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ON PAIRS OF POLYNOMIAL PLANAR FOLIATIONS

Regilene D. S. Oliveira — Marco Antonio Teixeira

Abstract. In this article we deal with pairs of polynomial planar folia-
tions. The main results concern global and local structural stability as well
as the finite determinacy for these pairs. These results can be applied to
study a special class of quadratic differential forms in the plane.

1. Introduction

The geometric-qualitative study of flows and general dynamical systems on
surfaces has been during many decades the object of growing interest in many
branches of pure and applied mathematics. After the work of Poincaré, Lyapunov
and Bendixson this has become a well-established subject in mathematics and
the focus of considerable attention. Moreover, nowadays it is fairly accessible for
a broad scientific audience. From different point of views attention has been paid
to the concept of structural stability and to the classification of phase portraits
of the systems up to C0-equivalence.

In this paper topological aspects of pairs of foliations in the plane represented
by polynomial 1-forms are considered. As a matter of fact we are concerned with
the simultaneous behavior of such pairs.
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Pairs of 1-forms appear naturally in several mathematical contexts. For ex-
ample in quadratic differential forms (QDF) or Binary Equations [2], Differential
Geometry (see [23])) and Partial differential equations (see [14]).

Gúıñez, in [11], introduced the set Fn of the planar polynomial positive QDF
with degree less than or equal to a positive integer m. He characterized the
structurally stable elements in Fn. We emphasize that in [11] the case where the
pair of foliations fi(i = 1 and/or 2) associated to the form has no characteristic
directions is not considered.

Recently many authors have worked in planar homogeneous polynomial vec-
tor fields; for example, Sibirsky [21], Cima and Llibre [15], Collins [5], Llibre,
Del Rio and Rodrigues [4], among others. All of them treat the problem of the
classification of homogeneous polynomial vector fields.

Concerning QDF, Gúıñez and Bruce–Tari worked on stability and normal
forms of families of QDF. In [8]–[11] Gúıñez restricted the analysis to homoge-
neous systems of order m and related problems. In a recent paper, Gutierrez,
Oliveira and Teixeira [12] classified the singularities of a special class of QDF
via Newton diagrams. In this context the papers of Bruce–Fidal [3], Michel [16],
Davydov [7], Teixeira [24] and Oliveira and Tari [19], [20] should also be men-
tioned. In all these works the classification problem of pairs of foliations were
treated but systems without characteristic orbits were avoided.

If a 1-form α is a planar homogeneous differential form of degree m we
say that α belongs to the set Hm, while a pair in similar conditions belong to
Ak = Hm ×Hn, where k = m+n. To each pair (α, β) we associate Sing the set
of the points where α and β are tangent.

We obtain the concept of structural stability in our class of pairs from the
following definition: Two pairs (α1, β1) and (α2, β2) in Ak are equivalent if there
exists a homeomorphism h that is a simultaneous equivalence between the pair
of foliations. As a consequence this equivalence takes the singular set of (α1, β1)
to the singular set of (α2, β2).

In this paper we give a complete characterization of the structural stability
in Ak. It is worthwhile to mention that the case where α and β are global foci
is extensively studied here. Problems related with finite determinacy of pair of
foliations are also considered.

In the remainder of this section we present basic definitions and results nec-
essary throughout this paper and we state our main results. In Section 2 we
study pairs of planar homogeneous foci. We exhibit a topological invariant for
the structural stability of such pairs and give necessary and sufficient conditions
for these pairs to be structurally stable. Local and global aspects are considered.
We do the same for those pairs where α and/or β are not foci, in Section 3.
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We also present conditions on a planar polynomial pair of 1-forms to be finite
determined in Section 4.

1.1. Setting the problem. A vector field X = (P,Q) ∈ Hm in differential
systems terminology is written as

ẋ = P (x, y), ẏ = Q(x, y).

In polar coordinates x = r cos θ, y = r sin θ, the above expressions go over to

(1.1) ṙ = rmf(θ), θ̇ = rm−1g(θ),

where

f(θ) = cos θ · P (cos θ, sin θ) + sin θ ·Q(cos θ, sin θ),

g(θ) = cos θ ·Q(cos θ, sin θ) − sin θ · P (cos θ, sin θ).

If s satisfies ṡ = rm−1, then the system can be written as

r′ = rf(θ), θ′ = g(θ),

where r′ and θ′ denote the derivative of r and θ, respectively, with respect to s.
Throughout the paper we are assuming that g(θ) has only zeros with mul-

tiplicity k = 1. We also assume that f(θ0) �= 0 provided that g(θ0) = 0. This
means that we always get a linear system with hyperbolic critical points.

