
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 30, 2007, 87–111

BIFURCATION PHENOMENA IN CONTROL FLOWS

Fritz Colonius — Roberta Fabbri

Russell Johnson — Marco Spadini

Abstract. We study bifurcation phenomena in control flows and the bi-
furcation of control sets. A Mel’nikov method and the Conley index to-

gether with exponential dichotomy theory and integral manifold theory are

used.

1. Introduction

The purpose of this paper is to provide information concerning the bifurcation
of control sets of two-dimensional control systems of the form

(1.1) x′ = f(x, ε) + ρu(t)g(x, ε) (x ∈ R2).

Here u: R → [−1, 1] is a measurable control function, ε takes values in an open
interval I = (a, b) ⊂ R, and ρ is a real parameter which assumes small values.
We will always assume that f(0, ε) = g(0, ε) = 0 for all ε ∈ I, so that x = 0 is
an equilibrium point of (1.1) for all choices of ε, ρ, and u( · ).

When ρ = 0 one obtains a one-parameter family of ordinary differential
equations

(1.2) x′ = f(x, ε) (x ∈ R2)
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each of which admits x = 0 as an equilibrium point. The classical Poincaré–
Bendixon theory imposes strong constraints on the asymptotic behavior of the
solutions of (1.2).

We pose a bifurcation problem of “Arnold type” [1], [2]. Let us explain what
we mean by this term. For each ε ∈ D let Bε = Dxf(0, ε) be the Jacobian
matrix of f( · , ε) at x = 0. Suppose that there exist numbers ε1 < ε2 ∈ I with
the following properties. First, the eigenvalues of Bε lie in the left half-plane
for ε < ε1; i.e. Bε is a Hurwitz matrix. Second, the eigenvalues of Bε lie in
the right half-plane if ε > ε2. Finally, in the intermediate regime ε1 < ε < ε2,
we will assume that Bε admits one negative (real) eigenvalue and one positive
eigenvalue.

The problem we pose is the following. Suppose that the parameter ρ in (1.1)
is small but non-zero. First, describe the qualitative change in the behavior of
the solutions of (1.1) as ε passes through [ε1, ε2]. Then, determine the number
and structure of the control sets of (1.1) when ε < ε1, ε1 < ε < ε2, and ε > ε2.

Classical bifurcation theory offers only limited insight into this problem be-
cause of the nonautonomous nature of equation (1.1). However L. Arnold has
offered hypotheses concerning the expected behavior of solutions of 1-parameter
families like (1.1) [1]. His insights have been developed by later authors [24],
[32], [33]. We will apply and amplify previous methods and results regarding the
Arnold bifurcation pattern in the context of the family (1.1).

We will in particular make systematic use of the fact that the nonautonomous
part of (1.1) is small, i.e. proportional to ρ. Specifically, we will use a method of
Mel’nikov type to study the behavior of solutions of (1.1) when ε1 < ε < ε2, and
we will use the continuation properties of the Conley index to study invariant sets
and control sets for (1.1) when ε > ε2. These methods seem particularly suited to
the study of nonautonomous equations which are perturbations of autonomous
equations.

After we have studied the solutions of (1.1) for small ρ 6= 0, we will analyze
the corresponding control sets [8]. These sets provide basic information about
the local controllability properties of the nonlinear control system (1.1). We will
use results of Colonius–Kliemann [8]; see also Gayer [15] and Grünvogel [17].

The present paper is organized as follows. In Section 2 we discuss some basic
facts concerning nonautonomous differential systems. We review the theory of
the dynamical spectrum and an appropriate version of integral manifold theory.
We then discuss the concept of control flow and that of control set.

In Section 3 we discuss the intermediate regime when ε1 < ε < ε2, where
Bε has one positive and one negative eigenvalue. When ε > ε2 and ε is close
to ε1, certain general statements can be made about the control flow ([8]; see
Section 2) defined by (1.1). We use results and methods presented in [24]. We
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use properties of the control flow to deduce statements about the control sets.
Next, we conside values ε ∈ (ε1, ε2) which are not “near” ε1: in particular we
allow the possibility that equation (1.2) admits an orbit which is homoclinic to
the origin x = 0. In this case, one can use a Mel’nikov-type method to make a
systematic study of the control flow defined by (1.1) when ρ is small. We observe
phenomena which may be related to those mentioned by Arnold [3]; he applied
techniques due to Dellnitz and his collaborators (e.g. [11]).

The case ε > ε1 is treated in Section 4. We make use of the fact that the
Poincaré–Bendixson theory is valid for equation (1.2). Of the various possible
phase portraits which (1.2) may exhibit, we choose to study one which seems
related to a phenomenon observed by L. Arnold in a forced Duffing–van der Pol
operator and studied by Schenk–Hoppé and others [32], [33], [24]. Namely, we
assume that the phase flow of (1.2) admits two saddles and two sinks together
with certain heteroclinic orbits. We will use the perturbation properties of the
Conley index to study the control flow of (1.1) when ρ is small. Once again, we
then use the properties of the control flow to discuss control sets.

We finish this Introduction by indicating some notation which will be used
throughout the paper, and repeating some basic definitions.

For each integer d ≥ 1, let Md denote the set of d × d real matrices. Let
〈 · , · 〉 denote the Euclidean inner product and | · | the corresponding norm.

LetX be a metric space. For each t ∈ R, let τt:X → X be a homeomorphism.
The couple (X, {τt}) is said to define a flow or dynamical system on X if the
following conditions are satisfied:

(i) τ0(x) = x for all x ∈ X;
(ii) τt+s(x) = τt ◦ τs(x) for all t, s ∈ R and all x ∈ X;
(iii) the map T :X × R → X:T (x, t) = τt(x) is continuous.

A subset Y ⊂ X is said to be invariant if for each y ∈ Y , the orbit (or trajectory)
{τt(y)|t ∈ R} is contained in Y . A compact subset M ⊂ X is said to be minimal
if it is invariant and if, for each x ∈ M , the orbit {τt(x)|t ∈ R} is dense in M .
Let x ∈ X; the ω-limit set of x is

{y ∈ X | there exists a sequence tn → +∞ such that τtn
→ y}.

The α-limit set is defined analogously by considering sequences tn → −∞.

2. Preliminaries

In this section, we review some facts concerning nonautonomous control sys-
tems. In particular we review the integral manifold theory for nonautonomous
differential systems. We also repeat some basic material concerning the control
flows of Colonius and Kliemann.
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Let P be a compact metric space, and let (P, {τt}) be a flow on P . We
will study a family of time-dependent ordinary differential equations which is
parametrized in a certain way by the points of P . Specifically, let f :P×Rd → Rd

be a continuous map. Assume that the derivatives Dk
xf :P ×Rd → Rd of f with

respect to x exist and are continuous on P ×Rd for each k = 1, 2, 3. We consider
the family of differential equations

(2.1) x′ = f(τt(p), x) (x ∈ Rd, p ∈ P ).

Generally speaking, the right-hand side of (2.1) varies with the time t for fixed
p ∈ P ; that is, (2.1) is a nonautonomous differential equation.

Let us assume that, for each p ∈ P and each x0 ∈ Rd, equation (2.1) admits
a unique solution ϕ(t; p, x0), which exists for all t ∈ R. For each t ∈ R define
Nt:P × Rd → P × Rd as follows: Nt(p, x0) = (τt(p), ϕ(t; p, x0)). It is easily
seen that the pair (P × Rd, {Nt}) is a flow. It is typical of the theory of nonau-
tonomous differential systems that one makes use of the recurrence properties of
the trajectories of this flow to study the solutions of equation (2.1).

A family of the type (2.1) can be obtained beginning with a single differential
equation

(2.1′) x′ = f̃(t, x) (t ∈ R, x ∈ Rd)

when f̃ satisfies the following condition: f̃ together with its x-derivatives Dk
xf̃

of orders k = 1, 2, 3 are uniformly continuous on R×K for each compact subset
K ⊂ Rd. In fact, view f̃ as a point in the space F of all functions f̂ : R×Rd → Rd

which satisfy this condition. Topologize F by stating that a sequence {f̂k} ⊂ F
converges to f̂ ∈ F just when f̂n → f̂ uniformly on each compact subset of
R×Rd. Introduce a Bebutov-type flow [5] on F by setting τt(f̂)(s, x) = f̂(t+s, x)
for each f̂ ∈ F and t ∈ R. Then the pair (F , {τt}) is indeed a flow on F . Let
P = cl{τt(f̃)|t ∈ R}, and set

f(p, x) = p(0, x) (p ∈ P, x ∈ Rd).

Then f̃ ∈ P , and equation (2.1′) is one equation in the family (2.1) defined by
f and P .

Assume from now on that f(p, 0) = 0 for all p ∈ P . Let us write

`(p) = Dxf(p, 0), n(p, x) = f(p, x)− `(p)x.

Then equation (2.1) takes the equivalent form

(2.2) x′ = `(τt(p))x+ n(τt(p), x).

Clearly n(p, x) = O(|x|2) as x→ 0, uniformly with respect to p ∈ P .
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We review some basic concepts and facts concerning the family of linear
systems

(2.3) x′ = `(τt(p))x (p ∈ P ).

Let Φp(t) be the fundamental matrix solution of (2.3) (p ∈ P ).

Definition 2.1 ([10]). The family (2.3) is said to have an exponential di-
chotomy (ED) over P if there are positive constants k, γ together with a contin-
uous projection-valued function Q:P → Md such that:

‖Φp(t)Q(p)Φp(s)−1‖ ≤ ke−γ(t−s) for t ≥ s,

‖Φp(t)(I −Q(p))Φp(s)−1‖ ≤ keγ(t−s) for t ≤ s.

We define the important concept of dynamical spectrum [29], [34] of equation
(2.3) in the following way.

Definition 2.2. Say that λ ∈ R belongs to the resolvent of the family (2.3)
just when the translated family

x′ = (−λI + `(τt(p)))x

admits an exponential dichotomy over P . If λ does not belong to the resolvent
of the family (2.3), we say that λ belongs to the dynamical spectrum Σ of (2.3).

It was shown in [23] that λ lies in the dynamical spectrum of (2.3) if and only
if λ lies in the spectrum of the differential operator (d/dt)−`(τt(p)) acting on an
appropriate Banach space. This point of view has been systematically exploited
by Latushkin and his co-workers; see [6].

We now formulate an important result regarding the dynamical spectrum.
To do this, we must first note that the pair (P × Rd, {Lt}) is a flow where

Lt(p, x0) = (τt(p),Φp(t)x0) (t ∈ R, p ∈ P, x0 ∈ Rd).

This is an example of a so called skew-product flow.

Theorem 2.3 ([29]). The dynamical system Σ of the family (2.3) is the
union of at most d compact pairwise disjoint subintervals of R:

Σ = [a1, b1] ∪ [a2, b2] ∪ . . . ∪ [ak, bk] (1 ≤ k ≤ d)

where −∞ < a1 ≤ b1 < a2 ≤ b2 < . . . < ak ≤ bk <∞. To each spectral interval
[ar, br] ⊂ Σ there corresponds a topological (hence closed) vector subbundle Vr ⊂
P × Rd, with base space P , such that the following properties hold:

(a) Vr is invariant for each r = 1, 2, . . . , d. Explicitly, if (p, x0) ∈ Vr and if
t ∈ R, then Lt(p, x0) ∈ Vr;
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(b) if (p, x0) ∈ Vr and x0 6= 0, then

ar ≤ lim inf
t→±∞

1
t

ln ‖Φp(t)x0‖ ≤ lim sup
t→±∞

1
t

ln ‖Φp(t)x0‖ ≤ br;

(c) P × Rd = V1 ⊕ . . .⊕ Vk (Whitney sum).

If P reduces to a single point, i.e. if the family (2.3) reduces to a single au-
tonomous linear equation x′ = `x, then the subbundles Vr are vector subspaces
of Rd. The dynamical spectrum Σ is equal to the set

{λ ∈ R | λ is the real part of an eigenvalue of `}.

If λr = ar = br ∈ Σ, then Vr is the real part of the direct sum of the generalized
eigenspace of ` corresponding to those eigenvalues µ of ` satisfying Reµ = λr.

Next we sketch a version of the classical integral manifold theory [18] for
nonautonomous differential systems (2.2). We refer to [22], which makes use
of techniques of Hirsch–Pugh–Shub [19], Irwin [20], [21], and Foster [12]. See
also [36].

Let η > 0 be a positive number. Let ψη: Rd → R be a C∞ function which
takes values in the interval [0, 1] and which satisfies the conditions ψη(x) = 1 if
|x| ≤ η, ψη(x) = 0 if |x| ≥ 2η and |Dψη| ≤ k/η where k is a constant which does
not depend on η.

Consider the family of equations

(2.4) x′ = `(τt(p))x+ ψη(x)n(τt(p), x) (p ∈ P )

obtained from (2.3) by multiplying n( · , · ) by ψη( · ). We abuse notation and
write Nt for the homeomorphism of P × Rd defined by

Nt(p, x0) = (τt(p), ϕ(t, p, x0)),

where now ϕ(t, p, x0) denotes the solution of (2.4) with initial value x0. The flow
(P ×Rd, {Nt}) depends on η, but we do not explicitly indicate the dependence.

Now let ∆ > 0 be given. We can choose η > 0 so that

(2.5) |(Nt(p, x1)− Lt(p, x1))− (Nt(p, x0)− Lt(p, x0))| ≤ ∆|x1 − x0|

for all p ∈ P and all x1, x2 ∈ Rd. This relation is fundamental in proving the
existence of the so-called ρ-stable and ρ-unstable invariant foliations of P ×Rd,
for appropriate values of ρ ([19]–[21]). We refer to [22] for a proof of the existence
of and a discussion of the properties of these foliations. Here we describe them
in a manner sufficient for the purposes of this paper.

Let λ0 be a real number which does not lie in the dynamical spectrum Σ of
the family (2.3). Let ρ = eλ0 . Set

Ṽ s =
⊕

{Vr | br < λ0}, Ṽ u =
⊕

{Vr | ar > λ0}
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where the ⊕ indicates the Whitney sum of vector subbundles of P × Rd. Then
Ṽ s and Ṽ u are closed vector subbundles of P × Rd. We indicate the fibers of
these subbundles at a given point p ∈ P by

Ṽ s
p = ({p} × Rd) ∩ Ṽ s, Ṽ u

p = ({p} × Rd) ∩ Ṽ u.

Using the theory of ρ-hyperbolic linear maps and Lipschitz small perturba-
tions of these ([19], [21]) one can determine a number ∆ = ∆(ρ) > 0 with the
following properties. Let η be chosen so that (2.5) holds, and let {Nt} correspond
to such a value of η.

