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A DEFORMATION LEMMA WITH AN APPLICATION
TO A MEAN FIELD EQUATION

Marcello Lucia

Abstract. Given a Hilbert space (H, 〈 · , · 〉), Λ an interval of R and K ∈
C1,1(H, R) whose gradient is a compact mapping, we consider a family of
functionals of the type:

I(λ, u) =
1

2
〈u, u〉 − λK(u), (λ, u) ∈ Λ×H.

Though the Palais–Smale condition may fail under just these assumptions,

we present a deformation lemma to detect critical points. As a corollary,

if I(λ, · ) has a “mountain pass geometry” for some λ ∈ Λ, we deduce the

existence of a sequence λn → λ for which each I(λn, · ) has a critical point.
To illustrate such results, we consider the problem:

−∆u = λ

�
euR
Ω eu

−
T

|Ω|

�
, u ∈ H1

0 (Ω),

where Ω ⊂⊂ R2 and T belongs to the dual H−1 of H1
0 (Ω). It is known

that the associated energy functional does not satisfy the Palais–Smale

condition. Nevertheless, we can prove existence of multiple solutions under
some smallness condition on ‖T − 1‖H−1 , where 1 denotes the constant

function identically equal to 1 in the domain.
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1. Introduction

Consider a Hilbert space (H, 〈 ·, · 〉) whose associated norm will be denoted
by | · |. It is well-known that if I ∈ C1,1(H, R) does not have any Palais–Smale
sequence in the set {u ∈ H : a ≤ I(u) ≤ b} (a < b), namely a sequence un ∈ H
satisfying:

(1.1) ‖DI(un)‖H−1 → 0, I(un) ∈ [a, b],

then {u ∈ H : I(u) ≤ a} is a deformation retract of {u ∈ H : I(u) ≤ b}. This
classical “Deformation Lemma” can be obtained by considering the gradient
vector flow of the functional I (see [30]). Such a result can be used to derive
existence of critical point if one knows that the functional satisfies the so-called
Palais–Smale condition ((PS)-condition for short), i.e. that any sequence (1.1)
admits a convergent subsequence.

Based on this classical deformation lemma, the arguments of Ambrosetti and
Rabinowitz in [1] show that if I exhibits a “mountain pass geometry”, one may
find two level sets which cannot be deformed one to the other by deformation
retract. Hence in such a case we deduce that the functional I admits a sequence
satisfying (1.1) for some values a, b. If furthermore the (PS)-condition is satisfied,
then one obtains a critical point u for the functional I with I(u) ∈ [a, b]. This
is their famous “Mountain Pass Theorem” which gives a simple as well as useful
criteria to prove existence of critical points. But this compactness assumption
of Palais–Smale could be a serious restriction to apply this theorem and since
then a lot of works has been undertaken to handle such a difficulty.

The aim of the present paper is to investigate a way of overcoming the pos-
sible failure of the (PS)-condition for functionals which are of the form:

(1.2) I(λ, u) =
1
2
〈u, u〉 − λK(u), (λ, u) ∈ Λ×H,

where Λ is an interval of (0,∞) and K is such that

(1.3) K ∈ C1,1(H, R) with ∇K:H → H compact.

Here the gradient ∇ is defined with respect to the inner product 〈 · , · 〉 and by
“compact” we mean that ∇K(un) admits a subsequence converging in the strong
topology of H for any bounded sequence un. Note that the assumptions (1.2)
and (1.3) are not enough to ensure the (PS)-condition. Hence the classical flow
defined by the vector-field −∇uI(λ, u) is not completely appropriate to derive a
deformation lemma. To overcome this problem, we shall modify this usual flow
by following an idea of Bahri [3]. We will then be able to prove the following
“Deformation Lemma”:
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Proposition 1.1. Consider a family of functional satisfying (1.2) and (1.3).
Fix I := I(λ, · ) for some λ ∈ Λ and consider a, b ∈ R (a < b). Assume that
there are no sequences (λn, un) ∈ Λ×H satisfying:

(1.4) DuI(λn, un) = 0, a ≤ I(λn, un) ≤ b, λn → λ, λn ≤ λ.

Then {u ∈ H : I(u) ≤ a} is a deformation retract of {u ∈ H : I(u) ≤ b}.

The main idea in the proof of Proposition 1.1 is to find a vector flow along
which I decreases but by keeping also the function K bounded from above. The
seminal idea of such a flow can be found in the works [3] and [4, p. 18–21], where
Bahri used it to handle some specific problems in the contact forms. In [22], we
showed how such a Deformation Lemma can be applied to handle the lack of
compactness of the functional

(1.5) H1
0 (Ω) → R, u 7→ 1

2

∫
Ω

|∇u|2 − λ log
(

1
|Ω|

∫
Ω

eu

)
.

In [23] we announced that this approach works in a general Hilbert framework.
In the present paper we shall give a complete and more detailed proof of Proposi-
tion 1.1 and for simplicity we restrict the study to a Hilbert space. But actually
a similar deformation lemma is available for a more general family of functionals
defined on a Banach space. This extension will be presented in a coming work.

Now if more information is available on the geometry of the functional I(λ, · ),
one can eventually exhibit two sublevel sets I which are not topologically equiv-
alent. In this case, Proposition 1.1 yields a sequence of critical points satis-
fying (1.4) for some values a < b. This occurs if for example I(λ, · ) exhibits
a “mountain pass geometry”. In such a case, by applying above Deformation
Lemma, we derive a version of the “Mountain Pass Theorem” which in its simpler
form reads as follows:

Proposition 1.2. Let I(λ, · ) be a family of functionals satisfying (1.2),
(1.3). Assume that for some λ ∈ Λ, I := I(λ, · ) has a strict local minimizer h0

and that there exists h1 ∈ H with |h1| > |h0| such that I(h1) < I(h0). Consider
the set of paths Γ := {γ ∈ C([0, 1],H) : γ(0) = h0, γ(1) = h1}, and define the
min-max value c := infγ∈Γ maxt∈[0,1]{I(γ(t))}. Then, for each ε ∈ (0, c−I(h0)),
there exists a sequence (λn, un) ∈ Λ×H satisfying

(1.6)

{
DuI(λn, un) = 0, λn ∈ (0, λ), λn → λ,

c− ε < I(λn, un) < c + ε.

Conclusion similar to (1.6) has been obtained previously by Struwe. For
example, consider a family of functionals I(λ, · ) exhibiting a mountain-pass
geometry (for each λ ∈ Λ) whose associated min-max value c(λ) is monotone in λ.
Then, Struwe pointed out that this monotonicity can be exploited to construct
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bounded Palais–Smale sequences for a subset D ⊂ Λ of full measure. This has
been applied successfully among others in [31] and [12] to prove existence of
critical points for functionals of the type (1.5). A more general setting to apply
Struwe’s trick has been given by Jeanjean–Toland in [14], where it has been
noted among other that the monotonicity is not necessary.

Our approach and results differ in several points from these works. Firstly, in
Proposition 1.2 we assume the mountain pass geometry to hold only at a single
value λ. Furthermore, while the strategy of Struwe or its extension done in [14]
rely on some fine properties of functions, here we will combine the Deformation
Lemma stated in Proposition 1.1 with the arguments of [1] used in their classical
Mountain Pass Theorem. In particular, the conclusion (1.6) includes also an es-
timate of the energy of the critical points. Note moreover that in the application
it is enough to derive existence of a critical points for a dense set of values of the
parameter instead of a set of full measure.

To illustrate how above results can be applied, we shall investigate the set of
critical points of the following functional:

(1.7)
J(λ, · ):H1

0 (Ω) → R,

u 7→ 1
2

∫
Ω

|∇u|2 − λ

{
log

(
1
|Ω|

∫
Ω

eu

)
− T (u)

|Ω|

}
,

where Ω ⊂⊂ R2, λ a real number and T ∈ H−1 (the topological dual of H1
0 (Ω)).

Based on the Moser–Trudinger inequality (see [27]), the functional (1.7) is of
class C∞ and its critical points are weak solutions to the non-local semilinear
problem:

(1.8) −∆u = λ

(
eu∫
Ω

eu
− T

|Ω|

)
, u ∈ H1

0 (Ω).

The study of equations involving exponential nonlinearity goes back to Liou-
ville ([21]), who gave a representation of the solutions of −∆u = eu on simply-
connected domain of R2. This type of PDE is geometrically meaningful since
it is related to the problem of prescribing the Gauss curvature which has given
rise to the Nirenberg Problem on the sphere [27] or Kazdan–Warner problem
for compact Riemannian surface [16]. Similar problems arise also in statistical
mechanics and we refer to [18] for a more detailed discussion. For example, in
thermal equilibrium at a given temperature β−1 and chemical potential µch, the
spatial density u of a perfect gas contained in Ω ⊂ R2 satisfies the Poisson–
Boltzmann equation: −∆u = 2πeβ[µch−u]. More recently, by considering the
mean-field thermodynamic limit of a two-dimensional system with logarithmic
singular pair interactions, Caglioti et al. [8] and independently Kiessling [17]
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have been led to Problem (1.8) with T ≡ 0:

(1.9) −∆u = λ
eu∫
Ω

eu
, u ∈ H1

0 (Ω).

Problem (1.8) with a constant but non-zero source term appears when consid-
ering the thermal equilibrium of a two-dimensional plasma confined by a mag-
netic field in a cylinder (see for example [29]). But considering more general
distribution in the right-hand side of (1.8) is of relevance in connection with
some Chern-Simons-Higgs model, where Dirac measures are coming into play
(see [33]).

When λ ≤ 0, existence and uniqueness of critical points for (1.7) follows
easily. Hence we shall focus on the more interesting case λ > 0. In one dimension,
namely if Ω is an interval (a, b), the continuous injection H1

0 ((a, b)) ↪→ L∞((a, b))
shows readily that the functional J(λ, · ) admits a global minimizer for any λ ∈ R.
In dimension 2, the situation is more complex. For λ < 8π, as in [8] and [17]
where the case T ≡ 0 was considered, the Moser–Trudinger inequality shows that
J(λ, · ) has a global minimizer. Several works have been devoted to understand
the structure of the critical points beyond 8π. When the domain is a ball, the
Pohozaev identity shows that problem (1.9) has no solutions for λ ≥ 8π. For non-
simply connected smooth domain, existence for (1.9) in the range (8π, 16π) has
been established by Ding et al. [12] via variational method. When the domain
and T are of class C2, topological arguments are also available. Indeed by
applying results obtained by Y.-Y. Li [20] and later completed by Chen–Lin [10],
[11], the total Leray–Schauder degree of the set of solutions for problem (1.8) can
be calculated in terms of the Euler characteristic of the domain Ω for each λ 6=
8πN (N ∈ Z+). Though these regularity assumptions allow to derive striking
existence results for a wide class of T and of domains, they can be sometimes too
restrictive. Furthermore, in some situations, the only knowledge of the degree
does not give any information. This occurs for example if in problem (1.8), u ≡ 0
is a trivial solution. In such a case, a further analysis is needed to capture the
eventual non-trivial solutions. In [24] we did this by showing that on any domain
the associated functional has a mountain pass geometry when the parameter
belongs to a certain interval A = (8π, α) (always non-empty). This structure
was exploited to derive existence of a non-trivial critical point for each λ ∈ A.

In the present paper, we shall extend the existence results obtained in [24] by
considering a general T ∈ H−1. With this aim, we need to introduce the space:

(1.10) U(Ω) =
{

ϕ ∈ H1(Ω) :
∫

Ω

ϕ = 0 and ϕ− c ∈ H1
0 (Ω) for some c ∈ R

}
,
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and define

(1.11) Λ1 := inf
{∫

Ω
|∇ϕ|2∫
Ω

ϕ2
: ϕ ∈ U(Ω) \ {0}

}
.

Let us emphasize that Λ1|Ω| > 8π (see [24], [13]). We also introduce the following
function

(1.12) −∆T0 = T, T0 ∈ H1
0 (Ω).

The result of existence that we will prove is the following:

Proposition 1.3. Let Ω ⊂⊂ R2, λ0 < Λ1|Ω| and consider the family of
functionals J(λ, · ) defined by (1.7). Then the following hold.

(a) There exist ε0, δ0 > 0 (depending on λ0 and the geometry of Ω) such
that J(λ, · ) has a local minimizer mλ with J(λ, mλ) ≤ 0 whenever

(1.13) |Ω|−1‖T − 1‖H−1 < ε0 and λ ∈ (λ0 − δ0, λ0],

where 1 denotes the function identically equal to 1 on the domain Ω;
(b) Assume λ0 ∈ (8π,Λ1|Ω|) and the linear form T satisfies (1.13). Then

we can find a dense subset D ⊂ (λ0− δ0, λ0]∩ (8π, λ0] such that J(λ, · )
has two critical points for each λ ∈ D.

(c) If λ0 = 8π, assume T satisfies (1.13) and furthermore (T0)− 6∈ L∞loc(Ω).
Then, there exists a dense subset D ⊂ (8π − δ0, 8π] such that J(λ, · )
has two critical points for each λ ∈ D.

The last statement is of particular interest. Indeed, when Ω is a simply-
connected domain of class C2,α and T ∈ C0,α(Ω) with T ≥ 0, a careful inspection
of the arguments of Suzuki [31] and Chang et al. [9] shows that Problem (1.8)
has a unique solution whenever λ ≤ 8π. The third statement of Proposition 1.3
points out that a similar uniqueness result cannot hold in full generality when
T has a negative part. For simplicity we have stated our multiplicity result by
assuming T0 to be unbounded from below, but this condition can be refined. The
main point is that under this hypothesis, we can easily prove that the functional
has a mountain pass geometry at λ = 8π without making further assumptions
on the domain. Let us also emphasize that in this result we shall not need any
information on J(λ, · ) for λ < 8π.

The paper is organized as follows. In Section 2, we prove the Deformation
Lemma given in Proposition 1.1. This result is applied in Section 3 to prove
a version of the “Mountain Pass Theorem” slightly more general than the one
stated in Proposition 1.2. In Section 4, we introduce a family of test functions
that are useful to understand the geometry of the functional (1.7). The study
of the local and global minimizers of the functional (1.7) will be undertaken in
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Section 5. All these results will be applied in Section 6 to complete the proof of
Proposition 1.3.

2. A Deformation Lemma

Throughout this section, we shall work in a Hilbert space (H, 〈 · , · 〉) and
consider a family of functional satisfying (1.2) and (1.3). We first introduce a
definition:

Definition 2.1. Given two sets A ⊂ B ⊂ H, we say that A is a deformation
retract of B if there exists a map η: [0, 1]×H → H satisfying

(a) η is continuous;
(b) η(t, u0) = u0 for all (t, u0) ∈ [0, 1]×A;
(c) for t = 1, η(1, · ) maps B on A.

The two following Lemma will be useful:

Lemma 2.2. Let (Xn, Yn) ∈ H×H and set Zn := −{|Yn|Xn + |Xn|Yn}. We
have:

(a) 〈Xn, Zn〉 ≤ 0 and 〈Yn, Zn〉 ≤ 0;
(b) If infn∈N |Yn| > 0 and 〈Xn, Zn〉 → 0, then (Zn/|Yn|) → 0.

Proof. A straightforward calculation gives

(2.1) 〈Xn, Zn〉 = −|Xn|{|Xn||Yn|+ 〈Xn, Yn〉},

and the Cauchy–Schwarz inequality shows that the right handside of (2.1) is
non-positive.

For the second statement of the lemma, we note that

|Zn|2 = 2|Xn||Yn|{(|Xn||Yn|+ 〈Xn, Yn〉} = −2|Yn|〈Xn, Zn〉,

where we have used (2.1) in the last equality. Therefore, we deduce that∣∣∣∣ Zn

|Yn|

∣∣∣∣2 = −2〈Xn, Zn〉
|Yn|

→ 0. �

Lemma 2.3. Assume (1.2) and (1.3) hold. Let (λn, un) ∈ Λ×H be a sequence
satisfying

(a) DuI(λn, un) → 0 strongly in H−1;
(b) supn∈N{λn, I(λn, un),K(un)} < ∞.

Then, up to a subsequence, (λn, un)→(λ̃, ũ) strongly in R×H and DuI(λ̃, ũ)=0.

Proof. Since λn is bounded and

1
2
〈un, un〉 = I(λn, un) + λnK(un) ≤ C,
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we have up to a subsequence that

(2.2) λn → λ̃ and un → ũ weakly in H.

On the other hand, since DuI(λ, un) → 0 (strongly), we get

(2.3) 〈∇uI(λn, un), ϕ〉 → 0, for all ϕ ∈ H.

In particular, by choosing un − ũ as a test function in (2.3), we get

(2.4) |un − ũ|2 + 〈ũ, un − ũ〉+ λn〈∇K(un), un − ũ〉 → 0.

The assumption that ∇K is compact together with (2.2) and (2.4) imply that
|un − ũ| → 0. �

We can now prove the Deformation Lemma as stated in the introduction.

Proof of Proposition 1.1. Let us introduce the following subsets of H :

Ia := {u ∈ H : I(u) ≤ a}, Ib := {u ∈ H : I(u) ≤ b},

I
b

a := {u ∈ H : a ≤ I(u) ≤ b}.

By assumption there exists ε > 0 such that

(2.5) DuI(λ, u) 6= 0, for all (λ, u) ∈ [λ− ε, λ]× I
b

a.

Under this hypothesis, we are going to construct a flow which deforms Ib on Ia

by keeping K bounded along the flow-line. To do this let Z ∈ C0,1(H,H) be
defined by:

(2.6) Z(u) := −{|∇K(u)|∇I(u) + |∇I(u)|∇K(u)},

and choose ωε ∈ C∞(R) such that

0 ≤ ωε ≤ 1, ωε(ζ) = 0 for all ζ ≤ ε, ωε(ζ) = 1 for all ζ ≥ 2ε.

Consider then the local flow η = η(t, u0) defined by the Cauchy problem:

(2.7)
du

dt
= −ωε

(
|∇I(u)|
|∇K(u)|

)
∇I(u) + Z(u), u(0) = u0,

where ωε(|∇I(u)|/|∇K(u)|) is understood to be equal to 1 when ∇K(u) = 0.
Roughly speaking, if K is constant in a subset of the Hilbert space, the flow

(2.7) is just the classical flow of “steepest descent.” While if K varies, then the
vector-field Z(u) comes into play and modify the trajectory given by the classical
gradient flow. The main properties that we shall prove are:

(a) Along a flow-line, I is strictly decreasing and K may increase but not
“too much”;

(b) Given u0 ∈ Ib, we have η(t, u0) ∈ Ia at some t = t(u0);
(c) We may associate to the flow (2.7) a deformation retract of Ib on Ia.
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Let us first make a simple observation. By setting

u := η(t, u0), ω̃ε(t) := ωε

(
|∇I(u)|
|∇K(u)|

)
,

a straightforward calculation shows that

(2.8)
d

dt
[I ◦ η( ·, u0)](t) = − ω̃ε(t)|∇I(u)|2 + 〈∇I(u), Z(u)〉,

(2.9)
d

dt
[K ◦ η( · , u0)](t) = − ω̃ε(t)〈∇K(u),∇I(u)〉+ 〈∇K(u), Z(u)〉.

Using (2.8) and Lemma 2.2, we see that

(2.10)
d

dt
[I ◦ η( · , u0)](t) ≤ −ω̃ε(t)|∇I(u)|2 ≤ 0,

namely I decreases along the flow-line.
To go further, we need to study K(η(t, u0)) and |η(t, u0)| when η(t, u0) ∈ Ib

a.

Claim 1. The variation of K along a flow-line can be estimated by the
variation of I as follows:

(2.11)
d

dt
[K ◦ η( · , u0)](t) ≤ −1

ε

d

dt
[I ◦ η( · , u0)](t).

Indeed, if u := η(t, u0) is such that

|∇I(u)|
|∇K(u)|

< ε,

then (2.9) and Lemma 2.2 show that

(2.12)
d

dt
[K ◦ η( · , u0)](t) = 〈∇K(u), Z(u)〉 ≤ 0.

Assume now that u := η(t, u0) is such that

(2.13)
|∇I(u)|
|∇K(u)|

≥ ε.

Then (2.9), Lemma 2.2, Cauchy–Schwarz inequality and (2.13) imply that

(2.14)
d

dt
[K ◦ η( · , u0)](t) ≤ ω̃ε(t)|∇K(u)||∇I(u)|

= ω̃ε(t)
|∇K(u)|
|∇I(u)|

|∇I(u)|2 ≤ 1
ε

ω̃ε(t)|∇I(u)|2.

From (2.14) together with (2.10), we get

(2.15)
d

dt
[K ◦ η( · , u0)](t) ≤ −1

ε

d

dt
[I ◦ η( · , u0)](t).

Note that the right hand-side of (2.15) is non-negative (by (2.10)) while the
relation (2.12) is non-positive. Hence, we deduce that (2.11) holds at any t (for
which η( · , u0) is defined).



122 M. Lucia

Claim 2. Given u0 ∈ H, there exists a constant C := C(a, b, u0) > 0 such
that

K(η(u0, t)), |η(u0, t)| ≤ C(a, b, u0), whenever η(u0, t) ∈ Ib
a.

By integrating (2.11), we obtain:

(2.16) K(η(t, u0)) < K(u0) +
b− a

ε
whenever η(t, u0) ∈ I

b

a.

Hence, whenever η(t, u0) belongs to I
b

a, we see by using (2.16) that

(2.17)
1
2
|η(t, u0)|2 ≤ λK(η(t, u0)) + b ≤ C(a, b, u0, ε).

So the second claim follows. In particular we see also that t 7→ η(t, u0) is globally
defined.

Claim 3. There exists a constant c := c(a, b, u0, ε) > 0 such that

(2.18)
d

dt
[I ◦ η( · , u0)] ≤ −c2 < 0 whenever η(t, u0) ∈ I

b

a.

Let us fixed u0 ∈ Ib in (2.7). Assume the existence of a sequence tn ≥ 0 such
that

(2.19)
d

dt
[I ◦ η( · , u0)](tn) → 0, η(tn, u0) ∈ I

b

a.