Finally, considering the change of variable ρ = r/(1 + r) we are able to study
the system in a neighbourhood of the infinity and we have:

(1.2) ρ′ = ρ(1 − ρ)f(θ), θ′ = g(θ),

when (ρ, θ) is taken in the open disk D = {(ρ, θ): 0 ≤ ρ < 1}. Observe that
this system is also defined for ρ ≥ 1. We also observe that the boundary of
D is an invariant circle under the flow of the system. This circle corresponds
to the infinity of the first system. So the induced vector field E(X) defined in
a neighbourhood U of D is an analytic extension of the vector field X at infinity.

The concept of structural stability in Ak = Hm × Hn is the following:
(X,Y ) ∈ Ak is structurally stable with respect to perturbations in Hm × Hn

if there exists a neighbourhood V = U × V of (X,Y ) in Ak such that for all
(X ′, Y ′) ∈ V , (X,Y ) and (X ′, Y ′) are topologically equivalent.

We shall say that two pairs of vector fields (X,Y ) and (X ′, Y ′) are locally
topologically equivalent at the origin (resp. at infinity) if there exist two neigh-
bourhoods U and V of the origin (resp. infinity) and a homeomorphism h:U → V

that carries orbits of the pair of flows induced by (X,Y ) onto orbits of the pair
of flow induced by (X ′, Y ′). As usual, we derive the concept of local equivalence
between two pairs of vector fields at a point p.
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Denote by ∆k = Σm
0 ×Σn

0 , where Σm
0 is the set of all planar structurally stable

homogeneous polynomial vector field of degree m with respect to perturbations
in Hm and m+ n = k.

1.2. Basic results. The structurally stable homogeneous polynomial vector
fields in the plane have been studied in [4] and [15]. Next, we recall some basic
results.

Proposition 1.1. Let X ∈ Hm. Assume that E(X) has no critical points
on ∂D and IX =

∫ 2π

0 (f(θ)/g(θ)) dθ �= 0, where f and g are given as in system
(1.1). Then the phase portrait of E(X) in D is a global focus.

Proposition 1.2. Let X ∈ Hm. Assume that (0, 0) is an isolated critical
point of X and E(X) has hyperbolic critical points on ∂D. Then E(X) has no
limit circles in D. If θ0 is a zero of g(θ) then the straight line with slope tan θ0
which passes through the origin is invariant under the flow induced by E(X).

The following proposition shows that for a given E(X) there exists a duality
between its phase portrait around the origin and around the infinity.

Proposition 1.3. Let X ∈ Hm and suppose that (0, 0) is an isolated critical
point of X.

(a) Assume E(X) has no critical point in ρ = 1. Then ρ = 0 is an isolated
periodic orbit for the flow induced by the system if and only if IX �= 0.

(b) Assume E(X) has critical points in ρ = 1. Then (1, θ0) is a hyperbolic
critical point if and only if the critical point (0, θ0) is also hyperbolic.
Moreover, the critical points (0, θ0) and (1, θ0) are topologically different.

Theorem 1.4. The vector field X ∈ Hm is structurally stable with respect
to perturbations in Hm if and only if, it satisfies one of the following conditions:

(a) If E(X) has no critical points on ∂D and IX �= 0.
(b) If E(X) has critical point on ∂D and all these points are hyperbolic.

Propositions 1.1 and 1.2 are proved in [4]. Proposition 1.3 and Theorem 1.4
are proved in [15].

Suppose that X ∈ Hm and Y ∈ Hn, with m > n. Then the induced pair
(E(X), E(Y )) is expressed as

E(X) =

{
r′ = rf1(θ),

θ′ = g1(θ),
E(Y ) =

{
r′ = rm−nf2(θ),

θ′ = rm−n−1g2(θ),

respectively, where fi and gi are defined as in the system (1.2), to i = 1, 2.
The system above is simultaneously equivalent to the following system since

that the multiplication of a vector field by a non-zero function leaves its phase
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portrait unchanged.

E(X) =

{
r′ = rf1(θ),

θ′ = g1(θ),
E(Y ) =

{
r′ = rf2(θ),

θ′ = g2(θ).

Then, by means of the change coordinates ρ = r/(r + 1) we get{
ρ′ = ρ(1 − ρ)f1(θ),

θ′ = g1(θ),

{
ρ′ = ρ(1 − ρ)f2(θ),

θ′ = g2(θ),

where fi and gi are defined as in (1.1), i = 1, 2.
Note that the induced vector field E(X) has no critical points on ∂D provided

that g1(θ) �= 0 for all θ in S1. As g1 is a homogeneous polynomial function of
degree m+ 1, we conclude that E(X) has no critical points on ∂D, provide that
m is odd.

Given vector fields X = (P1, Q1) and Y = (P2, Q2) in Hm and Hn, respec-
tively, we define the tangent set S(X,Y ) as the set of all points p in the plane
where X(p) and Y (p) are linearly dependent. Then

S(X,Y ) = {(x, y) : (P1Q2 − P2Q1)(x, y) = 0}.

The tangent set of the induced pair (E(X), E(Y )) will be denoted by E(S).
Let us check what happens with this set in coordinates (ρ, θ). We have

E(S) = {(ρ, θ) : ρ(ρ− 1)(f1g2 − f2g1)(cos θ, sin θ) = 0}
= {ρ = 0} ∪ {ρ = 1} ∪ {λ : (P1Q2 −Q2P1)(1, λ) = 0},

where λ = tan θ. As {ρ = 0} and {ρ = 1} are invariant sets of both vector fields,
they belong to the tangent set (common orbits). If (X,Y ) has no tangency
outside the origin and the infinity then E(S) = {ρ = 0} ∪ {ρ = 1}. Otherwise
the tangent set is given by {ρ = 0} ∪ {ρ = 1} plus the points where X and Y

are tangent.
We denote by S(X,Y ) the set of the zeros of the homogeneous polynomial

function of degree m+ n,

δ(x, y) = (P1Q2 − P2Q1)(x, y).

If δ has zeros with multiplicity k > 1, then for small perturbation of (X,Y ) in
Hm ×Hn, the perturbed tangent set does not have the same number of zeros.
This shows that the pair is not stable. Then, if we want to study pairs (X,Y )
that are structurally stable, we must impose that δ either has no zeros or has
only simple zeros, i.e. δ′(λ0) �= 0 provided that δ(λ0) = 0. In this case we will
say that δ is simple.
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We consider the following subclasses in the space of pair of planar polynomial
differential forms in the plane:

(1) Non-simple set: Λk
ff = {(α, β) ∈ ∆k : both E(α) and E(β) have no

critical points in ∂D}.
(2) Simple set: Λk = ∆k/Λk

ff .

1.3. Statement of main results. We denote by ∆k
0 the set of all struc-

turally stable pairs of planar polynomial differential forms in ∆k.

Theorem A. The pair (α, β) ∈ ∆k belongs to ∆k
0 if and only if it satisfies

the following conditions:

(a) (α, β) belongs to Λk.
(b) The critical points of E(α) and E(β) at ∂D are distinct.
(c) δ is simple.

About the finite determinacy of an analytical pair of differential forms we
have the following conclusion:

Theorem B. Let

(α, β) =
( ∑

i≥m

αi,
∑
i≥m

βi

)
be a germ of a pair of analytical form in (R2, 0), where αi and βi are homogeneous
polynomial differential 1-forms of degree i. The pair (α, β) is m-determined,
provided that one of the following conditions is satisfied:

(a) (αm, βm) satisfies the conditions of Theorem A.
(b) (αm, βm) ∈ Λk

ff where δ has no zeros.

2. The non-simple set

First we consider (X,Y ) ∈ Λk
ff . Assuming that δ is simple, two situations

must be considered: (i) δ has no zeros; (ii) δ has zeros.

2.1. Global approach. Consider the case where (X,Y ) is a pair of global
foci where δ has only simple zeros. Then there exist transversal section T asso-
ciated to E(X) and E(Y ) contained in S(X,Y ). Fix a transversal section Ti. Let
(φX , φY ) be the respective associated returning maps.

Let (X̃, Ỹ ) be a perturbation of (X,Y ) in ∆k. Any equivalence h between
them induces an simultaneous equivalence h̃ between the returning maps. In
this case it is easy to deduce that h̃ is a simultaneous conjugacy between the
returning maps.

We also note that departing from a point p ∈ T we have several itineraries
walking alternately on pieces of orbits of X and Y . This means that there exist
many ways to return to T through the orbits of X and Y . This fact give us
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a suspicious that the equivalence h̃ can not exist. This is proved in the next
result.

Proposition 2.1. Let (X,Y ) ∈ ∆k. Assume that E(X) and E(Y ) has no
critical points at ∂D and δ has at least a zero. Then the pair (X,Y ) is not
structurally stable under perturbations in Hm ×Hn.

To prove this theorem a topological invariant associated to pairs of returning
maps is exhibited. Let us construct this invariant.

Suppose that X and Y are global foci and δ has at least one zero at θ = θ0.
Let ρ1 (resp. ρ2) be a returning map of the vector field X (resp. Y ) defined in
a transversal section T0. So ρi(t) = λit, where λi =

∫ 2π

0 (fi(θ)/gi(θ)) dθ, i = 1, 2
(thanks to homogeneous condition).