(1) There are maps hs
p: Ṽ

s
p → Ṽ u

p and hu
p : Ṽ u

p → Ṽ s
p which are of class C1,

such that the sets

W s = {(p, x) ∈ P × Rd | x = v ⊕ hs
p(v), v ∈ Ṽ s

p },

Wu = {(p, x) ∈ P × Rd | x = v ⊕ hu
p(v), v ∈ Ṽ u

p }

are Nt-invariant. If λ0 ≤ 0, the maps hs
p are of class C3; if λ0 ≥ 0, the

maps hu
p are of class C3 (p ∈ P ).

(2) For each p ∈ P , the fiber W s
p = W s ∩ ({p} ×Rd) is tangent at x = 0 to

Ṽ s
p , and the fiber Wu

p = Wu ∩ ({p} × Rd) is tangent at x = 0 to Ṽ u
p .

(3) The sets W s and Wu can be characterized as follows: for each p ∈ P ,
x0 ∈ W s

p if and only if ρ−t|Nt(p, x0)| → 0 as t → ∞; x0 ∈ Wu
p if and

only if ρ−t|Nt(p, x0)| → 0 as t→ −∞.
(4) The fibers W s

p and Wu
p (p ∈ P ) fit together smoothly in the follow-

ing sense. Define hs: Ṽ s → Ṽ u: hs(p, v) = hs
p(v) and hu: Ṽ u → Ṽ s:

hu(p, v) = hu
p(v). Then hs and hu are F 1 in the sense of Foster [12].

That is, if (pn, vn) → (p, v) in Ṽ s, if xn ∈ Ṽ s
pn

, and if xn → x in Rd,
then Dhs

pn
· xn → Dhs

p · x. The analogous condition holds for hu. If
λ0 ≤ 0, then hs is F 3 in the sense of Foster, while if λ0 ≥ 0 then hu is
F 3 in the sense of Foster (see [12]).

(5) If λ0 ≤ 0, then there exists η∗ > 0 such that, if |x0| ≤ η∗ and if
(p, x0) ∈ W s, then |Nt(p, x0)| ≤ η for all t ≥ 0. Thus ϕ(t; p, x0) ∈ W s

for all t ≥ 0 where now ϕ( · ; · , · ) refers to the original equation (2.1).

Next we review some terminology and facts concerning control flows; the
standard reference for this material is [8]. Let U ⊂ R be a compact interval
containing 0 in its interior. Let f( · ) and g( · ) be C3 vector fields on Rd. Consider
the control system

(2.6) x′ = f(x) + u(t)g(x) (x ∈ Rd)

where u: R → U is a measurable function. This is of course not the most general
form of control system considered in [8], but the control systems dealt with in
this paper have the form (2.6).
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Let U = {u: R → U | u is measurable}. Observe that U ⊂ L∞(R) and that
U is closed under translation: if u ∈ U , t ∈ R and τt(u)(s) =: u(s + t) (s ∈ R),
then τt(u) ∈ U . We give U the weak-* topology defined as follows: a sequence
{un} ⊂ U converges to a point u ∈ U just when, for each ϕ ∈ L1(R), there holds∫ ∞

−∞
un(t)ϕ(t) dt→

∫ ∞

−∞
u(t)ϕ(t) dt.

It is easy to see that the pair (U , {τt}) is a flow.
Next let u ∈ U , x0 ∈ Rd, and consider the solution ϕ(t;u, x0) of (2.6) sat-

isfying ϕ(0;u, x0) = x0. One can prove a local existence and uniqueness result
regarding ϕ(t;u, x0). Assume that ϕ(t;u, x0) is defined for all t ∈ R, for each
u ∈ U and x0 ∈ Rd. This holds if, for example, f( · ) and g( · ) are bounded on
Rd. Set Nt(u, x0) = (τt(u), ϕ(t;u, x0)) for each t ∈ R, u ∈ U , x0 ∈ Rd. Note
that, formally, this does not fit into the framework sketched for equations (2.1),
since the evaluation map u → u(0) is not well defined on U . Nevertheless one
proves [8] that (U × Rd, {Nt}) is a flow.

Assume from now on that f(0) = g(0) = 0, so that x = 0 is an equilibrium
of (2.6) for each u ∈ U . We will also assume from now on that f and g satisfy
a controllability rank condition which can be formulated as follows. Let M =
Rd \ {0}. Define adf (g) to be the Lie bracket [f, g] of the vector fields f, g on
M . Further define adk+1

f (g) = adf (adk
f (g)) for k = 1, 2, . . . . The condition we

impose is this: for each x ∈M it is required that

span{f(x), adk
f (g)(x) | k = 1, 2, 3} = R2.

If f and g are of class Cr for some r > 3, then the condition can be relaxed to
span{f(x), adk

f (g)(x) | 1 ≤ k ≤ r} = R2 for each x ∈M .
Let π:U × Rd → Rd be the projection onto the second factor.If x0 ∈ Rd, let

O+(x0) be the reachable set from x0:

O+(x0) = {y ∈ Rd | there exist u ∈ U and t ≥ 0 such that π(Nt(u, x0)) = y}.

Definition 2.4. A set D ⊂ Rd is called a control set of (2.6) if

(a) D has nonempty interior;
(b) for all x0 ∈ D there holds D ⊂ clO+(x0) where cl means closure;
(c) D is maximal with respect to the properties (a) and (b), i.e. if D ⊂ D′

and if D′ satisfies (a) and (b) then D = D′.

According to this definition, approximate controllability holds inD: if x0, y ∈
D and O is a neighbourhood of y, then there exists u ∈ U and t ≥ 0 such that
π(Nt(u, x0)) ∈ O.

There is a useful relation between control sets and ω-limit sets in the control
flow. To explain it we introduce the following concept.
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Definition 2.5. A pair (u, x0) ∈ U × Rd is called an inner pair if there
exists T > 0 such that NT (u, x0) ∈ IntO+(x0).

There are several results to the effect that, if a point (u, x0) ∈ U × Rd has
a bounded positive semiorbit {Nt(u, x0) | t ≥ 0}, and if every point (v, y) in
the ω-limit set Ω of (u, x0) is an inner pair, then the projection of Ω to Rd is
contained in the interior of a control set. We give one statement of this sort. It
can be proved by combining Corollary 4.5.12 and Proposition 4.5.19 of [8].

Theorem 2.6. Let M = Rd \ {0}, and suppose that f and g satisfy the
controllability rank condition on M . Let K ⊂ M be a compact set such that, if
u ∈ U and x0 ∈ K, then there exists T = T (u, x0) > 0 with the property that
ϕ(t;u, x0) ∈ K for all t ≥ T . Then there exists a positive number ρ0 such that:
if |u|∞ ≤ ρ0, if x0 ∈ K, and if Ω is the ω-limit set of (u, x0), then π(Ω) is
contained in some control set D.

Proof. First one uses ([8, Proposition 4.5.19]) to prove that there exists
ρ0 > 0 such that, if |u|∞ ≤ ρ0 and x0 ∈ K, then (u, x0) is an inner pair. Then
one applies ([8, Proposition 4.5.12]) to show that, if |u|∞ ≤ ρ0 and x0 ∈ K, then
the ω-limit set Ω ⊂ U ×K of (u, x0) has the property that π(Ω) is contained in
a control set D. �

3. The intermediate regime

Consider the two-parameter family of control systems

(3.1) x′ = f(x, ε) + ρu(t)g(x, ε) (x ∈ R2)

where ε lies in an open interval I ⊂ R and −ρ0 < ρ < ρ0 where ρ0 > 0.
We will often assume that u is uniformly continuous; we let Uc = {u: R →
U | u( · ) is uniformly continuous}. Then Uc ⊂ U . We give Uc the standard
compact-open topology. Then Uc is not compact; however the set {τt | t ∈ R} of
translations defines a flow (Uc, {τt}). Moreover, if u ∈ Uc, then the orbit closure
cl{τt(u) | t ∈ R} = Pu is compact.