Set un := η(tn, u0) and note that K(un) ≤ C (by Claim 2). By recalling (2.8),
〈∇I(un), Z(un)〉 ≤ 0 (Lemma 2.2), we get

ωε

(
|∇I(un)|
|∇K(un)|

)
|∇I(un)|2 → 0 and 〈∇I(un), Z(un)〉 → 0.

Hence, we have two possibilities:

(2.20) |∇I(un)| → 0

or

(2.21)
|∇I(un)|
|∇K(un)|

→ γ ≤ 2ε and 〈∇I(un), Z(un)〉 → 0.

In the first case, Lemma 2.3 (applied with λn = λ) implies that un → ũ strongly.
In particular ∇I(ũ) = 0 and ũ ∈ Ib

a. This contradicts our initial assump-
tion (2.5).

Let us consider the second case (2.21). Since 〈∇I(un), Z(un)〉 → 0, Lem-
ma 2.2 implies

∇I(un) +
|∇I(un)|
|∇K(un)|

∇K(un) → 0.

By setting γn := (|∇I(un)|)/(|∇K(un)|) (which converges to some γ ≤ 2ε), we
obtain

DuI(λ− γn, un) → 0 (strongly), I(λ− γn, un),K(un) ≤ C.
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Lemma 2.3 (applied with λn = λ− γn) shows again that un converges strongly
to some ũ ∈ Ib

a with DuI(λ − γ, ũ) = 0. This contradicts our initial assump-
tion (2.5). Therefore (2.19) is impossible, which concludes the proof of (2.18).

Claim 4. Ia is a deformation retract of Ib.
Given u0 ∈ Ib, we deduce from Claim 2 that

I(η(t, u0)) ≤ −c2t + I(u0).

Hence, there is a t such that I(η(t, u0)) ≤ a. It is then meaningful to define

ta(u0) :=

{
inf{t ≥ 0 : I(η(t, u0)) ∈ Ia} if I(u0) > a,

0 if I(u0) ≤ a.

Consider now the mapping

η̃: [0, 1]×H → H, (s, u0) 7→ η(sta(u0), u0).

Then, classical result on ODE shows that η̃ is continuous. On the other hand
the conditions (b) and (c) of Definition 2.1 can be easily verified. Therefore, η̃

is a deformation retract of Ib on Ia. �

Let us emphasize that the assumptions (1.2) and (1.3) can be relaxed. In
particular an extension to Banach spaces is also possible and will be discussed in
another work. But for the model example we have in mind, namely the functional
(1.7), the framework that we have chosen is quite sufficient.

3. A Mountain Pass Theorem

Based on the Deformation Lemma we have proved in previous section, we
can derive the following version of the mountain pass Theorem:

Theorem 3.1. Let I(λ, · ) satisfy (1.2), (1.3). Assume that for some I :=
I(λ, · ), there exist h0, h1 ∈ H and ρ0 > 0 with the properties:

(3.1)

{
|h1 − h0| > ρ0,

α := max{I(h0), I(h1)} < β := inf |u−h0|=ρ0{I(u)}.

By setting Γ := {γ ∈ C([0, 1],H) : γ(0) = h0, γ(1) = h1}, let us define:

(3.2) c := inf
γ∈Γ

max
t∈[0,1]

{I(γ(t))} (≥ β).

Then, for each ε ∈ (0, c−α), there exists a sequence (λn, un) ∈ Λ×H satisfying

(3.3)

{
DuI(λn, un) = 0, λn ∈ [0, λ), λn → λ,

c− ε < I(λn, un) < c + ε.

Proof. If the Palais–Smale condition would hold, the arguments of [1] show
that the minmax value c defined by (3.2) is a critical value for the functional
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I. Without this compactness condition, these same arguments combined with
the deformation lemma stated in Theorem 1.1 give a slightly different conclu-
sion. More precisely, we first note that the assumption |h1 − h0| ≥ ρ implies
c ≥ α. Assume now there is no sequence (λn, un) satisfying (3.3). Then, by
Proposition 1.1, Ic−ε is a deformation retract of Ic+ε through a continuous map
η: [0, 1]×H → H where

Ic+ε := {u : I(u) < c + ε} and Ic−ε := {u : I(u) < c− ε}.

Notice that h0, h1 ∈ Ic−ε. Hence for each γ ∈ Γ and t ∈ [0, 1], the deformed
curve

γt: [0, 1] → H, s 7→ η(t, γ(s)),

is still in the set Γ. Consider now any γ0 ∈ Γ having the property

(3.4)

{
γ0(s) ∈ Ic+ε for all s ∈ [0, 1],

I(γ0(s)) ∈ (c− ε, c + ε) for some s ∈ [0, 1],

(such curve exists by the definition of the minmax value c). Then, we have

inf
γ∈Γ

max
s∈[0,1]

I(γ(s)) ≤ max
s∈[0,1]

I(η(t, γ0(s))) for all t ∈ [0, 1].

But at t = 1, the right hand-side is less than c− ε due to (3.4) and the fact that
η is a deformation retract. A contradiction with the definition of c. Hence, the
property (3.3) must hold. �

The aim of the remaining paper will be to apply these general results to the
family of functionals (1.7). By using the Moser–Trudinger inequality (see [27]),
one check easily that the functionals J(λ, · ) fulfills the assumptions (1.2) and
(1.3) by setting

K(u) = log
(

1
|Ω|

∫
Ω

eu

)
− T (u)

|Ω|
.

In order to apply the above mountain pass Theorem, we need first to understand
the geometry of each J(λ, · ). We shall proceed as follows:

(a) introduce a family of test functions,
(b) study the existence of global and local minimizers.

4. Liouville equation

For each a ∈ Ω, denoting by δa the Dirac measure at the point a, the Green
function is defined as the function G(a, · ):x 7→ G(a, x) solving:

−∆xG(a, · ) = δa in Ω, G(a, · ) = 0 on ∂Ω.

Its singular part is given by Γ(a, x) = (1/(2π)) log(1/|x− a|) and its regular part
is the unique function H(a, · ):x 7→ H(a, x) satisfying

∆xH(a, · ) = 0 in Ω, H(a, x) = Γ(a, x) on ∂Ω.



A Deformation Lemma with an Application to a Mean Field Equation 125

Therefore, with above definitions, we have G(a, x) = Γ(a, x)−H(a, x).
Inspired by the approach of Bahri–Coron to handle semilinear equation in-

volving Sobolev critical exponent (see [5]), we consider for each (a, µ) ∈ Ω×[1,∞)
the family of functions:

(4.1) δa,µ(x) = log
8µ2

(1 + µ2|x− a|2)2
x ∈ R2,

which are solutions of the “Liouville equation”:

(4.2) −4u = eu in R2,

∫
R2

eu < ∞.

Consider the “projection on H1
0 (Ω)” δa,µ of δa,µ defined by

(4.3) ∆(δa,µ) = ∆(δa,µ), δa,µ ∈ H1
0 (Ω).

These functions δa,µ will be used to study the geometry of the functional (1.7).
For this purpose, we need several estimates on δa,µ and δa,µ as µ →∞. In [22],
in order to study the Palais–Smale property, such estimates have been derived
for a ∈ Ω fixed. But in the next section, we shall allow the point a to move
inside Ω. Hence in the present paper we will be more precise and take into
consideration both variables (a, µ) in our remainders. We first emphasize the
following property of the functions (4.1):

(4.4) δa,µ(x) + log
(

µ2

8

)
=8πΓ(a, x)− 2 log

(
1 +

1
µ2|x− a|2

)
,

(∇xδa,µ)(x) = − 4
µ2(x− a)

1 + µ2|x− a|2
= −4

x− a

|x− a|2
+ O

(
1

µ2|x− a|3

)
(4.5)

= 8π∇xΓ(a, x) + O

(
1

µ2|x− a|3

)
.