We can suppose, without lost of generality that λi ∈ (0, 1), i = 1, 2.
Given an arbitrary point p0 ∈ T0 in a neighbourhood of r = 1 (infinity),

take the fundamental domain [ρ1(p0), p0] ⊂ T0, so associated to each point q in
(0, ρ1(p0)) there exists an integer l such that q = ρl

1(p), where p ∈ (ρ1(p0), p0).
So if q = ρk

2(p0) we have

p = ρ−l
1 ◦ ρk

2(p0) =
λk

2

λl
1

p0.

This implies that

λ1p0 ≤ λk
2

λl
1

p0 ≤ p0 ⇔ λ1 ≤ λk
2

λl
1

≤ 1

for l > k. So
k

l
≤ logλ2

logλ1
≤ k

l + 1
.

When k goes to infinity and k/l, k/(l+1) goes goes to zero. From this we can
conclude that α(X,Y ) = log λ2/logλ1 is a number associated to the pair (X,Y ).

Lemma 2.2. Let (X,Y ) ∈ ∆k be a pair of vector fields such that both E(X)
and E(Y ) have no critical points on ∂D and δ has at least one zero. Then the
number α(X,Y ) is a topological invariant for (X,Y ) in Hm ×Hn.

Proof. If there exists an equivalence h: (X̃, Ỹ ) 
 (X,Y ) then the same h
must send S(X,Y ) to S( �X,�Y ). Therefore if T0 denote a branch of ∆( �X,�Y ) then
h(T0) is also a branch of ∆(X,Y ).

Observe that T0 (resp. T1 = h(T0)) is a transversal section to X and Y

(resp. X̃ and Ỹ ), hence in T0 (resp. T1) we obtain returning maps associated
to (X,Y ) (resp. to (X̃, Ỹ )). Moreover h induces a simultaneous equivalence
between (ρ1, ρ2) and (ρ̃1, ρ̃2). This implies that α(X,Y ) = α(X̃, Ỹ ). �

Proof of Proposition 2.1. We can suppose that an arbitrary perturba-
tion of (X,Y ) has the form (X, Ỹ ), where Ỹ is an arbitrary perturbation of Y in
Hn. This observation plus Lemma 2.2 shows that if two pairs are equivalent then
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λi = λ̃i, i = 1, 2. So (X,Y ), under our assumptions, it can not be structurally
stable under perturbations in Hm ×Hn. �

2.2. Local approach.

Theorem 2.3. Let (X,Y ) ∈ ∆k. Assume that E(X) and E(Y ) has no
critical points on ∂D. Then the pair (X,Y ) is C0 locally structurally stable at
origin under perturbations in Hm ×Hn if and only if δ has no zeros.

Proof. Suppose that δ has at least one zero. We follow the ideas of Propo-
sition 2.1 to show the non-local structurally stability of the pair (X,Y ).

We need to show that there exists a local equivalence between the pair (X,Y )
and any small perturbation (X, Ỹ ) of it provided that δ has no zeros.

First, consider the lift of the pair (X,Y ) to the cylinder S1× [0, 1] and denote
by φt

X(p) and ϕt
Y (p) the orbits ofX and Y through p in the cylinder, respectively.

We need to consider the cases:
Case 1. sign(IX) = sign(IY ) (see Proposition 1.1 to the definition of the

sign(IX)). In this case there exists a unique intersection point between φt
X(p)

and ϕt
Y (p) to each p fixed. Fix a circle r = r0 in the cylinder and a point p in

the disc D0 centered at the origin and radius r = r0. The orbit φt
X(p) and ϕt

Y (p)
through the point p will intercept r = r0 in points pX and pY , respectively.
Denote the orbit of Ỹ through pY by ψt

Y (pY ). This orbit will intercept φt
X(p) at

a unique point q. Finally we define a map H :D0 → D0 such that H(p) = q.
Case 2. sign(IX) = −sign(IY ). In this case, the orbit of X and Y through

a point p in D0 will intercept each other infinitively many times. Then, given
a point p0 = (r0, θ), take φt

X(p0) and ϕt
Y (p0), orbit of X and Y through p0.

Denote by p1 the first point where φt
X(p0) intercept ϕt

Y (p0). The region limited
by φt

X(p0) and ϕt
Y (p0) between p0 and p1 is diffeomorph to a disk D1 with

center at origin. To define the local equivalence H , between (X,Y ) and (X, Ỹ ),
in a point q in D1, we proceed as in the above case. We shall find two points qX
and qY in the boundary ∂D1 of D1 and a number k that represents the number
of intersections that occur between the orbits until they meet ∂D1. Through qY
we will consider the orbit of Ỹ . Then we define H(q) = q̃, where q̃ is the kth

intersection of the orbit of X through qX and the orbit of Ỹ through qY .
In both cases, the map H defines an equivalence between (X,Y ) and (X, Ỹ )

in a neighbourhood of the origin. See Figure 1. �
Remark 2.4. The map H is not a local equivalence in a neighbourhood of

the infinity (H is not necessarily continuous in a neighbourhood of the infinity).

It follows from the proof of the above theorem some conclusion about the
local structural stability of pairs (satisfying the above assumption) at origin,
with respect to polynomial perturbations:
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h(p)p
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0

q

p
X
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Y
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1

Figure 1. Lifting of the pair (X, Y ) into the cylinder

Proposition 2.5. Let (X,Y ) be a pair of germs of analytical vector fields
at origin in the plane. Suppose that

(X,Y ) =
( ∑

k≥n

Xk,
∑
k≥n

Yk

)
,

where Xk and Yk are homogeneous polynomial vector fields of degree k. Assume
(Xm, Yn) satisfies the assumptions of Theorem 2.3. Then the phase portrait of
(X,Y ) at origin is locally equivalent to the phase portrait of (Xm, Yn) at origin.

In the later proposition we also guarantee that these pairs are finitely de-
termined. Finite determinacy is also a natural question for pairs satisfying the
conditions of Proposition 2.1. The next example is related to this situation.

Example 2.6. Suppose that (ϕ1(t), ϕ2(t)) = (t/2, t/3) is a pair of return-
ing maps associated to the pair of vector fields (X0, Y0) in the conditions of
Proposition 2.1. Then

(2.1) ϕn
1 (t0) > ϕn

2 (t0), for all t0 and all n ∈ N
∗.

Suppose that a small perturbation of (X0, Y0) by higher terms gives the
following pair of returning maps

ψ1(t) =
1
2
t− a t2, ψ2(t) = ϕ2(t) =

1
3
t.

We know that if there exists an equivalence h between (X0, Y0) and X =
(X0, Y0) + h(x, y), the non-homogeneous polynomial perturbation of it, then h

induces an equivalence h̃ between the pair of returning maps. But we shall show
that such equivalence can not exist. In fact, from (2.1), we have

h̃(ϕn
1 (t0)) = ψn

1 (h̃(t0)) > ψn
2 (h̃(t0)) = h̃(ϕn

2 (t0)), for all t0 and all n ∈ N
∗.

It is straightforward to derive that

ϕn(h̃(t0)) =
1
2n
h̃(t0) − a

2n−2

(
1
2

+ . . .+
1
2n

)
h̃(t0)2 + . . .
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Take a positive integer n0 > log(1 − 4h(t0)a)/(log 2 − log 3). This implies
that ψ1

n0(h̃(t0)) − ψ2
n0(h̃(t0)) < 0.

Proposition 2.7. Let (X,Y ) ∈ ∆k. Assume that both E(X) and E(Y )
have no critical points on ∂D. Then the pair (X,Y ) is not finite determined
provided that δ has a simple zero.

Proof. Let (ρ1, ρ2) be the pair of returning maps associated to (X,Y ), with
ρi(t) = λit, where λi is given as in Proposition 2.1, i = 1, 2. Assume without
lost of generality that 0 < λ2 < λ1 < 1 and write λ1 = 1/α and λ2 = 1/β, where
α and β are greater than 1. Then λn

1 ≥ λn
2 for all positive integer n. Note that

ϕn
1 (p0) − ϕn

2 (p0) = λn
1 p0 − λn

2 p0 > 0

and goes to the origin when n goes to infinity.
Consider a small perturbation of (X,Y ) with respect to non-homogeneous

terms of higher degree and suppose that there exists an equivalence h between
(X,Y ) and its perturbation. Then

h̃(ϕn
1 (p0)) − h̃(ϕn

2 (p0)) = ψ1(h̃(p0)) − ψ2(h̃(p0)) > 0.

It is clear that any such perturbation can be chosen as (X̃, Y ). Moreover,
the returning map associated to the perturbation X̃ can be written as ψ1(t) =
λ1t− R1(t), where R1(t) = atk + . . . , with a > 0 and k is the first non-zero jet
of R1. Then

ψn
1 (h(p0)) =

1
αn
h(t0) − a

αn−2

(
1
α

+
1
αk

+ . . .+
1

α(n−1)k−(n−2)

)
h(t0)k + . . .

