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THE SUSPENSION ISOMORPHISM
FOR COHOMOLOGY INDEX BRAIDS

Krzysztof P. Rybakowski

Abstract. Let X be a metric space, π be a local semiflow on X, k ∈ N,

E be a k-dimensional normed real vector space and eπ be the semiflow

generated by the equation ẏ = Ly, where L: E → E is a linear map whose
all eigenvalues have positive real parts. We show in this paper that for every

admissible isolated π-invariant set S there is a well-defined isomorphism

of degree k from the (Alexander–Spanier)-cohomology categorial Conley–
Morse index of (π, S) to the cohomology categorial Conley–Morse index of

(π× eπ, S×{0}) such that the family of these isomorphisms commutes with

cohomology index sequences. This extends previous results by Carbinatto
and Rybakowski to the Alexander–Spanier-cohomology case.

1. Introduction

This paper is a sequel to the previous work [6] by M. C. Carbinatto and
this author. Let Hq, q ∈ Z, be the Alexander–Spanier cohomology functor with
coefficients in a fixed Γ-module G, where Γ is a commutative ring. Let X be a
metric space, π be a local semiflow on X, k ∈ N, E be a k-dimensional normed
real vector space and π̃ be the semiflow generated by the equation ẏ = Ly, where
L:E → E is a linear map whose all eigenvalues have positive real parts.

Consider the local product semiflow π× π̃ on X×E defined by (x, y)π× π̃t :=
(xπt, yπ̃t) whenever xπt is defined.
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Whenever S is an isolated π-invariant set having a strongly π-admissible
isolating neighborhood, then S×{0}, where 0 = 0E is the zero of E, is an isolated
π × π̃-invariant set having a strongly π × π̃-admissible isolating neighborhood.

It is the main purpose of this paper to prove, in Theorem 4.1 below, that
there is a well-defined isomorphism θq(π, π̃, S) from the cohomology categorial
Conley–Morse index Hq−k(π, S) := