeneous polynomial vector field of degree m with respect to perturbations
in H,, and m+n = k.

1.2. Basic results. The structurally stable homogeneous polynomial vector
fields in the plane have been studied in [4] and [15]. Next, we recall some basic

results.

PROPOSITION 1.1. Let X € H,,. Assume that E(X) has no critical points
on 0D and Ix = 0277(]”(9)/9(9)) df # 0, where f and g are given as in system
(1.1). Then the phase portrait of E(X) in D is a global focus.

PROPOSITION 1.2. Let X € H,,. Assume that (0,0) is an isolated critical
point of X and E(X) has hyperbolic critical points on 0D. Then E(X) has no
limit circles in D. If 6y is a zero of g(0) then the straight line with slope tan 6y
which passes through the origin is invariant under the flow induced by E(X).

The following proposition shows that for a given F(X) there exists a duality
between its phase portrait around the origin and around the infinity.

PROPOSITION 1.3. Let X € H,, and suppose that (0,0) is an isolated critical
point of X.

(a) Assume E(X) has no critical point in p = 1. Then p =0 is an isolated

periodic orbit for the flow induced by the system if and only if Ix # 0.

(b) Assume E(X) has critical points in p = 1. Then (1,6p) is a hyperbolic

critical point if and only if the critical point (0,6p) is also hyperbolic.

Moreover, the critical points (0, 6y) and (1,6p) are topologically different.

THEOREM 1.4. The vector field X € H,, is structurally stable with respect
to perturbations in H,, if and only if, it satisfies one of the following conditions:

(a) If E(X) has no critical points on 0D and Ix # 0.
(b) If E(X) has critical point on 0D and all these points are hyperbolic.

Propositions 1.1 and 1.2 are proved in [4]. Proposition 1.3 and Theorem 1.4
are proved in [15].

Suppose that X € H,, and Y € H,, with m > n. Then the induced pair
(E(X),E(Y)) is expressed as
' =rfi(0), = rmT" f5(0),
B(X) = 1(6) E(Y) = 2(0)
0" = g1(0), 0" =" lga(0),
respectively, where f; and g; are defined as in the system (1.2), to i =1,2.
The system above is simultaneously equivalent to the following system since
that the multiplication of a vector field by a non-zero function leaves its phase
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portrait unchanged.

B(X) = T:inl(e)» B(Y) = T:in2(9)7
0 —91(9), g —92(9)-

Then, by means of the change coordinates p = r/(r + 1) we get

{ p'=p(1=p)fi(6), { p' = p(1 = p)f2(6),
0" = g1(0), 0" = g2(0),

where f; and g; are defined as in (1.1), ¢ =1, 2.

Note that the induced vector field F(X) has no critical points on 8D provided
that g1(0) # 0 for all # in S'. As g; is a homogeneous polynomial function of
degree m + 1, we conclude that E(X) has no critical points on 0D, provide that
m is odd.

Given vector fields X = (P1,Q1) and Y = (P2, Q2) in H,, and H,, respec-
tively, we define the tangent set S(x y) as the set of all points p in the plane
where X (p) and Y (p) are linearly dependent. Then

Sxyy = {(z,y) : (P1Q2 — P2Q1)(x,y) = 0}.

The tangent set of the induced pair (E(X), E(Y)) will be denoted by E(S).
Let us check what happens with this set in coordinates (p, #). We have

E(S) = {(p,0) : p(p — 1)(f192 — f291)(cosB,sinf) = 0}
={p=0U{p=1} U{N: (P1Q2 — Q2P1)(1,A) =0},

where A = tand. As {p = 0} and {p = 1} are invariant sets of both vector fields,
they belong to the tangent set (common orbits). If (X,Y) has no tangency
outside the origin and the infinity then E(S) = {p = 0} U {p = 1}. Otherwise
the tangent set is given by {p = 0} U {p = 1} plus the points where X and Y
are tangent.

We denote by S(x,y) the set of the zeros of the homogeneous polynomial
function of degree m + n,

dz,y) = (P1Q2 — P2Q1)(,y).

If § has zeros with multiplicity & > 1, then for small perturbation of (X,Y) in
H,, x H,, the perturbed tangent set does not have the same number of zeros.
This shows that the pair is not stable. Then, if we want to study pairs (X,Y)
that are structurally stable, we must impose that ¢ either has no zeros or has
only simple zeros, i.e. §’(Ag) # 0 provided that 6(Ag) = 0. In this case we will
say that ¢ is simple.
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We consider the following subclasses in the space of pair of planar polynomial
differential forms in the plane:
(1) Non-simple set: A’}f = {(a, 3) € A¥ : both E(a) and E(f) have no
critical points in dD}.
(2) Simple set: A* = Ak/A’]%f.

1.3. Statement of main results. We denote by A} the set of all struc-
turally stable pairs of planar polynomial differential forms in AF.

THEOREM A. The pair (o, 3) € AF belongs to Af if and only if it satisfies
the following conditions:

(a) (o, ) belongs to A*.
(b) The critical points of E(«) and E(() at 0D are distinct.

(c) & is simple.

About the finite determinacy of an analytical pair of differential forms we
have the following conclusion:

THEOREM B. Let
@ =(TanXn)
i>m  i>m
be a germ of a pair of analytical form in (R?,0), where ov; and (3; are homogeneous
polynomial differential 1-forms of degree i. The pair («,3) is m-determined,
provided that one of the following conditions is satisfied:

(a) (am, Bm) satisfies the conditions of Theorem A.
(b) (am,Bm) € A’}f where & has no zeros.

2. The non-simple set

First we consider (X,Y) € A’; - Assuming that ¢ is simple, two situations
must be considered: (i) § has no zeros; (ii) 0 has zeros.

2.1. Global approach. Consider the case where (X,Y) is a pair of global
foci where ¢ has only simple zeros. Then there exist transversal section 1" asso-
ciated to F(X) and E(Y') contained in S(x y). Fix a transversal section T;. Let
(¢x, ¢y) be the respective associated returning maps.

Let (X,Y) be a perturbation of (X,Y) in AF. Any equivalence h between
them induces an simultaneous equivalence h between the returning maps. In
this case it is easy to deduce that h is a simultaneous conjugacy between the
returning maps.

We also note that departing from a point p € T" we have several itineraries
walking alternately on pieces of orbits of X and Y. This means that there exist
many ways to return to 7' through the orbits of X and Y. This fact give us
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a suspicious that the equivalence h can not exist. This is proved in the next
result.

PROPOSITION 2.1. Let (X,Y) € AF. Assume that E(X) and E(Y) has no
critical points at OD and § has at least a zero. Then the pair (X,Y) is not
structurally stable under perturbations in H,, x H,.

To prove this theorem a topological invariant associated to pairs of returning
maps is exhibited. Let us construct this invariant.

Suppose that X and Y are global foci and ¢ has at least one zero at 6 = 6.
Let p1 (resp. p2) be a returning map of the vector field X (resp. Y) defined in
a transversal section Tp. So p;(t) = \it, where \; = Ozﬂ(fi(G)/gi(G)) do,i=1,2
(thanks to homogeneous condition).

We can suppose, without lost of generality that \; € (0,1),7=1,2.

Given an arbitrary point pg € Tp in a neighbourhood of r = 1 (infinity),
take the fundamental domain [p1(po),po] C To, so associated to each point ¢ in
(0, p1(po)) there exists an integer [ such that ¢ = p!(p), where p € (p1(po), po)-
So if ¢ = pk(po) we have

k
p=pi'op5(po) = i—lzpo-
1

This implies that
k k

A A
/\1P0§)\—12p0§p0 & /\1§/\—l2§1
i 1

for I > k. So
k < log Ao

<—k .
I —logh — 141

When k goes to infinity and k/l, k/(I+1) goes goes to zero. From this we can

conclude that a(x yy = log Aa/log A1 is a number associated to the pair (X,Y).

LEMMA 2.2. Let (X,Y) € AF be a pair of vector fields such that both E(X)
and E(Y) have no critical points on 0D and § has at least one zero. Then the
number a(x,yy is a topological invariant for (X,Y) in Hy, x H,.

PROOF. If there exists an equivalence h: (X,Y) ~ (X,Y) then the same h
must send S(xy) to S(f(,f’)' Therefore if Ty denote a branch of A(f,f’) then
h(Tp) is also a branch of A(x y.

Observe that Ty (resp. Th = h(Tp)) is a transversal section to X and YV
(resp. X and Y), hence in Ty (resp. T1) we obtain returning maps associated
to (X,Y) (resp. to (X,Y)). Moreover h induces a simultancous equivalence
between (p1, p2) and (p1, p2). This implies that a(X,Y) = a(X,Y). O

PROOF OF PROPOSITION 2.1. We can suppose that an arbitrary perturba-
tion of (X,Y") has the form (X, }7), where Y is an arbitrary perturbation of Y in
H,,. This observation plus Lemma 2.2 shows that if two pairs are equivalent then
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i = )Ti, i =1,2. So (X,Y), under our assumptions, it can not be structurally
stable under perturbations in H,, X H,. O

2.2. Local approach.

THEOREM 2.3. Let (X,Y) € AF. Assume that E(X) and E(Y) has no
critical points on dD. Then the pair (X,Y) is C° locally structurally stable at
origin under perturbations in Hy,, X H, if and only if 6 has no zeros.

PROOF. Suppose that § has at least one zero. We follow the ideas of Propo-
sition 2.1 to show the non-local structurally stability of the pair (X,Y).

We need to show that there exists a local equivalence between the pair (X,Y)
and any small perturbation (X, )7) of it provided that § has no zeros.

First, consider the lift of the pair (X,Y) to the cylinder S* x [0, 1] and denote
by ¢’ (p) and ¢% (p) the orbits of X and Y through p in the cylinder, respectively.
We need to consider the cases:

Case 1. sign(Ix) = sign(ly) (see Proposition 1.1 to the definition of the
sign(Ix)). In this case there exists a unique intersection point between ¢ (p)
and ¢! (p) to each p fixed. Fix a circle r = r¢ in the cylinder and a point p in
the disc Dy centered at the origin and radius r = 7. The orbit ¢’ (p) and ¢ (p)
through the point p will intercept » = ry in points px and py, respectively.
Denote the orbit of ¥ through py by ¥t (py). This orbit will intercept ¢' (p) at
a unique point ¢. Finally we define a map H: Dy — Dy such that H(p) = gq.

Case 2. sign(Ix) = —sign(Iy). In this case, the orbit of X and Y through
a point p in Dy will intercept each other infinitively many times. Then, given
a point po = (ro,0), take ¢% (po) and % (po), orbit of X and Y through po.
Denote by p; the first point where ¢% (po) intercept ¢} (po). The region limited
by ¢4 (po) and ¢% (po) between py and p; is diffeomorph to a disk Dy with
center at origin. To define the local equivalence H, between (X,Y") and (X, )7),
in a point ¢ in D, we proceed as in the above case. We shall find two points gx
and gy in the boundary 0D; of D; and a number k that represents the number
of intersections that occur between the orbits until they meet dD;. Through gy
we will consider the orbit of Y. Then we define H(q) = g, where ¢ is the k*"
intersection of the orbit of X through gx and the orbit of Y through gy .

In both cases, the map H defines an equivalence between (X,Y) and (X,Y)
in a neighbourhood of the origin. See Figure 1. |

REMARK 2.4. The map H is not a local equivalence in a neighbourhood of
the infinity (H is not necessarily continuous in a neighbourhood of the infinity).

It follows from the proof of the above theorem some conclusion about the
local structural stability of pairs (satisfying the above assumption) at origin,
with respect to polynomial perturbations:
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FI1Gure 1. Lifting of the pair (X,Y) into the cylinder

PROPOSITION 2.5. Let (X,Y) be a pair of germs of analytical vector fields
at origin in the plane. Suppose that

(X,Y) = <ZXk,ZYk>,

k>n k>n
where Xy and Yy are homogeneous polynomial vector fields of degree k. Assume

(Xom, Yn) satisfies the assumptions of Theorem 2.3. Then the phase portrait of
(X,Y) at origin is locally equivalent to the phase portrait of (X, Ys) at origin.

In the later proposition we also guarantee that these pairs are finitely de-
termined. Finite determinacy is also a natural question for pairs satisfying the
conditions of Proposition 2.1. The next example is related to this situation.

EXAMPLE 2.6. Suppose that (¢1(t), v2(t)) = (¢/2,t/3) is a pair of return-
ing maps associated to the pair of vector fields (X, Yy) in the conditions of
Proposition 2.1. Then

(2.1) o1 (to) > w5 (to), for all ¢y and all n € N*.

Suppose that a small perturbation of (Xo,Yy) by higher terms gives the
following pair of returning maps
1 1
i) =5t—at  walt) = alt) = 3t
We know that if there exists an equivalence h between (Xo,Yp) and X =
(Xo,Y0) + h(x,y), the non-homogeneous polynomial perturbation of it, then h
induces an equivalence h between the pair of returning maps. But we shall show
that such equivalence can not exist. In fact, from (2.1), we have

h(pT (to)) = ¥1 (h(to)) > ¢¥5 (h(to)) = h(p5(to)), for all ¢ and all n € N*.

It is straightforward to derive that

" t0) = glt0) = 5 (5 oo o .
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Take a positive integer ng > log(1 — 4h(tg)a)/(log2 —log3). This implies
that 11" (h(to)) — ¥2"" (h(to)) < 0.

PROPOSITION 2.7. Let (X,Y) € AF. Assume that both E(X) and E(Y)
have no critical points on OD. Then the pair (X,Y) is not finite determined

provided that § has a simple zero.

PROOF. Let (p1, p2) be the pair of returning maps associated to (X,Y), with
pi(t) = A\it, where )\; is given as in Proposition 2.1, i = 1,2. Assume without
lost of generality that 0 < A2 < Ay < 1 and write A\; = 1/« and A2 = 1/3, where
o and (8 are greater than 1. Then AT > A} for all positive integer n. Note that

©1(Po) — 3 (po) = AT'po — Agpo > 0

and goes to the origin when n goes to infinity.

Consider a small perturbation of (X,Y’) with respect to non-homogeneous
terms of higher degree and suppose that there exists an equivalence h between
(X,Y) and its perturbation. Then

(% (o)) = A5 (o)) = 1 (A(po)) — 2 (h(po)) > 0.

It is clear that any such perturbation can be chosen as ()N( ,Y). Moreover,
the returning map associated to the perturbation X can be written as ¢ (t) =
At — Ry (t), where Ry (t) = at* + ..., with a > 0 and k is the first non-zero jet
of Ry. Then

1 a (1 1 1 .
Ui (h(po)) = —hlto) = ——= (a txt m)h(to) +...

As in the above example, we can find a positive integer ng such that the
iteration order changes after some ng, showing that such equivalence can not
exist. g

As consequence of Theorem 2.3 we can get some conclusions about the behav-
ior of special positive quadratic differential forms. Let w be a positive quadratic
differential form given by the product of two 1-forms in the plane satisfying the
assumptions of Proposition 2.5. Since w is a homogeneous polynomial form, the
Newton diagram associated to w has a unique face and by Proposition 2.5 we
have that w is locally equivalent to wa (see [12] for details). We observe that
here both differential 1-forms have no characteristic directions. Rewriting:

COROLLARY 2.8. Let w = af be a positive quadratic differential form in the
plane, where o and B are planar polynomial differential 1-forms satisfying the

assumptions of Proposition 2.5. Then w s locally equivalent to wa at origin.

Now we shall consider a non usual global equivalence between pairs of vector
fields, introduced in [24].
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DEFINITION 2.9. Two pairs (X,Y) and (Xo,Yp) in Ay are mild-equivalent
if there exists a homeomorphism h: D — D such that (Xo,Yp) at p is germ
equivalent to (X,Y) at h(p).

Let (X,Y) € A’}f, where § has only simple zeros. The above equivalence
sends transversal section of X and Y belongs to S x y) to transversal section of
Xo and Yp in S(x, y,).- Moreover, if we denote by A x y) the set of the points
A(X,Y) = 0, the number of open regions in D — A(x,y) is the same that in
h(D)—A(x,,v,)- Then, given an arbitrary point p € D we can describe the local
phase portrait of the pair (X,Y) in a neighbourhood of p. Lets consider each

situation:

(1) If pe D — Arxy). Then X and Y are regular and transversal. Then
(X,Y) is locally topologically equivalent to (9/dx,d/0y).

(2) If p € A(x,y) then (X,Y) is locally topologically equivalent to (9/0w,
0/0x + 2x(0/0y)) (see [19]).

(3) If p € 0D — A(x,y). In this case we have two regular vector fields
without contact except at y = 0 (common leaf). Then, the pair is
locally topologically equivalent to (9/0z, (1 + z)(0/0x) + y(9/dy)), to
y >0 (see [2]).

(4) If pe ODNA(x,y). The X and Y are regular vector fields with discrim-
inant set given by y = 0 (common leaf) plus a regular curve. Then the
pair (X,Y) is locally topologically equivalent to (9/9x, (1+22)(0/0x) —
2xy(0/0y)), to y > 0 (see [19]).

3. The simple set

Here we consider (X,Y) € A¥ where either E(X) or E(Y) has critical points
at 0D, say E(Y).

We know that if F(X) has no critical points at 9D then m is odd and to each
critical point 0y € 9D of E(Y'), we have associated a curve (See Proposition 1.2).
As in [12], we called it of separating curve (it is called a separatrix if 6 is a saddle
point and a pseudo-separatrix, if 6y is a node point). This curve is an invariant
manifold of 8y. Then we call sector of E(Y) in D to each region between two
consecutive separating curves of E(Y") (see [12] for details).

Moreover, if E(Y) is a vector field with critical points at 9D and n is also
odd then we get some immediate conclusions.

LEMMA 3.1. Let Y € H, be a vector field with n odd. Suppose thatY has
critical points on 0D, then:

(a) If k is the number of zeros of g2(0), then k = 4j, where j is a non zero

positive integer.
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(b) The phase portrait of E(X) has an even number of singular sectors
(elliptic, parabolic and hyperbolic).

PROOF. (a) From (1.1) we observe that g2(6) is a homogeneous polynomial
of degree n+1 (even). As E(Y') has only hyperbolic critical points on 9D, g2(6)
has only simple zeros. Then g2 has an even number of zeros A = tan . Moreover,
if 0 is a root of g9, i.e. Ay = tanf is a zero, then § = mod(kn) is also a zero.
As the zeros are simple, we get a number 45 of zeros of go, where j is a positive
integer greater than 1. This fact implies that we get a even number of sectors
in D, where each separating curve is associated to a hyperbolic singular point of
E(Y).

Moreover, as the topological type of a critical point p on 0D is characterized
by the sign of g5(0). f2(8) and the sign is the same for § and §+7 (tan 6 = tan(0+
7)), we conclude that all symmetric critical points have the same topological
type. O

Consequences of the later lemma:

(1) There exists a symmetry in D, with respect to the involution o(x,y) =
(—z,—y).

(2) To know the phase portrait of X is enough to know the sequence of
the 2j critical points on dD. The others 2 critical points will have the
same behavior.

EXAMPLE. If m = 1 (linear vector field), we get 4 critical points. From
remark before we can conclude that we can find 3 distinct classes the equivalence
to Y if n = 1: all critical points are of the node type, all critical points are of the
saddle type, the sequence is node, saddle, node, saddle (or saddle, node, saddle,
node).