As in the above example, we can find a positive integer n0 such that the
iteration order changes after some n0, showing that such equivalence can not
exist. �

As consequence of Theorem 2.3 we can get some conclusions about the behav-
ior of special positive quadratic differential forms. Let ω be a positive quadratic
differential form given by the product of two 1-forms in the plane satisfying the
assumptions of Proposition 2.5. Since ω is a homogeneous polynomial form, the
Newton diagram associated to ω has a unique face and by Proposition 2.5 we
have that ω is locally equivalent to ω∆ (see [12] for details). We observe that
here both differential 1-forms have no characteristic directions. Rewriting:

Corollary 2.8. Let ω = αβ be a positive quadratic differential form in the
plane, where α and β are planar polynomial differential 1-forms satisfying the
assumptions of Proposition 2.5. Then ω is locally equivalent to ω∆ at origin.

Now we shall consider a non usual global equivalence between pairs of vector
fields, introduced in [24].
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Definition 2.9. Two pairs (X,Y ) and (X0, Y0) in Ak are mild-equivalent
if there exists a homeomorphism h:D → D such that (X0, Y0) at p is germ
equivalent to (X,Y ) at h(p).

Let (X,Y ) ∈ Λk
ff , where δ has only simple zeros. The above equivalence

sends transversal section of X and Y belongs to S(X,Y ) to transversal section of
X0 and Y0 in S(X0,Y0). Moreover, if we denote by ∆(X,Y ) the set of the points
∆(X,Y ) = 0, the number of open regions in D − ∆(X,Y ) is the same that in
h(D)−∆(X0,Y0). Then, given an arbitrary point p ∈ D we can describe the local
phase portrait of the pair (X,Y ) in a neighbourhood of p. Lets consider each
situation:

(1) If p ∈ D − ∆(X,Y ). Then X and Y are regular and transversal. Then
(X,Y ) is locally topologically equivalent to (∂/∂x, ∂/∂y).

(2) If p ∈ ∆(X,Y ) then (X,Y ) is locally topologically equivalent to (∂/∂x,
∂/∂x+ 2x(∂/∂y)) (see [19]).

(3) If p ∈ ∂D − ∆(X,Y ). In this case we have two regular vector fields
without contact except at y = 0 (common leaf). Then, the pair is
locally topologically equivalent to (∂/∂x, (1 + x)(∂/∂x) + y(∂/∂y)), to
y ≥ 0 (see [2]).

(4) If p ∈ ∂D∩∆(X,Y ). The X and Y are regular vector fields with discrim-
inant set given by y = 0 (common leaf) plus a regular curve. Then the
pair (X,Y ) is locally topologically equivalent to (∂/∂x, (1+x2)(∂/∂x)−
2xy(∂/∂y)), to y ≥ 0 (see [19]).

3. The simple set

Here we consider (X,Y ) ∈ ∆k, where either E(X) or E(Y ) has critical points
at ∂D, say E(Y ).

We know that if E(X) has no critical points at ∂D then m is odd and to each
critical point θ0 ∈ ∂D of E(Y ), we have associated a curve (See Proposition 1.2).
As in [12], we called it of separating curve (it is called a separatrix if θ0 is a saddle
point and a pseudo-separatrix, if θ0 is a node point). This curve is an invariant
manifold of θ0. Then we call sector of E(Y ) in D to each region between two
consecutive separating curves of E(Y ) (see [12] for details).

Moreover, if E(Y ) is a vector field with critical points at ∂D and n is also
odd then we get some immediate conclusions.

Lemma 3.1. Let Y ∈ Hn be a vector field with n odd. Suppose that Y has
critical points on ∂D, then:

(a) If k is the number of zeros of g2(θ), then k = 4j, where j is a non zero
positive integer.
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(b) The phase portrait of E(X) has an even number of singular sectors
(elliptic, parabolic and hyperbolic).

Proof. (a) From (1.1) we observe that g2(θ) is a homogeneous polynomial
of degree n+1 (even). As E(Y ) has only hyperbolic critical points on ∂D, g2(θ)
has only simple zeros. Then g2 has an even number of zeros λ = tan θ. Moreover,
if θ is a root of g2, i.e. λ2 = tan θ is a zero, then θ = mod(kπ) is also a zero.
As the zeros are simple, we get a number 4j of zeros of g2, where j is a positive
integer greater than 1. This fact implies that we get a even number of sectors
in D, where each separating curve is associated to a hyperbolic singular point of
E(Y ).

Moreover, as the topological type of a critical point p on ∂D is characterized
by the sign of g′2(θ).f2(θ) and the sign is the same for θ and θ+π (tan θ = tan(θ+
π)), we conclude that all symmetric critical points have the same topological
type. �

Consequences of the later lemma:

(1) There exists a symmetry in D, with respect to the involution σ(x, y) =
(−x,−y).