The estimates on δa,µ we will use are collected in the following proposition:

Proposition 4.1. Let Ω ⊂⊂ R2 be a domain of class C1, (a, µ) ∈ Ω×[2,∞)
and set δ := δa,µ. Given f ∈ C2(Ω), we have

(4.6)
∫

Ω

feδ = 8πf(a) + ∆f(a) O

(
log µ

µ2

)
+ O

(
1
µ2

∫
∂Ω

dξ

|ξ − a|3

)
.

Furthermore,

(4.7)
∫

Ω

epδ =
8pπ

2p− 1
µ2p−2 + O

(
1

µ2p

∫
R2\Ω

dx

|x− a|4p

)
for all p ≥ 1,

and by setting Ψ(s) = s log s (s > 0), we have

(4.8)
∫

Ω

eδ

{
δ+log

(
µ2

8

)}
= 16π log µ2−16π+O

(
1
µ2

∫
R2\Ω

Ψ+(
1

|x− a|4
) dx

)
.
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Proof. The definition of δ and the Green’s identity imply∫
Ω

feδ = −
∫

Ω

f∆
(

δ + log
(

µ2

8

))
= −

∫
Ω

(
δ + log

(
µ2

8

))
∆f +

∫
∂Ω

{(
δ + log

(
µ2

8

))
∂f

∂ν
− f

∂δ

∂ν

}
.

Hence, by plugging in this identity the relations (4.4) and (4.5), we obtain

(4.9)
∫

Ω

feδ = − 8π

∫
Ω

Γ(a, · )∆f + 8π

∫
∂Ω

{
Γ(a, · )∂f

∂ν
− f

∂Γ(a, · )
∂ν

}
+ 2

∫
Ω

log
(

1 +
1

µ2|x− a|2

)
∆f

− 2
∫

∂Ω

log
(

1 +
1

µ2|x− a|2

)
∂f

∂ν
+ O

(
1
µ2

∫
∂Ω

1
|x− a|3

)
.

By the Green’s representation formula, we have

(4.10) f(a) = −
∫

Ω

Γ(a, · )∆f +
∫

∂Ω

{
Γ(a, · )∂f

∂ν
− f

∂Γ(a, · )
∂ν

}
,

and by considering a ball centered at a of radius 2diam (Ω), we check easily that:

(4.11)
∫

Ω

log
(

1 +
1

µ2|x− a|2

)
∆f = ∆f(a)O

(
log µ

µ2

)
.

So using (4.10), (4.11) in (4.9), we finally get∫
Ω

feδ = 8πf(a) + ∆f(a) O

(
log µ

µ2

)
+ O

(
1
µ2

∫
∂Ω

1
|ξ − a|3

)
,

which is the relation (4.6).
To prove (4.7), a straightforward calculation shows that∫

R2
epδ =8pπ

∫ ∞

0

dt

(1 + t)2p
=

8pπ

2p− 1
µ2p−2,∫

R2\Ω
epδ =

∫
R2\Ω

∣∣∣∣ 8µ2

(1 + µ2|x− a|2)2

∣∣∣∣p ≤ 8p

µ2p

∫
R2\Ω

1
|x− a|4p

,

and so (4.7) follows.
To prove (4.8), we first note that

(4.12)
∫

R2
eδ

{
δ + log

(
µ2

8

)}
= 16π log µ2 − 16π.

To estimate the remainder, we shall prove (by setting Ψ(s) = s log s)

(4.13)
∫

R2\Ω
Ψ

( ∣∣∣∣ µ2

1 + µ2|x− a|2

∣∣∣∣2 )
= O

( ∫
R2\Ω

Ψ+

(
1

|x− a|2

))
.

Let

Ω1 :=
{

x ∈ R2 \ Ω :
µ2

1 + µ2|x− a|2
≥ 1

}
.
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Since the function Ψ is negative on the interval (0, 1) and increasing on (1,∞),
we get

(4.14)
∫

R2\Ω
Ψ

(∣∣∣∣ µ2

1 + µ2|x− a|2

∣∣∣∣2) ≤
∫

Ω1

Ψ
(

1
|x− a|4

)
≤

∫
R2\Ω

Ψ+

(
1

|x− a|4

)
.

In order to estimate from below the integral in (4.13), we set M := 2/(1+2e1/2)
and define:

(4.15)
Ω2 :=

{
x ∈ R2 \ Ω :

µ2

1 + µ2|x− a|2
∈ (0,M)

}
,

Ω3 :=
{

x ∈ R2 \ Ω :
µ2

1 + µ2|x− a|2
∈ [M, 1]

}
.

For µ2 ≥ 2, we check easily that

e1/2 ≤ 1
M

− 1
2
≤ |x− a|2, x ∈ Ω2,

1
2
≤ |x− a|2 ≤ 1

M
− 2, x ∈ Ω3.

Hence, since Ψ is decreasing on (0, e−1), we get

(4.16)
∫

Ω2

Ψ
(∣∣∣∣ µ2

1 + µ2|x− a|2

∣∣∣∣2) ≥
∫

Ω2

Ψ
(

1
|x− a|4

)
≥ −

∫
R2\Ω

Ψ+

(
1

|x− a|4

)
.

Finally, since |Ω3| = O(1), we obtain

(4.17)
∫

Ω3

Ψ
(∣∣∣∣ µ2

1 + µ2|x− a|2

∣∣∣∣2)
≥ |Ω3| min

s∈(0,∞)
{Ψ(s)} ≥ −C

∫
R2\Ω

Ψ+

(
1

|x− a|4

)
.

From (4.14), (4.16) and (4.17), we obtain (4.13), which completes the proof of
the estimate (4.8). �

By using the Green’s representation formula, we can estimate the projection
δa,µ as follows:

Proposition 4.2. Let Ω ⊂⊂ R2 be a domain of class C1. Given a ∈ Ω,
consider δ := δa,µ defined by (4.3). Then,

(4.18) δ(x) = δ(x) + log
(

µ2

8

)
− 8πH(a, x) + R(a, µ, x),

where the remainder R(a, µ, · ) is given by:

(4.19) R(a, µ, x) := −
∫

∂Ω

log
(

1 +
1

µ2|ξ − a|2

)2
∂G

∂ν
(x, ξ) dξ.

Proof. The function h := δ − δ + log(µ2/8) satisfies

∆h = 0 in Ω, h = log
µ4

(1 + µ2|x− a|2)2
on ∂Ω.
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Therefore, by using the Green’s function G of Ω, we have:

h(x) = −
∫

∂Ω

log
µ4

(1 + µ2|ξ − a|2)2
∂G

∂ν
(x, ξ) dξ

=−
∫

∂Ω

{
log

1
|ξ − a|4

+ log
(

µ2|ξ − a|2

1 + µ2|ξ − a|2

)2}
∂G

∂ν
(x, ξ) dξ

=8πH(a, x) +
∫

∂Ω

log
(

1 +
1

µ2|ξ − a|2

)2
∂G

∂ν
(x, ξ) dξ,

and so (4.18) follows. �

When the domain is of class C2,α, the function

u(x) =
∫

∂Ω

∂G

∂ν
(x, ξ) dξ

is in L∞(Ω). So for such domains, Proposition 4.2 yields:

(4.20) δ = δ + log
(

µ2

8

)
− 8πH(a, · ) + O

(
1
µ2

∫
∂Ω

dξ

|ξ − a|2

)
.