Let Bε = Dxf(0, ε). We suppose in this section that there exist parameter
values ε1, ε2 ∈ I with ε1 < ε2 such that, if ε ∈ (ε1, ε2), then Bε admits two real
eigenvalues λ1(ε) and λ2(ε) such that λ1(ε) < 0 < λ2(ε). We further suppose
that λ1(ε1) < λ2(ε1) = 0, and that λ1(ε) < λ2(ε) < 0 if ε < ε1.

Clearly the origin x = 0 defines an asymptotically stable solution of (3.1)
when ρ = 0 and when ε < ε1. For each fixed ε < ε1, there exists a number
ρ(ε) > 0 such that x = 0 defines an asymptotically stable solution of (3.1) for
|ρ| ≤ ρ(ε). We propose to analyze the behavior of the solutions of (3.1) when
ρ 6= 0 is small and when ε lies in the interval (ε1, ε2).
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First suppose that ρ = 0. If the derivative (dλ2/dε)(ε1) > 0 and if the
higher-order terms of the vector field f satisfy appropriate conditions, then the
equation

(3.2) x′ = f(x, ε)

exhibits a transcritical bifurcation at x = 0, ε = ε1. We impose a sufficient
condition for the existence of a transcritical bifurcation with an eye to studying
equation (3.1) for x near zero, ρ near zero, and ε near ε1.

Hypothesis 3.1. Let e be a unit vector lying in the one-dimensional eigen-
space E of Bε1 which corresponds to λ2(ε1) = 0. Suppose that there exist positive
constants c, η such that

〈f(ψe, ε1), e〉 ≤ −cψ2 (0 ≤ ψ ≤ 2η).

In this case, a standard analysis (e.g. [7]) shows that a transcritical bifur-
cation takes place in (3.2) as ε passes through ε1. More precisely, there is an
equilibrium point x(ε) 6= 0 of (3.2) for values of ε > ε1 such that ε− ε1 is small.
This equilibrium point defines an exponentially asymptotically stable solution of
(3.2). Moreover, x(ε) → 0 as ε → ε+1 . For each ε > ε1 with ε − ε1 sufficiently
small, x(ε) lies on the ε-slice of each center manifold of the augmented system

x′ = f(x, ε), ε′ = 0.

Now let ε > ε1 be a point near ε1, and let x(ε) 6= 0 be the equilibrium of
(3.2) discussed above. Let u0 ∈ U be a non-zero constant control. There exists
a positive number ρ0 = ρ0(ε) such that, if |ρ| ≤ ρ0, then the system

x′ = f(x, ε) + ρu0g(x, ε)

admits an exponentially asymptotically stable equilibrium x(ε, ρ) 6= 0; moreover
x(ε, ρ) → x(ε) as ρ→ 0.

Adopting the notation of Section 2, let M = R2 \ {0}. By hypothesis, the
controllability rank condition holds on M for each ε ∈ I. It follows from ([8,
Proposition 4.5.19]) that (u0, x(ε, ρ)) satisfies the inner pair condition for each
ρ ∈ [−ρ0, ρ0]. We can interpret the singleton set Ω = {(u0, x(ε, ρ))} ⊂ U ×M

as an ω-limit set in the control flow. Therefore, by ([8, Proposition 4.5.12]), the
projection π(D) = {x(ε, ρ)} lies in the interior of a control set D ⊂ R2.

We summarize this discussion as follows.

Theorem 3.2. Suppose that Hypothesis 3.1 holds. Then if ε > ε1 is suf-
ficiently close to ε1, there exists a positive number ρ0 = ρ0(ε) such that, if
|ρ| ≤ ρ0(ε), then the control system (3.1) admits a control set D ⊂ R2.
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The proof of Theorem 3.2 requires only very limited information concerning
the nature of the control flow (U × R2, {Nt}). We point out that, if the non-
linear terms of f and g satisfy certain conditions, then the control flow can be
investigated in more detail for small positive values of ε − ε1 and small values
of ρ. For example, if P ⊂ Uc is a minimal set, then methods from [24] can be
used to give fairly natural sufficient conditions for the existence of a compact
invariant subset Ω ⊂ P × R2 ⊂ Uc × R2 which is near the zero-section P × {0}
in the Hausdorff sense, and which has the property that Ω∩ (P ×{0}) is empty.
Roughly speaking, Ω “bifurcates” from P × {0} as ε increases through ε1. If ρ
is sufficiently small, then the projection π(Ω) of such a compact invariant set is
contained in a control set D.

Let us now turn to the situation when ε1 < ε < ε2 but ε− ε1 is not “small”.
We examine the question of the existence of control sets D for the system (3.1)
when ρ is small and when the uncontrolled system (3.2) admits an orbit which
is homoclinic to x = 0. We will give a condition sufficient for the existence of an
ω-limit set Ω ⊂ U×R2 which is disjoint from U×{0} and whose projection to R2

lies in a control set D. We note that Grünvogel [17] takes a different approach:
in the situation he considers, he is able to construct a non-trivial control which
leads to an ω-limit set which, in addition to the origin, contains other points.
This allows him to infer the existence of a control set containing the origin as
a boundary point.

Continuing the discussion, let ε∗ ∈ (ε1, ε2) be a parameter value such that
the equation

x′ = f(x, ε∗)

admits a non-zero solution y(t) satisfying limt→∞ y(t) = limt→−∞ y(t) = 0.
Let P be a compact translation invariant subset of Uc = {u: R → U | u( · ) is
uniformly continuous} where we recall that Uc has the compact-open topology.
We indicate a generic element of P by p; of course p( · ) is to be interpreted as
a control function. We will study the control system (3.1) when ε = ε∗, ρ is
small, and the control function take values in P .

For general values ε ∈ I and ρ ∈ R, we can write

`(p) = Df(0, ε) + ρp(0)Dg(0, ε)

where we suppress the dependence of ` on ε and ρ. Then (3.1) takes the form

x′ = `(τt(p))x+ n(τt(p), x))

where n(p, x) = f(x, ε) + ρp(0)g(x, ε) − `(p)x. Let Σ = Σρ,ε be the dynamical
spectrum of the family of linear systems

x′ = `(τt(p))x.
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By a basic perturbation result [29] one has that, for small ρ 6= 0, Σ = [a1, b1] ∪
[a2, b2] where [a1, b1] is close in the Hausdorff sense to λ1(ε), and [a2, b2] is close
in the Hausdorff sense to λ2(ε).

Now let ε = ε∗, and recall that λ1(ε∗) < 0 < λ2(ε∗). There exists a positive
number ρ∗ such that, if |ρ| ≤ ρ∗, then the dynamical spectrum Σρ∗,ε∗ = [a1, b1]∪
[a2, b2] where [a1, b1] ⊂ (−∞, 0) and [a2, b2] ⊂ (0,∞). For ε = ε∗ and ρ ∈
[−ρ∗, ρ∗], consider the integral manifolds W s = W s(p) ⊂ P × R2 and Wu =
Wu(p) ⊂ P×R2 introduced in Section 2. Referring to the discussion in Section 2,
we see that λ0 can be chosen to be zero. Letting η∗ > 0 be as in point (5) of
that discussion, define

W s,loc = {(p, x0) ∈W s | |x| ≤ η∗},
Wu,loc = {(p, x0) ∈Wu | |x| ≤ η∗}.

It can be shown that these local integral manifolds generate the global integral
manifolds as follows:

W s =
⋃
t≤0

Nt

(
W s,loc

)
, Wu =

⋃
t≥0

Nt

(
Wu,loc

)
.

Finally we note that, according to Point 4 in the discussion in Section 2, the
fibers

W s
p = W s ∩ ({p} × P ), Wu

p = Wu ∩ ({p} × P )

are C3-submanifolds of R2 for each p ∈ P .
Write Y = {y(t)|t ∈ R} for the homoclinic orbit of (3.2) at ε = ε∗. Let L be

a line segment in R2 which contains y(0) in its interior and which is transversal
to Y . Using the smoothness of the fibers, one can show that, for small ρ 6= 0,
there are “first” points of intersection ys

p(ρ) (resp. yu
p (ρ)) of W s

p (ρ) (resp. Wu
p (ρ))

with L, and that these are points of transversal intersection. One can further
show that the fibers W s,u

p (ρ) are C3 as functions of ρ, and from this deduce that
the maps ρ 7→ ys

p(ρ) and ρ 7→ yu
p (ρ) are C3 in ρ for each p ∈ P . In fact, one can

show that the derivatives Dk
ρy

s,u
p are continuous with respect to p (0 ≤ k ≤ 3).

For each fixed p ∈ P , we introduce a function which measures the distance
along L between ys

τr(p)(ρ) and yu
τr(p)(ρ) for translates τr(p) (r ∈ R). Let us write

ys
p(ρ, r) = ys

τr(p)(ρ), y
u
p (ρ, r) = yu

τr(p)(ρ), then define

h(ρ, r) =


yu

p (ρ, r)− ys
p(ρ, r)

ρ
∧ f(y(0), ε∗) for ρ 6= 0,

M(r) for ρ = 0,

where the Mel’nikov function M(r) is defined to be

M(r) =
∂

∂ρ
(yu

p (ρ, r)− ys
p(ρ, r))ρ=0 ∧ f(y(0), ε∗).
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Here “∧” denotes the wedge product in R2. Since the difference yu
p (ρ, r)−ys

p(ρ, r)
lies on L and since L is transversal to W s

τr(p)(ρ) and Wu
τr(p)(ρ) for all p ∈ P and

all small values of ρ, the function M measures the velocity with which these
manifolds cross each other at ρ = 0.

We now use a standard method to derive a formula for M(r). For this, let
ys

p(t; ρ, r) (resp. yu
p (t; ρ, r)) denote the solution of (3.1) with u(t) = p(t+r) which

has initial condition ys
p(ρ, r) (resp. yu

p (ρ, r)). These solutions decay exponentially
as t→∞ (resp. t→ −∞). We write

∆±(t, r) =
∂

∂ρ
ys,u

p (t; ρ, r)
∣∣∣∣
ρ=0

∧ f(y(t), ε∗).

One observes that z(t) = (∂/∂ρ)ys,u
p (t; ρ, r)|ρ=0 satisfies

z′ = Dxf(y(t), ε∗)z + p(t+ r)g(y(t), ε∗).

Using the formula (trB)(q1 ∧ q2) = Bq1 ∧ q2 + q1 ∧Bq2, valid for 2× 2 matrices
B and vectors q1, q2 ∈ R2, we see that

d

dt
∆±(t, r) = trDxf(y(t), ε∗)∆± + p(t+ r)g(y(t), ε∗) ∧ f(y(t), ε∗).

One can show that limt→∞∆+(t, r) = limt→−∞∆−(t, r) = 0; see, e.g. ([25], [4]).
It follows that

∆±(t, r) =
∫ t

±∞
e
R s
0 trDxf(y(σ),ε∗)dσp(s+ r)g(y(s), ε∗) ∧ f(y(s), ε∗) ds.

Setting t = 0 and using the fact that M(r) = ∆−(0, r)−∆+(0, r), we obtain

Proposition 3.3.

M(r) =
∫ ∞

−∞
e
R s
0 trDxf(y(σ),ε∗) dσp(s+ r)g(y(s), ε∗) ∧ f(y(s), ε∗) ds.

Next we use the Mel’nikov function to determine values of (ρ, r) for which
the fibers W s,u

τr(p)(ρ) cross transversally.

Proposition 3.4. Let r0 ∈ R be a number such that M(r0) = 0 and
M ′(r0) 6= 0. Then the stable and unstable fibers W s

τr(p)(ρ) and Wu
τr(p)(ρ) cross

transversally along a curve r = r(ρ) for small values of ρ, where r(0) = r0.

Proof. We apply the implicit function theorem to the relation g(ρ, r) = 0
near the solution ρ = 0, r = r0. Since (∂g/∂r)(0, r) 6= 0 we see that there is
a smooth curve r = r(ρ), defined for small values of ρ, such that r(0) = r0 and
g(ρ, r(ρ)) = 0.

We now show that the fibers W s
τr(p)(ρ) and Wu

τr(p)(ρ) cross transversally
at (ρ, r(ρ)) for small ρ. To do this, let a ∈ (−1, 1) be a number and let
L(a) be a segment containing y(a) in its interior which is parallel to L. There
are “first” points of intersection ys

p(ρ, r, a) (resp. yu
p (ρ, r, a)) of W s

τr(p)(ρ) (resp.
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Wu
τr(p)(ρ)) with L(a) and these functions are of class C3 in (ρ, r, a). The deriva-

tives (∂/∂a)ys,u
p (ρ, r, a)|a=0 are tangent to W s,u

p (ρ) at ys,u
p (ρ, r). Moreover, these

derivatives are non-zero for small ρ because they are, up to an O(ρ) term, equal
to f(y(0), ε∗).

Let

M̃(r, a) =
∂

∂ρ

(
ys

p(ρ, r, a)− yu
p (ρ, r, a)

)∣∣∣∣
ρ=0

∧ f(y(a), ε∗).

Applying Proposition 3.3 we obtain

M̃(r, a)

=
∫ ∞

−∞
e
R s
0 trDxf(y(σ+a),ε∗) dσp(s+ r)g(y(s+ a), ε∗) ∧ f(y(s+ a), ε∗) ds.

Hence
M̃(r, a) = e−

R a
0 trDxf(y(σ),ε∗) dσM(r − a).

It follows that (∂M̃/∂a)(r(ρ), 0) = −M ′(r(ρ)) 6= 0. It follows that the non-zero
tangent vectors (∂/∂a)ys,u

p (ρ, r(ρ), a)|a=0 have the property that their differ-
ence has a component normal to f(y(0), ε∗) which is nonzero. Hence the fibers
W s

τr(p)(ρ) and Wu
τr(p)(ρ) indeed cross transversally at r = r(ρ). �

We can apply Proposition 3.4 to the control flow and the control sets of (3.1)
when ρ is small. Let p( · ) be a periodic control function of class C2. Suppose
that ∫ ∞

−∞
e
R s
0 trDxf(y(σ),ε∗) dσp(s)g(y(s), ε∗) ∧ f(y(s), ε∗) ds = 0,∫ ∞

−∞
e
R s
0 trDxf(y(σ),ε∗) dσp′(s)g(y(s), ε∗) ∧ f(y(s), ε∗) ds 6= 0.

Let T be the period of p( · ), and set P = {τt(p) | 0 ≤ t ≤ T} ⊂ U . Let r = r(ρ)
be the curve whose existence is guaranteed by Proposition 3.4 (with r(0) = 0).