(2) To know the phase portrait of X is enough to know the sequence of
the 2j critical points on ∂D. The others 2j critical points will have the
same behavior.

Example. If m = 1 (linear vector field), we get 4 critical points. From
remark before we can conclude that we can find 3 distinct classes the equivalence
to Y if n = 1: all critical points are of the node type, all critical points are of the
saddle type, the sequence is node, saddle, node, saddle (or saddle, node, saddle,
node).

(3) Two vector fields X and Y in ∆k with different sequence of critical
points on ∂D are non-equivalents (see Proposition 4.10 in [12]).

3.1. Global approach. First, consider (X,Y ) ∈ ∆k, where E(X) has no
critical points on ∂D. Assume that θ0 and θ1 are two consecutive critical points
of E(Y ) on ∂D with the same topological type. The correspondent sector S
of E(Y ) will be an elliptic sector (if both critical points are of the nodal type)
or hyperbolic type (if both critical points are of the saddle type). Recall that
E(X)|S is equivalent to the vector field ∂/∂x. Then near ∂D in S, each integral
curve of E(Y ) will intercept a integral curve of E(X) in two distinct points (see
Figure 2). This shows that there is a curve of tangency between the integral
curves of E(Y ) and E(X) in hyperbolic and elliptic sectors. Assuming now that
θ0 and θ1 are two consecutive critical points of E(Y ) with distinct topological
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∆θ θ1 2 θ θ21

Figure 2. Contact in a hyperbolic (or in an elliptic) sector and in a pa-
rabolic sector

type (node and saddle). The associated sector of E(Y ) is parabolic and there is
no curve of contact in S (see Figure 2), provided that δ has only simple zeros.

Theorem 3.2. Let (X,Y ) be in ∆k. Assume that E(X) has no critical
points on ∂D. If E(Y ) has critical points on ∂D, then (X,Y ) is C0 structurally
stable under perturbations in Hm ×Hn if only if δ has only simple zeros.

Proof. As observed later, if δ has one zero with multiplicity ≥ 2, (X,Y )
is not structurally stable. To show the required stability, under conditions, is
enough to exhibit an equivalence that maintain the integral curves ofX and takes
the integral curves of Y onto the integral curves of Ỹ , where Ỹ is an arbitrary
perturbation of Y in Hn.

In D we have finite many number of hyperbolic, elliptic and parabolic sectors
of E(Y ). Let T be an arbitrary separating curve of a sector of E(Y ). Then T

is also a transversal section for E(X) and in T we have defined a returning map
ρ associated to E(X). The same holds for a small perturbation of E(Y ) in Hn.
Since an equivalence takes a separating curve of E(Y ) in a separating curve of
E(Ỹ ), we have an induced returning map in h(T ) satisfying the following relation
ρ ◦ h = h ◦ ρ′, where ρ′ is the returning map associated to E(X) in h(T ).

For any Ti, another separating curve of E(Y ), we have a homeomorphism
li:T → Ti obtained by sliding along the integral curve of E(X) from T to Ti.

Let ℘ (resp. ℘′) be a sector of E(Y ) (resp. E(Ỹ )) with separating curves
T1 and T2 (resp. T ′

1 and T ′
2). Denote by ∆S (resp. ∆′

S) the curve of tangency
between E(X) and E(Y ) in ℘ (resp. E(X) and E(Ỹ ) in ℘′), if there exist and
by Ri (resp. R′

i) the open region between Ti and ∆S (resp. T ′
i and ∆′

S), i = 1, 2.

As before, there exist induced mappings l1:T → T1, l2:T → T2 and l∆S :T →
∆S . For each i = 1, 2, we derive homeomorphisms ki:Ti → T ′

i , defined by
ki = (l′i)

−1 ◦ h ◦ li, i = 1, 2 and k∆: ∆S → ∆′
S given by k∆ = l−1

∆ ◦ h ◦ l∆. These



152 R. D. S. Oliveira — M. A. Teixeira

homemorphism there exist since we must have a homeomorphism h:T → T ′

satisfying h ◦ ρ = ρ′ ◦ h.
Let us see how to extend h to each sector S of E(X) onto the corresponding

sector S′ of E(X̃).
(1) In one elliptic sector. Consider p0 ∈ R1. Denote by σX and σY the

integral curves of E(X) and E(Y ) passing through p0. These integral curves in-
tercept ∆S in pX and pY , respectively. Consider the points k∆(pX) and k∆(pY )
in ∆′

S and the integral curves of E(X) and E(Ỹ ) through these points, respec-
tively. These curves meet each other in q0 ∈ R′

i. Then define h(p0) = q0. The
map h is a homeomorphism from R1 to R′

1. Now in R2 proceed in the same way
and the extension to S is well done because H agree with k∆ in ∆.

Now it is possible to extend h to ∂D in a natural way.