In particular, since
∫
Ω
|∇δ|2 =

∫
Ω

δeδ, we deduce from (4.20) together with
Proposition 4.1 the following estimate:

(4.21)
∫

Ω

|∇δ|2 =16π log µ2 − 16π − (8π)2H(a, a)

+ O

(
1
µ2

∫
R2\Ω

Ψ+(
1

|x− a|4
)dx +

1
µ2

∫
∂Ω

dx

|x− a|2

)
.

Furthermore, we also get

(4.22) log
( ∫

Ω

eδ

)
= log

(
µ2

8

)
+ log

( ∫
Ω

e−8πH(a, · )eδ

)
+ O

(
1
µ2

∫
∂Ω

dξ

|ξ − a|2

)
= log(µ2) + log(π)− 8πH(a, a)

+ e8πH(a,a)

{
|∇xH(a, a)|2O

(
log µ

µ2

)
+ O

(
1
µ2

∫
∂Ω

dξ

|ξ − a|3

)}
+ O

(
1
µ2

∫
∂Ω

dξ

|ξ − a|2

)
.

Hence consider a C2,α domain Ω and K ⊂⊂ Ω. Then, whenever a ∈ K, estimates
(4.21) together with (4.22) yield

J(λ, δ) = (8π − λ) log µ2 +
(8π)2

2
H(a, a)(2.23)

− 8π − 8π log
(

π

|Ω|

)
+ T (δ) + O

(
log µ

µ2

)
.
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In order to use these functions δ without making any assumption on the
boundary, we shall several times proceed as follows. Take a C2,α domain Ω̃ ⊂ Ω
and consider in this domain the projection δµ := δaµ,µ of the function δaµ,µ

defined by (4.1):

−∆δµ = eδaµ,µ , δµ ∈ H1
0 (Ω̃).

Extend then δµ in the H1
0 (Ω)-function:

(4.24) δ̃a,µ(x) :=

{
δa,µ(x) if x ∈ Ω̃,

0 if x ∈ Ω \ Ω̃.

But note that if the boundary ∂Ω is of class C2,α, the consideration of the
open set Ω̃ and of δ̃a,µ is useless. In such a case, it is sufficient to consider the
projection of δa,µ in Ω.

5. Existence of minimizers

5.1. Global minimizers. When T ≡ 0, it is well-known that as a con-
sequence of the Moser–Trudinger inequality (see [27]), the functional J(λ, · )
defined by (1.7) is bounded from below if and only if λ ≤ 8π. In the presence of
the linear form T , we have the following:

Proposition 5.1. Let Ω ⊂⊂ R2. Consider the functionals J(λ, · ) given
by (1.7) and T0 defined by (1.12).

(a) The functional J(λ, · ) admits a minimizer for each λ < 8π;
(b) If (T0)− ∈ L∞(Ω), then J(8π, · ) is bounded from below;
(c) If (T0)− 6∈ L∞loc(Ω), then J(8π, · ) is unbounded from below. More pre-

cisely, there exists a sequence of functions δ̃aµ,µ defined by (4.24) such
that

(5.1) lim
µ→∞

‖∇δ̃aµ,µ‖ = ∞ and lim
µ→∞

J(8π, δ̃aµ,µ) = −∞;

(d) If λ > 8π, then the family of functions δ̃a,µ (for some fixed a ∈ Ω̃ ⊂ Ω)
defined by (4.24) satisfies:

(5.2) lim
µ→∞

‖∇δ̃a,µ‖ = ∞ and lim
µ→∞

J(λ, δ̃a,µ) = −∞.

Proof. (a) As in [8], [17], the Moser–Trudinger inequality implies that the
functional (1.7) is sequentially lower-semicontinuous for any λ and coercive when
λ < 8π (with respect to the weak topology). So the existence of a minimizer for
each λ < 8π follows.



130 M. Lucia

(b) For each λ < 8π, consider a minimizer uλ given by Proposition 5.1. Note
that by using T0 as a test function in the equation (1.8) satisfied by uλ, we get∫

Ω

∇uλ∇T0 =λ

∫
Ω

euλ∫
Ω

euλ
T0 −

λ

|Ω|

∫
Ω

|∇T0|2(5.3)

≥ −λ‖(T0)−‖∞ − λ

|Ω|
‖∇T0‖2

2.

Therefore, the infimum of J(λ, · ) can be estimated as follows

(5.4) J(λ, uλ) =
1
2

∫
Ω

|∇uλ|2 − λ log
(

1
|Ω|

∫
Ω

euλ

)
+

λ

|Ω|

∫
Ω

∇T0∇uλ

≥ 1
2

∫
Ω

|∇uλ|2 − λ log
(

1
|Ω|

∫
Ω

euλ

)
− λ2

|Ω|

(
‖(T0)−‖∞ +

‖∇T0‖2
2

|Ω|

)
.

The Moser–Trudinger inequality shows that the right hand-side of (5.4) is uni-
formly bounded from below as λ → 8π. The conclusion of the second statement
follows then easily.

(c) By assumption, there exists a ball B ⊂⊂ Ω such that (T0)− 6∈ L∞(B).
Since C∞

0 (Ω) is dense in H1
0 (Ω), for each µ ≥ 1 we can choose ϕµ ∈ C∞

0 (Ω) such
that

(5.5) ‖∇(ϕµ − T0)‖2 <
1
µ2

.

Note that given R > 0, the set B∞R := {ϕ ∈ L∞(Ω) : ‖ϕ‖∞ ≤ R} is closed in
L2(Ω) (since strong convergence in L2(Ω) implies a.e. pointwise convergence, see
Theorem IV.9 in [6]). In particular, the set {ϕ−µ :µ ≥ 1} cannot be bounded in
L∞(B). Hence along a sequence aµ ∈ B, we must have

(5.6) ϕµ(aµ) → −∞, aµ → p ∈ B.

Take a C2,α domain Ω̃ such that B ⊂⊂ Ω̃ ⊂ Ω, and consider the functions
δ̃µ := δ̃aµ,µ defined by (4.24). In order to apply the estimates of Section 4, we
note that:

(5.7)
|x− p|
|x− b|

≤ 1 +
diam (B)

dist (∂B, ∂Ω̃)
≤ CB , for all (b, x) ∈ B × (R2 \ Ω̃),

where p is defined in (5.6) and CB is a finite constant since dist(∂B, ∂Ω̃) > 0.
Consider now the Green function G of the domain Ω̃ and its regular part H.
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Using (5.7) and applying (4.23) in the domain Ω̃ with λ = 8π, we get

(5.8) J(8π, δ̃µ) =
1
2

∫
eΩ

|∇δµ| − λ log
(

1

|Ω̃|

∫
eΩ

eδµ

)
− λ log

(
|Ω̃|
|Ω|

)
− λ log

(
1 +

|Ω̃| − |Ω|∫
eΩ

eδµ

)
− λ

|Ω|
T (δ̃)

=
(8π)2

2
H(aµ, aµ)− 8π − 8π log

(
π

|Ω|

)
+ O

(
log µ

µ2

)
− λ

|Ω|
T (δ̃).

By considering the trace of T0 on Ω̃ and applying Green’s Theorem, we have:

T (δ̃µ) =
∫
eΩ

∇T0∇δµ =
∫

∂eΩ

T0
∂δµ

∂ν
+

∫
eΩ

T0e
δµ(5.9)

=
∫

∂eΩ

T0
∂δµ

∂ν
+

∫
eΩ

(T0 − ϕµ)eδµ +
∫
eΩ

ϕµeδµ .

By differentiating (4.18) with respect to the variable x, using (4.5) and the
fact that ∂Ω̃ is of class C2,α, we obtain:

(5.10)
∂δ

∂ν
(x) = 8π

∂G

∂ν
(a, x) + O

(
1
µ2

∫
∂Ω

dξ

|ξ − a|3

)
, for all x ∈ ∂Ω̃.

Therefore, by taking into account (5.7), the boundary integral in (5.9) can be
written as

(5.11)
∫

∂eΩ

T0
∂δµ

∂ν
= 8π

∫
∂eΩ

T0(ξ)
∂G(aµ, ξ)

∂ν
dξ + O

(
1
µ2

)
.

By applying (5.5), (4.7) and (5.7), we get

(5.12)
∫
eΩ

|T0 − ϕµ|eδµ ≤ ‖∇(T0 − ϕµ)‖2 ‖eδµ‖2 = O

(
1
µ

)
.

The last integral in (5.9) can be estimated using (4.6) with (5.7) leading to:

(5.13)
∫
eΩ

ϕµeδµ = 8πϕµ(aµ) + O

(
log µ

µ2

)
.

By plugging in (5.8) the relation (5.9) together with the estimates (5.11) to
(5.14), and reminding that aµ converges to an interior point of Ω̃, we get

(5.14) J(8π, δ̃µ) = 8πϕµ(aµ) + O(1).

Hence letting µ → ∞ in (5.14) and using (5.6), we deduce that J(8π, δ̃µ) tends
to −∞, and furthermore δ̃a,µ is unbounded in H1

0 (Ω) by (4.21).
(d) Choose Ω̃ of class C2,α in Ω, a ∈ Ω̃ and the functions δ̃a,µ defined in (4.24).

On the one hand, (4.21) shows that δ̃a,µ is unbounded in H1
0 (Ω). Furthermore,

by applying (4.23) and using |T (u)| ≤ ‖T‖‖∇u‖2, we deduce that

(5.15) J(λ, δ̃a,µ) ≤ (8π − λ) log µ2 + O(1) + O(
√

log µ2).
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Hence, for each λ > 8π, we have J(λ, δ̃a,µ) → −∞ as µ →∞. �

Under the assumption of the statement (b) of Proposition 5.1, the test func-
tions (4.24) together with the estimates (4.21) and (4.23) show that the func-
tional J(8π, · ) is never coercive for the weak topology of H1

0 (Ω). So existence
of global minimizer for this critical value becomes more subtle. When T ≡ 0,
and Ω simply-connected, a condition on the domain ensuring the existence of a
minimizer has been obtained in the work of Chang and al. [9].

5.2. Existence of local minimizers. Let us prove first that under a small-
ness condition on T , the functional J(λ, · ) admits a local minimizer. To this
end, besides the eigenvalue Λ1 := Λ1(Ω) defined by (1.11), we shall introduce
the following constant:

(5.16) S := inf
{
‖∇ϕ‖2

‖ϕ‖6
, ϕ ∈ U(Ω) \ {0}

}
,

where the space U(Ω) is defined by (1.10). Before stating our first existence
result, we need:

Lemma 5.2.

(a) For any Ω ⊂⊂ R2, we have 8π < Λ1|Ω|.
(b) For each λ < Λ1|Ω|, consider the function ω := ω(λ, Ω, · ) defined by:

(5.17) ω(t) :=
(

1− λ

Λ1|Ω|

)
t

2
− λ

S3|Ω|1/2
t2 et2/(8π), t > 0.

Then, supt>0{ω(t)} > 0 and there exists R0 > 0 (unique) such that

(5.18) ω(R0) = sup
t>0

{ω(t)}.

Proof. The fact that 8π < Λ1|Ω| has been proved in [24] and a more de-
tailed discussion can be found in [13]. To prove the existence of R0, we just note
that

ω′(0) =
(

1− λ

Λ1|Ω|

)
1
2

> 0, ω′′ < 0, lim
t→∞

ω(t) = −∞.

Moreover, this maximum is strictly positive and depends only on the parameter
λ and the geometry of the domain (actually the constants Λ1 and S). �

The motivation of introducing the function (5.17) will become clear from the
proof of the following proposition:

Proposition 5.3 (A local minimizer). Let λ < Λ1|Ω| and consider the con-
stants R0, ω(R0) (depending only on λ, Ω) given by (5.18). Assume

(5.19) |Ω|−1 ‖T − 1‖H−1 < λ−1ω(R0).



A Deformation Lemma with an Application to a Mean Field Equation 133

Then, in the ball B(0, R0) ⊂ H1
0 (Ω) we have

(5.20) J(λ, 0) = 0 and J(λ, u) > 0 for all ‖u‖ = R0.

In particular, J(λ, · ) has a local minimizer mλ ∈ B(0, R0) such that

J(λ, mλ) ≤ 0.

Proof. Denoting by u := (1/|Ω|)
∫
Ω

u, we have

(5.21) J(λ, u) =
1
2

∫
Ω

|∇(u− u)|2 − λ log
(

1
|Ω|

∫
Ω

e[u−u]

)
+

λ

|Ω|
(T − 1)(u)

=Q(u)− λR(u) +
λ

|Ω|
(T − 1)(u),

where we have set

Q(u) =
1
2

{ ∫
Ω

|∇(u− u)|2 − λ

|Ω|

∫
Ω

[u− u]2
}

,

R(u) = log
(

1
|Ω|

∫
Ω

e[u−u]

)
− 1

2|Ω|

∫
Ω

[u− u]2.

On the on hand, by the definition of Λ1 (see (1.11)), we have

(5.22) Q(u) ≥ 1
2

(
1− λ

Λ1|Ω|

)
‖∇u‖2

2.

Let us estimate R(u). Setting w := u−u and using the inequality log(1+x) ≤ x,
we have:

R(u) ≤ 1
|Ω|

∫
Ω

{ ∞∑
n=2

wn

n!

}
−

∫
Ω

w2

2
=

∫
Ω

{
w3

∞∑
n=3

wn−3

n!

}

≤
∫

Ω

|w|3e|w| ≤
{ ∫

Ω

|w|6
}1/2{ ∫

Ω

e2w

}1/2

.

By using the Moser–Trudinger inequality, we know that

(5.23)
1
|Ω|

∫
Ω

ew ≤ CΩe‖∇w‖22/(16π), for all w ∈ U(Ω),

and by using a result of [25], we note that the best constant CΩ in above in-
equality is given by CΩ = 1. Furthermore, from the definition of the constant S

(see (5.16)), we have:

(5.24) R(u) ≤ 1
S3|Ω|1/2

‖∇u‖3
2 e‖∇w‖22/(8π).
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Hence from (5.21), (5.22) and (5.24), we obtain:

(5.25) J(λ, u) ≥‖∇u‖2

{(
1− λ

Λ1|Ω|

)
‖∇u‖2

2
− λ

S3|Ω|1/2
‖∇u‖2

2 e‖∇u‖22/(8π)

}
− λ

|Ω|
‖T − 1‖H−1‖∇u‖2

= ‖∇u‖2

{
ω(‖∇u‖2)−

λ

|Ω|
‖T − 1‖H−1

}
,

where ω is the function defined by (5.17). Hence, the assumption (5.19) together
with (5.25) imply the property (5.20).