(3) Two vector fields X and Y in AF with different sequence of critical
points on 0D are non-equivalents (see Proposition 4.10 in [12]).

3.1. Global approach. First, consider (X,Y) € A*, where E(X) has no
critical points on 0D. Assume that 8y and 6, are two consecutive critical points
of E(Y) on 9D with the same topological type. The correspondent sector S
of E(Y') will be an elliptic sector (if both critical points are of the nodal type)
or hyperbolic type (if both critical points are of the saddle type). Recall that
E(X)|s is equivalent to the vector field 0/0z. Then near 0D in S, each integral
curve of E(Y') will intercept a integral curve of E(X) in two distinct points (see
Figure 2). This shows that there is a curve of tangency between the integral
curves of E(Y) and E(X) in hyperbolic and elliptic sectors. Assuming now that
6o and 6, are two consecutive critical points of E(Y") with distinct topological
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F1qure 2. Contact in a hyperbolic (or in an elliptic) sector and in a pa-
rabolic sector

type (node and saddle). The associated sector of E(Y") is parabolic and there is
no curve of contact in S (see Figure 2), provided that ¢ has only simple zeros.

THEOREM 3.2. Let (X,Y) be in AF. Assume that E(X) has no critical
points on OD. If E(Y) has critical points on 0D, then (X,Y) is C° structurally

stable under perturbations in H,, x H, if only if 6 has only simple zeros.

PROOF. As observed later, if § has one zero with multiplicity > 2, (X,Y)
is not structurally stable. To show the required stability, under conditions, is
enough to exhibit an equivalence that maintain the integral curves of X and takes
the integral curves of Y onto the integral curves of }7, where Y is an arbitrary
perturbation of Y in H,,.

In D we have finite many number of hyperbolic, elliptic and parabolic sectors
of E(Y). Let T be an arbitrary separating curve of a sector of E(Y). Then T
is also a transversal section for E(X) and in T we have defined a returning map
p associated to E(X). The same holds for a small perturbation of E(Y) in H,.
Since an equivalence takes a separating curve of E(Y) in a separating curve of
E (}7)7 we have an induced returning map in h(7T) satisfying the following relation
poh =hop' where p’ is the returning map associated to E(X) in h(T).

For any T;, another separating curve of E(Y), we have a homeomorphism
l;: T — T; obtained by sliding along the integral curve of E(X) from T to T;.

Let o (resp. ¢') be a sector of E(Y) (resp. E(Y)) with separating curves
T, and T5 (resp. T] and T3). Denote by Ag (resp. A)) the curve of tangency
between E(X) and E(Y) in p (resp. E(X) and E(Y) in ¢), if there exist and
by R; (resp. R}) the open region between T; and Ag (resp. T/ and A%), i =1,2.

As before, there exist induced mappings l1: T — T, lo: T — Ts and Ia,: T —
Ag. For each i = 1,2, we derive homeomorphisms k;: T; — T/, defined by
ki = ()" ohol;,i=1,2and ka: Ag — Al given by ka = [1" o hola. These
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homemorphism there exist since we must have a homeomorphism h:T — T’
satisfying ho p = p’ o h.

Let us see how to extend h to each sector S of E(X) onto the corresponding
sector S of E(X).

(1) In one elliptic sector. Counsider pg € R;. Denote by ox and oy the
integral curves of F(X) and E(Y) passing through pg. These integral curves in-
tercept Ag in px and py, respectively. Consider the points ka(px) and ka (py)
in A% and the integral curves of E(X) and E(Y) through these points, respec-
tively. These curves meet each other in ¢o € R;. Then define h(pg) = go. The
map h is a homeomorphism from R; to R]. Now in Ry proceed in the same way
and the extension to S is well done because H agree with ka in A.

Now it is possible to extend i to dD in a natural way.

,,,,,,,,,, 1&,,,,, - < T A

77777777777 [N T q1777 N~ _77777q2
e e NN | Y e !
T, As T T, T,

FIGURE 3. Phase portrait in some sectors of X

(2) In one hyperbolic sector we proceed in the same way as above.

(3) In one parabolic sector. Fix one leaf C7 of E(X) and notice that C;
connects two points p; € T with pa € Ts. Let Cs be the leaf of F(X) connecting
k1(p1) and ko(p2). Define one homeomorphism h between C; and Cy. Given
a point gqo € S. There is a unique point gy € Cy and gx € T1, where the orbits
of E(X) and E(Y) through g intercept C;7 and T1, respectively.

Applying k1:Th — T} and h : C; — C3 we obtain h(gy) € Cy and ki(gx) €
T/, respectively. Through these points there exists a unique integral curve of
E (}7) and E(X), respectively, and they meet each other in a unique point ¢ € S’.
Then extent h to S onto S’ defining h(gp) = g.

Now we extend this homeomorphism to 9D in a natural way. Given a point
Define h(qy) =

lim,, 0 h(gn) . Observe that the limit does not depend on the sequence.

go € 0D, consider a sequence (g,) in S converging to qo.

The next step is to extend the homeomorphism constructed on each sector
to all space. We need guarantee that the gluing process is well defined. But this
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is ensured due the fact that the homeomorphism h restricted to the separating
curves agrees with the induced returning maps. (|

Now, consider (X,Y) € A* where F(X) and E(Y) have distinct critical
points on dD. As in the case studied later, we have finite many sectors of each
vector field in D.

THEOREM 3.3. Let (X,Y) be in A¥. Assume that E(X) and E(Y) have
distinct critical points on OD. Then (X,Y) is C° structurally stable under per-
turbations in H,, X H, if only if § either has only simple zeros or mo zeros.

The proof here follows the same ideas used in the proof of Theorem 3.2. As
before we just need to distinguish each sector and separating curves and the
branches of the tangent set. See more details of the proof (to the local case)
when ¢ has no zeros (Proposition 4.10 in [12]).

3.2. Local approach. As in the case where X and Y has no critical points
in 0D, we can get some conclusions about pairs of vector fields which can be
written as a sum of homogeneous vector fields in the plane:

PROPOSITION 3.4. Let (X,Y) be a pair of analytical vector fields in the

plane. Suppose that
(X,Y) = (Z Xk,ZYk),

E>m k>n
where X; and Y; are homogeneous polynomial vector fields of degree i. Fither
(Xom, Yn) satisfies the assumptions of Theorem 3.2 or of 3.3. Then the phase
portrait of (X,Y") at origin is locally equivalent to the phase portrait of (X, Yn)
at origin.

This Proposition can be proved in the same way as Theorem C in [4] using
the technics of Theorems 3.2 and 3.3. Note that as a consequence, we have finite
determinacy of the pairs (X,Y) satisfying the above conditions.

We have a dual result about local equivalence in a neighbourhood of the
infinity. Here we say “phase portrait of (X,Y) at infinity” instead of “phase
portrait of (X,Y) in a neighbourhood of the infinity”.

PROPOSITION 3.5. Let (X,Y) be a pair of analytical vector fields in the

plane. Suppose that
(X,Y) = (ZXk,ZYk>7
k=1 k=1

where Xy, and Yy are homogeneous polynomial vector fields of degree k. Assume
that (Xm,Ys) satisfies the assumptions either of Theorems3.2 or 3.3. Then the
phase portrait of (X,Y) at infinity is locally equivalent to the phase portrait of
(Xom, Yn) at infinity.
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4. Proof of the main results

Now we can joint the conclusions presented here to conclude the proof of the

main results:

PrROOF OF THEOREM A. It follows from Theorems 2.1, 3.2 and 3.3. O
Proor oF THEOREM B. If follows from Theorems 2.5 and 3.4. O

REMARK 4.1. Observe that A]}f is a open in X X g then A’g is never dense

in Ak,

Under some conditions the results obtained in this paper can be applied to

study QDF and curvature lines in a smooth manifolds.
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