∆
1 2 21Τ Τ Τ

p

p

p
Y

X

Τ

Y

21

0

Y
q q

q

S

Figure 3. Phase portrait in some sectors of X

(2) In one hyperbolic sector we proceed in the same way as above.
(3) In one parabolic sector. Fix one leaf C1 of E(X) and notice that C1

connects two points p1 ∈ T1 with p2 ∈ T2. Let C2 be the leaf of E(X) connecting
k1(p1) and k2(p2). Define one homeomorphism h between C1 and C2. Given
a point q0 ∈ S. There is a unique point qY ∈ C1 and qX ∈ T1, where the orbits
of E(X) and E(Y ) through q0 intercept C1 and T1, respectively.

Applying k1:T1 → T ′
1 and h : C1 → C2 we obtain h(qY ) ∈ C2 and k1(qX) ∈

T ′
1, respectively. Through these points there exists a unique integral curve of
E(Ỹ ) and E(X), respectively, and they meet each other in a unique point q ∈ S′.
Then extent h to S onto S′ defining h(q0) = q.

Now we extend this homeomorphism to ∂D in a natural way. Given a point
q0 ∈ ∂D, consider a sequence (qn) in S converging to q0. Define h(q0) =
limn→∞h(qn) . Observe that the limit does not depend on the sequence.

The next step is to extend the homeomorphism constructed on each sector
to all space. We need guarantee that the gluing process is well defined. But this
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is ensured due the fact that the homeomorphism h restricted to the separating
curves agrees with the induced returning maps. �

Now, consider (X,Y ) ∈ ∆k, where E(X) and E(Y ) have distinct critical
points on ∂D. As in the case studied later, we have finite many sectors of each
vector field in D.

Theorem 3.3. Let (X,Y ) be in ∆k. Assume that E(X) and E(Y ) have
distinct critical points on ∂D. Then (X,Y ) is C0 structurally stable under per-
turbations in Hm ×Hn if only if δ either has only simple zeros or no zeros.

The proof here follows the same ideas used in the proof of Theorem 3.2. As
before we just need to distinguish each sector and separating curves and the
branches of the tangent set. See more details of the proof (to the local case)
when δ has no zeros (Proposition 4.10 in [12]).

3.2. Local approach. As in the case where X and Y has no critical points
in ∂D, we can get some conclusions about pairs of vector fields which can be
written as a sum of homogeneous vector fields in the plane:

Proposition 3.4. Let (X,Y ) be a pair of analytical vector fields in the
plane. Suppose that

(X,Y ) =
( ∑

k≥m

Xk,
∑
k≥n

Yk

)
,

where Xi and Yi are homogeneous polynomial vector fields of degree i. Either
(Xm, Yn) satisfies the assumptions of Theorem 3.2 or of 3.3. Then the phase
portrait of (X,Y ) at origin is locally equivalent to the phase portrait of (Xm, Yn)
at origin.

This Proposition can be proved in the same way as Theorem C in [4] using
the technics of Theorems 3.2 and 3.3. Note that as a consequence, we have finite
determinacy of the pairs (X,Y ) satisfying the above conditions.

We have a dual result about local equivalence in a neighbourhood of the
infinity. Here we say “phase portrait of (X,Y ) at infinity” instead of “phase
portrait of (X,Y ) in a neighbourhood of the infinity”.

Proposition 3.5. Let (X,Y ) be a pair of analytical vector fields in the
plane. Suppose that

(X,Y ) =
( m∑

k=1

Xk,
n∑

k=1

Yk

)
,

where Xk and Yk are homogeneous polynomial vector fields of degree k. Assume
that (Xm, Yn) satisfies the assumptions either of Theorems3.2 or 3.3. Then the
phase portrait of (X,Y ) at infinity is locally equivalent to the phase portrait of
(Xm, Yn) at infinity.
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4. Proof of the main results

Now we can joint the conclusions presented here to conclude the proof of the
main results:

Proof of Theorem A. It follows from Theorems 2.1, 3.2 and 3.3. �

Proof of Theorem B. If follows from Theorems 2.5 and 3.4. �

Remark 4.1. Observe that Λk
ff is a open in Σ0×Σ0 then ∆k

0 is never dense
in ∆k.

Under some conditions the results obtained in this paper can be applied to
study QDF and curvature lines in a smooth manifolds.
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