Now, classical arguments show the existence of a local minimizer mλ ∈
B(0, R0) for J(λ, · ). More precisely, let un be a minimizing sequence:

J(λ, un) → inf{J(λ, u):u ∈ B(0, R0)}, un ∈ B(0, R0).

Since un is bounded, it converges to some mλ ∈ B(0, R) in the week topology of
H1

0 (Ω). Recalling that the mapping H1
0 (Ω) → R, u 7→

∫
Ω

eu is weekly continuous
(see [2]), and the same holds for T , we get J(λ, un) ≥ J(λ, mλ). Therefore

J(λ, mλ) = inf{J(λ, u) : u ∈ B(0, R)}.

Since J(λ, mλ) ≤ J(λ, 0) = 0 and J(λ, · ) is strictly positive on ∂B(0, R0)
by (5.20), we get mλ ∈ B(0, R0) (namely mλ cannot be on the boundary).
So mλ is a local minimizer of J(λ, · ). �

Since Λ1|Ω| > 8π (see Lemma 5.2), above Proposition can also be applied
when the parameter is equal to 8π. For example, let Ω be a disk of radius R. If
T ≡ 0, the Pohozaev identity shows that the problem (1.8) has no solutions for
λ ≥ 8π. But let us choose for example T to be defined by the L1-function:

(5.26) T (x) =

{
1 if ε < |x| < R,

−1 if |x| < ε.

Then, for ε small enough, Proposition 5.3 applies and shows that problem (1.8)
has a solution when λ = 8π.

6. Multiplicity for a mean field equation

It is known that the Palais–Smale condition for the functional (1.7) fails at
each value λ = 8πN (for each N ∈ N), while this compactness condition is not
well understood for the other values of the parameter. Based on our previous
results, we will nevertheless be able to prove existence of critical points that are
not minimizers.

Proof of Proposition 1.3. (a) By applying Proposition 5.3, we derive
easily for each λ ∈ (λ0 − δ0, λ0] the existence of a local minimizer mλ which has
the property J(λ, mλ) ≤ 0.
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(b) Consider λ ∈ (8π,Λ1|Ω|). By using (5.20) and (5.2), we see that the
assumptions (3.1) are satisfied in the Hilbert space H1

0 (Ω) with

I := J(λ, · ), h0 ≡ 0, and h1 := δ̃a,µ (with µ large enough),

namely J(λ, · ) has a mountain pass geometry. By defining c as in (3.2), we note
that c > 0. Hence, Theorem 3.1 gives a sequence (λn, un) ∈ (0, λ]×H1

0 (Ω) such
that

DuJ(λn, un) = 0, λn → λ, J(λn, un) > 0.

Hence for n large enough (to ensure λn ∈ (λ0 − δ0, λ0]) we have

J(λn,mλn
) ≤ 0 < J(λn, un),

and therefore mλn
6= un.

(c) By using (5.201) and (5.1), the same proof of statement (b) allows to
conclude. �

Remark 6.1. (a) Note that in dimension two any point has H1-capacity
zero. Therefore, given a ∈ Ω and ε, M > 0, it is always possible to find a
function f ∈ C∞

0 (Ω) such that:

(6.1) ‖∆f‖H−1 < ε and f(a) < −M.

So one check easily the existence of a linear form T satisfying the assumptions
of Proposition 1.3.

(b) Instead of assuming T0 to be unbounded from below, it is enough to have
an assumption on T0 which ensures the infimum of J(8π, · ) to be strictly less
then the energy of the local minimizer. This can be investigate by considering
again the projections δ := δa,µ as defined in (4.3). After some calculations one
sees that the minima of the following function come into play:

Ω → R, a 7→ 4πH(a, a) + T0(a).

Let us now give a result about existence of radially symmetric critical points
when the domain is a ball. Consider the following spaces of radial functions:

(6.2) Lra(Ω) := {u ∈ L2(Ω) : u radial}, Hra
0 (Ω) := H1

0 (Ω) ∩ Lra(Ω).

The orthogonal of Hra
0 (Ω) in H1

0 (Ω), with respect to the inner product defined
by (u, v) 7→

∫
Ω
∇u · ∇v, will be denoted by Hn-ra

0 (Ω). We say that T ∈ H−1 is
radial if T (ξ) = 0 whenever ξ ∈ Hn-ra

0 (Ω).

Proposition 6.2. Let Ω = B(0, R) be a ball. Assume λ0 ∈ (8π,Λ1|Ω|) and
T be a radial linear form satisfying (1.13). Then we can find a dense subset
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D ⊂ (λ0 − δ0, λ0]∩ (8π, λ0] such that J(λ, · ) has two radially symmetric critical
points for each λ ∈ D.

Proof. Let J ra(λ, · ) be the restriction of J(λ, · ) to Hra
0 (Ω). Then we check

easily that the conclusion of Proposition 5.3 holds for J ra(λ, · ) in an interval
(λ0 − δ0, λ0]. Then we can follow the proof of Proposition 1.3, but by working
now in the Hilbert space Hra

0 (Ω). Therefore given λ ∈ (λ0− δ0, λ0]∩ (8π, λ0], we
deduce the existence of un,mn ∈ Hra

0 (Ω) such that

DuJ ra(λn,mn) = DuJ ra(λn, un) = 0, λn → λ, λn ≤ λ,

J ra(λn, un) > 0 ≥ J ra(λn,mn).

At this step (un,mn) are two different critical points of J ra(λn, · ). But well-
known arguments show that if u0 is a critical point of J ra(λ, · ), than u0 is also
a critical point of J(λ, · ). Indeed we have

(6.3)
∫

Ω

∇u0∇ξra = λ

∫
Ω

eu0∫
Ω

eu0
ξra − λ

|Ω|
T (ξra), for all ξra ∈ Hra

0 (Ω).

Decompose now ξ ∈ H1
0 (Ω) uniquely as ξ = ξra + ξn-ra. On one hand T (ξ) =

T (ξn-ra) (by assumption). On the other hand, since eu0 ∈ Lra(Ω) one can prove
that

∫
Ω

eu0ξn-ra = 0. Hence, we deduce readily that the identity (6.3) keeps
holding for any test function ξ ∈ H1

0 (Ω). �

Remark 6.3. When the domain is an annulus A and T is radial, existence
of radial critical points for the functional J(λ, )̇ are easier to derive. Indeed, the
continuous injection Hra

0 (A) ↪→ L∞(A) implies readily that J(λ, · ) restricted to
Hra

0 (A) has a minimizer for any λ ∈ R.

Our results give existence of two solutions for D ⊂ Λ. If furthermore some
a priori estimates are known on the set of solutions we have constructed, then
standard arguments will show that this multiplicity result keeps holding for any
value λ ∈ D. If for example ∂Ω and T0 := ∆−1

D (T ) are of class C2,α, the
arguments of Ma-Wei [26], Brezis–Merle [7], Li–Shafrir [19] imply that the set of
solutions to Problem (1.8) for λ belonging to some compact interval of (0,∞) \
{8πN : N ∈ N} is bounded in norm L∞(Ω). In this case our existence results
proved in this section hold on a full interval E removed from the eventual value
8πN contained in E. If furthermore T > 0, the refined blow-up analysis of
Chen–Lin ([10, Theorem 6.2]) shows that actually the result of multiplicity hold
on the full interval E (even at the possible value 8πN contained in E).
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Mathematisches Institut

Weyertal 86–90
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