Let Q: R2 → R2 be the period map defined by following the solutions of

x′ = f(x, ε∗) + ρp(t+ r(ρ))g(x, ε∗)

for time T . Then the point of intersection q of W s
τr(p)(ρ) and Wu

τr(p)(ρ) at
r = r(ρ) is transversal, and defines a transversal homoclinic point of the map Q.
It then follows ([35], [28]) that each neighbourhood of q contains a set S which
is invariant under an iterate QN of Q, and (S,QN ) is isomorphic to a shift. Let
Ω = {Nt(τr(ρ)(p), s) | s ∈ S, 0 ≤ t ≤ NT}; then Ω ⊂ U × R2 is a compact
invariant set which is disjoint from U ×{0}. The projection π(Ω) of Ω to R2 lies
in the interior of a control set D (use Theorem 2.6). This uses the fact that Ω
admits dense positive semitrajectories, hence is an ω-limit set.

As an example we mention the control system

x′ = y, y′ = x− x2 + ρp(t)x
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where p( · ) ∈ Uc. The unperturbed system

x′ = y, y′ = x− x2

admits the homoclinic orbit

x0(t) =
3
2
sech2 t

2
, y0(t) = −3

2
sech2 t

2
tanh

t

2
.

The Mel’nikov function at r = 0 is

M(0) =
∫ ∞

−∞
p(s)

[(
0

x0(s)

)
∧

(
y0(s)

4x0(s)− x2
0(s)

) ]
ds

=
∫ ∞

−∞
p(s)

d

ds
(x0(s)2) ds = −

∫ ∞

−∞
x0(s)2

dp

ds
(s) ds.

If M(0) = 0 and

M ′(0) = −
∫ ∞

−∞
x0(s)2

d2p

ds2
(s) ds 6= 0,

then Proposition 3.4 can be applied.
We summarize the preceding discussion in the following

Proposition 3.5. Let ε ∈ (ε1, ε2) be a parameter value such that the uncon-
trolled equation admits a solution homoclinic to the origin. Let p( · ) be a periodic
control function of class C2, and suppose that the Mel’nikov function satisfies
M(0) = 0 and M ′(0) 6= 0. Then for all small ρ > 0 there is a control set
D = D(ρ, ε∗) containing a subset which may be described as the projection of
a set S which (for the N -fold concatenation of the control p) is isomorphic to
a shift.

4. The unstable regime

In this section, we continue our study of the control system

(4.1) x′ = f(x, ε) + ρu(t)g(x, ε)

where now ε > ε2 and ρ is small. Our starting point is again the unperturbed
system

(4.2) x′ = f(x, ε).

Of course there are many possibilities for the phase portrait of such a system.
We will pick out a particular phase portrait by imposing certain conditions on
f and g, and will then show that for small ρ 6= 0, this phase portrait “induces”
a bifurcation pattern of Arnold type on system (4.1) as ε passes through ε2.

The first condition we impose is the following. We assume that there is an
interval I1 ⊂ I, containing ε2 in its interior, such that, for each ε ∈ I1, the flow
on R2 defined by (4.2) has a dissipative structure. That is, there exist positive
numbers δ, R, and T , which do not depend on ε ∈ I1, such that, if |x0| = R,
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then the corresponding solution ϕ(t, x0) of (4.2) satisfies |ϕ(t, x0)| ≤ R − δ for
all t ≥ T . In this case, the system (4.2) admits an attractor S = Sε defined as
follows:

Sε =
⋂
t≥0

{ϕ(t, x0) | |x0| ≤ R} (ε ∈ I1).

Clearly Sε ⊂ BR = {x ∈ R2 | |x0| ≤ R}. We refer to Sε as the “global attractor”
for (4.2) even though, strictly speaking, the flow on R2 defined by (4.2) may
admit other compact attracting invariant sets in R2 \BR.

Let us note that a sufficient condition for the existence of such a dissipative
structure is the following: there exist constants R > 0, c > 0, and α > 1 such
that for each x ∈ R2 with |x| ≥ R, each ε ∈ I1, and each unit vector e ∈ R2

there holds
〈f(x, ε), e〉 ≤ −c|x|α.

Let ε ∈ I1 and ρ ∈ R be given. For each x0 ∈ R2 and each u ∈ U , let
ϕ(t, u, x0) denote the solution of (4.1) satisfying ϕ(0, u, x0) = x0; the dependence
of ϕ on ε and ρ is suppressed. We state and prove an elementary result.

Proposition 4.1. Let δ, R, and T be as above. There exists ρ1 > 0 such
that, if |ρ| ≤ ρ1, ε ∈ I1, and |x0| = R, then |ϕ(t, u, x0)| ≤ R for all t ≥ T .

Proof. By continuity of ϕ and by compactness of U , we can determine
ρ0 > 0 such that, if ε ∈ I1 and |ρ| ≤ ρ0, then for each u ∈ U and each x0 ∈ R2

satisfying |x0| = R there holds

|ϕ(T, u, x0)| ≤ R− δ

2
.

It follows that, for each n = 1, 2, . . . there holds

|ϕ(nT, u, x0)| ≤ R− δ

2
.

Using again the compactness of U , we can determine a positive number ρ1 ≤ ρ0

such that the statement of the proposition holds. �

Next fix ε ∈ I1 and ρ ∈ [−ρ1, ρ1], and set

S = Sε,ρ =
⋂
t≥0

{(τt(u), ϕ(t, u, x0)) | u ∈ U , |x0| ≤ R}.

Then Sε,ρ is an attractor for the control flow on U × R2 determined by (4.1).
As before, we abuse language slightly and refer to Sε,ρ as the “global attractor”
of the control flow determined by (4.1). Note that (u, 0) ∈ Sε,ρ for all ε ∈ I1,
|ρ| ≤ ρ1.

Now we show that, if ε ∈ I1 and ε > ε2, and if ρ is sufficiently small, then
Sε,ρ contains a subattractor Aε,ρ which lies in the product of U with an annulus
A ⊂ R2 which is centered at the origin x = 0.
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Proposition 4.2. Let ε ∈ I1 ∩ (ε2,∞). Then there exist positive numbers
ρ0, r, T , which may depend on ε, such that, if |ρ| ≤ ρ0, |x0| = r, and u ∈ U ,
then |ϕ(t, u, x0)| ≥ r for all t ≥ T .

Proof. We only sketch the argument. By assumption, the eigenvalues
λ1(ε), λ2(ε) of the matrix Bε = Dxf(0, ε) lie in the right half-plane. Recall that
the dynamical spectrum Σ of the family (4.1) is upper semi-continuous in the
Hausdorff sense with respect to ρ. Therefore we can find a number ρ0 = ρ0(ε) > 0
such that, if |ρ| ≤ ρ0(ε), then Σ ⊂ (0,∞). The existence of r and T now follows
by standard arguments. �

Next let I ′ be a compact subinterval of I1 ∩ (ε2,∞). One can determine
positive numbers ρ1, r, T which do not depend on ε, for which the conclusion of
Proposition 4.2 holds for all ε ∈ I ′. Let ρ′ = min{ρ0, ρ1}, let |ρ| ≤ ρ′, and let A
be the annulus {x ∈ R2 | r ≤ |x| ≤ R}. Define

Aε,ρ =
⋂
t≥0

{(τt(u), ϕ(t, u, x0)) | u ∈ U , r ≤ |x0| ≤ R}.

Then Aε,ρ is an attractor contained in U × A. It is strictly contained in Sε,ρ

because (u, 0) /∈ Aε,ρ whenever u ∈ U , ε ∈ I ′, |ρ| ≤ ρ′.
We will study in more detail the global attractor Sε,ρ and the subattractor

Aε,ρ ⊂ Sε,ρ. The next result is a corollary of Proposition 7 of [24], the proof of
which is based on the continuity properties of the Čech cohomology theory [16].

Pproposition 4.3. Fix ε ∈ I ′ and let ρ ∈ [−ρ′, ρ′]. Write A = Aε,ρ. For
each u ∈ U , consider the fiber

Au = {x ∈ R2 | (u, x) ∈ A}.

Then the Čech cohomology (with coefficient group Z) of Au is that of a circle:

Ȟk(Au,Z) =

{
Z for k = 1,

0 for k 6= 1.

Thus in a general sense “the fibers of A are circles”. To obtain more detailed
information about the global attractors Sε,ρ and its subattractor Aε,ρ, we will
impose certain elements of structure on the global attractor Sε = Sε,0 of the
unperturbed system (4.2), then use the continuation properties of the Conley
index to prove facts about Sε,ρ and Aε,ρ for small values of ρ.

We assume, then, that for each ε ∈ I ′, the attractor Aε contains exactly four
equilibrium points a1, a2, s1, s2, of which s1 and s2 are saddles, while a1 and a2

are attractors (sinks), see Figure 1. In more detail, we assume that the Jacobian
matrix Dxf(si, ε) has one positive and one negative eigenvalue (i = 1, 2). Let us
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a1 a2

Figure 1. The phase portrait

denote the origin x = 0 by r0; it follows from the condition λ2(ε) > 0 that r0 is
a repelling equilibrium point for (4.2).

We impose still more conditions on Sε. Namely, we assume that there are
heteroclinic orbits joining r0 with each of the equilibria a1, a2, s1, s2, and that
there are heteroclinic orbits joining si to a1 and a2 (i = 1, 2), again see Figure 1.
Under the conditions we have imposed, one can show using Poincaré–Bendixson
theory that Aε contains {a1, a2, s1, s2} together with heteroclinic orbits con-
necting these four equilibria. These heteroclinic orbits are unique because the
equilibria are hyperbolic. For the same reason, there are no orbits homoclinic to
si (i = 1, 2).

A simple example which exhibits equilibria together with heteroclinic orbits
as above is [24](

x1

x2

)′
=

(
ε− 1 0

0 ε

) (
x1

x2

)
− (x2

1 + x2
2)

(
x1

x2

)
(ε > ε2 = 1).

In fact, in this example the heteroclinic orbits are unique in the sense that there
is just one heteroclinic orbit joining r0 to s1, r0 to s2 etc. Moreover, Aε consists
exactly of {a1, a2, s1, s2} together with the heteroclinic orbits joining si to a1

and a2 (i = 1, 2).
Now suppose that ε ∈ I ′ and that ρ ∈ [−ρ′, ρ′] is non-zero. We look for

elements of the structure of Sε and Aε which can carry over to Sε,ρ and Aε,ρ.
We will use the concepts of Morse decomposition and connection matrix to find
sets a1(ρ), a2(ρ), s1(ρ), and s2(ρ) which are contained in U × R2, and which
are continuations of a1, a2, s1, and s2 for small ρ 6= 0. We will also show that
there exist connecting orbits joining certain of these sets. We will freely use basic
concepts and facts from the theory of the Conley index; see ([9], [13], [14], [26],
[27], [30], [31]).
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Let m denote one of the elements of M = {{a1}, {a2}, {s1}, {s2}, {r0}}. (In
what follows we will sometimes not distinguish between a1 and {a1}, etc.) Then
m is a non-degenerate zero of the vector field f( · , ε). Let Nm be an isolating
neighbourhood of m, and let Lm ⊂ Nm be an exit set. The Conley index h(m)
is by definition the homotopy type of the pointed topological space Nm/Lm

obtained by collapsing Lm to a point in Nm. For each m ∈ M , introduce the
graded module H∗(h(m),Z2) of singular homology groups with coefficients in Z2.
We write CH∗(m) for this graded module. It is well-known (see, e.g. [9] or [27,
Theorem 3.1]) that

CHk(r0) =

{
Z2 for k = 2,

0 for k 6= 2,

CHk(s1) = CHk(s2) =

{
Z2 for k = 1,

0 for k 6= 1,

CHk(a1) = CHk(a2) =

{
Z2 for k = 0,

0 for k 6= 0.

Note now that the global attractor Sε ⊂ R2 of the unperturbed system (4.2) is
an isolated invariant set with isolating neighbourhood BR. Using the Poincaré-
Bendixson theory, one can show that the collection M = {a1, a2, s1, s2, r0} of
equilibria is a Morse decomposition of Sε in the sense that, if x ∈ Sε \M , then
the α-limit set α(x) and the ω-limit set ω(x) of x are equilibria of f( · , ε); i.e.
they lie in M .

Consider the total order

(4.4) a1 < a2 < s2 < s1 < r0

on M . Then M is a <-ordered Morse decomposition of Sε in the sense that,
if x ∈ Sε \ M , then there exist m1 < m2 in M such that ω(x) = m1 and
α(x) = m2. The order < is an example of an admissible order on M [13].
Another admissible order on M is given by the flow order <F , defined as follows:
ai <F si (i, j = 1, 2), ai, si <F r0 (i, j = 1, 2). The flow order is the “extremal”
admissible order on M [13]. We will not use the flow order in the following.

We proceed to study the ordered Morse decomposition (M,<) defined by
(4.4). A connection matrix c for M compatible with the order < is a homomor-
phism of degree −1 of the sum of graded modules

CH∗(a1)⊕ CH∗(a2)⊕ CH∗(s2)⊕ CH∗(s1)⊕ CH∗(r0)

with the following properties [13]. First, c2 = 0. Second, c is upper triangular in
the following sense. Represent c as a matrix (cji )

5
i,j=1 where, e.g. c31:CH∗(a1) →

CH∗(s2). Then cji = 0 if j ≤ i.
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A basic result of the Conley theory is that a <-compatible connection matrix
exists. In fact, a connection matrix can be defined by making use of the existence
of an index triple for each pair {mi,mj} ⊂ M with mi < mj . In a bit more
detail, let us write ∂k(mi,mj) for the homomorphism CHk(mj) → CHk−1(mi)
of level k in cji (k ≥ 1). Then the ∂k(mi,mj) are boundary operators in a long
exact homology sequence defined by the index triple. If there are no connecting
orbits joining mi and mj (that is, if there is no x ∈ Sε \M satisfying ω(x) = mi

and α(x) = mj) then ∂k(mi,mj) = 0 for all k ≥ 1. See ([13], [31]).
It follows from the above discussion that a connection matrix compatible

with the order < is

c =


0 0 ∂1(A1, S2) ∂1(A1, S1) 0
0 0 ∂1(A2, S2) ∂1(A2, S1) 0
0 0 0 0 ∂2(S2, R0)
0 0 0 0 ∂2(S1, R0)
0 0 0 0 0

 .

It is possible to compute all the homomorphisms in c. We indicate how this
can be done; again we make free use of results concerning the Conley index.

In order to compute ∂1(a1, s2) we consider the exact sequence

(4.5) CH1(a1s2) −−−−→ CH1(s2)
∂1(a1,s2)−−−−−−→ CH0(a1).

Here by a1s2 we mean the union of {a1}, of {s2}, and all connecting orbits
joining these points. Since CH1(a1s2) = 0, (4.5) becomes

0 −−−−→ Z2
∂1(a1,s2)−−−−−−→ Z2

which implies that ∂1(a1, s2) is injective, thus equal to the homomorphism 1
(recall that we are dealing with maps Z2 → Z2). The same argument can
be used to compute ∂1(a2, s2), ∂1(a1, s1), and ∂1(a2, s1). In order to compute
∂1(s2, r0) we consider the exact sequence

(4.6) CH2(r0)
∂1(s2,r0)−−−−−−→ CH1(s2) −−−−→ CH1(s2r0)

where s2r0 indicates the union of s2, r0, and all connecting orbits joining these
points. Since ∂1(s2, r0) = 0, (4.6) becomes

Z2
∂2(s2,r0)−−−−−−→ Z2 −−−−→ 0

which implies that ∂2(s2, r0) is onto, thus equal to 1. The same argument can
be used to compute ∂1(s1, r0). In conclusion, a connection matrix c which is



Bifurcation Phenomena in Control Flows 107

compatible with the order < is

c =


0 0 1 1 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

 .

The constructions above actually show that c is the unique connection matrix
which is compatible with the order <. This is of interest because connection
matrices are not in general uniquely defined. It is also important in our study
of (4.1) for ρ 6= 0.

Next, let ε ∈ I ′. Let m ∈ M , and let (Nm, Lm) be an index pair relative to
the flow on R2 defined by (4.2). Let U0 be a weak-* compact, convex, translation
invariant subset of U . Then (U0×Nm,U0×Lm) is an index pair for the isolated
invariant set U0×{m} ⊂ U0×R2 relative to the product flow on U0×R2 defined
by {τt} and (4.2). We claim that the Conley index h(U0 × {m}) equals h({m}).
To prove this, we must exhibit a homotopy equivalence between the pointed
topological spaces Nm/Lm and (U0 ×Nm)/(U0 × Lm). So fix ū ∈ U0 and define
i:Nm → U0×Nm:x 7→ (ū, x). Further define j:U0×Nm → Nm: (u, x) 7→ x. Then
i ◦ j(u, x) = (ū, x), so i ◦ j is homotopic to the identity on (U0 ×Nm)/(U0 ×Lm)
via the homotopy

θs:U0 ×Nm → U0 ×Nm, θs(u, x) = (sū+ (1− s)u, x).

Moreover, j ◦ i equals the identity on Nm/Lm. This proves that h(U0 × {m}) =
h({m}).

Of course one can take U0 = U in the above discussion. However, it is
more interesting in the present context to consider weak-* compact, convex,
translation-invariant subsets U0 ⊂ U which do not contain u = 0. We will return
to this point below. Such sets are easily obtained. For example, let u0 ∈ U and
define

U0 = cl
{ N∑

i=1

siτti
(u0)

∣∣∣∣ si ≥ 0,
N∑

i=1

si = 1, ti ∈ R, N ≥ 1
}
.

One can certainly choose u0 such that 0 6∈ U0.
We now apply the continuation theory of the Conley index for small ρ 6= 0

([13], [14], [27]). Let U0 be a weak-* compact, translation-invariant subset of
U . We abuse notation and write Sε,ρ instead of Sε,ρ ∩ (U0 × R2). First of
all, there are isolated invariant sets a1(ρ), a2(ρ), s1(ρ), s2(ρ) which are near
a1, a2, s1, s2 in the following sense: if e.g. Na1 is an isolating neighbourhood
for a1, then for small enough ρ, U0 × Na1 is an isolating neighbourhood for
a1(ρ). Further, using Proposition 4.1 and the definition of Sε,ρ, one sees that,
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if ρ ∈ [−ρ′, ρ′], then U0 × BR is an isolating neighbourhood of Sε,ρ. Write
r0(ρ) = U0 × {0} ⊂ U0 × R2 for ρ 6= 0. Using ([13, Proposition 4.11]), one sees
that the family M(ρ) = {r0(ρ), a1(ρ), a2(ρ), s1(ρ), s2(ρ)} of compact invariant
subsets of Sε,ρ is a Morse decomposition of Sε,ρ for sufficiently small ρ 6= 0.
Moreover, an admissible order for this Morse decomposition is given by

a1(ρ) < a2(ρ) < s2(ρ) < s1(ρ) < r0(ρ).

Still more, by decreasing ρ′ if necessary, we can assume that the above conditions
hold for all ε ∈ I ′, ρ ∈ [−ρ′, ρ′].

We now determine a connection matrix for M(ρ) which is compatible with
the order <. For this, we need only apply Theorem 5.7 of [13] together with
the uniqueness of the <-compatible connection matrix c for M . We see that, if
ε ∈ I ′ is fixed and ρ 6= 0 is small:

cρ = c =


0 0 1 1 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0


is a <-compatible connection matrix for M(ρ). Of course the equality “cρ = c” is
formal since the entries of cρ indicate homomorphisms between graded modules
which are, generally speaking, different from those used to define c. Decreasing ρ′

if necessary, we can assume that, if ε ∈ I ′, then cρ is a <-compatible connection
matrix for all ρ ∈ [−ρ′, ρ′].

The fact that cρ is a <-compatible connection matrix for M(ρ) implies that
there are connecting orbits in U0 × R2 joining:

(i) a1(ρ) and s2(ρ);
(ii) a1(ρ) and s1(ρ);
(iii) a2(ρ) and s2(ρ);
(iv) a2(ρ) and s1(ρ);
(v) s1(ρ) and r0(ρ);
(vi) s2(ρ) and r0(ρ).

In particular, if U0 is the compact convex hull of the orbit of any fixed u0 ∈ U ,
then such connecting orbits exist in U0 × R2. Note however, that the existence
of orbits joining r0(ρ) with ai(ρ) cannot be concluded (i = 1, 2).

We can use the information contained above to discuss the existence of control
sets for values ε ∈ I ′, ρ ∈ [−ρ′, ρ′]. In fact, there are control sets D1, D2, D3, D4

whose existence is due to the fact that there are connecting orbits in the control
flow U × R2 defined by (4.1) with ω-limit sets contained in s1(ρ), s2(ρ), a1(ρ),
a2(ρ). Here we have used Theorem 2.6. It is not clear if these control sets are
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all distinct. It is also not clear if the closure of any of these control sets contains
x = 0.

This completes our discussion of the case ε > ε2. We now give a brief
summary of what we have proved.

First, if ρ 6= 0 is small, the control flow defined by (4.1) may experience
a bifurcation of transcritical type as ε passes through ε1. In this case, control
sets appear. Moreover, if ε∗ ∈ (ε1, ε2) is a point where the unperturbed system
(4.2) admits a homoclinic orbit, then the control flow may exhibit transversal
homoclinic points. In this case also, control sets are present.

Second, if ρ 6= 0 is small, then under mild assumptions, for some values ε > ε2
the control flow admits an attractor Aε,ρ which is a “random invariant circle”.
Moreover, the Conley index can be used to study the Morse-type structure of the
isolated invariant set Sε,ρ. Again the existence of control sets can be deduced.

We end the paper by mentioning the relation to results of Ludwig Arnold
[3] and others ([32], [33]) for the Duffing–van der Pol oscillator. Although the
unperturbed second order equation of the oscillator does not exhibit a phase
portrait like that discussed above, it does seem that the randomly perturbed os-
cillator has properties which can be understood in terms of a two-step bifurcation
pattern.
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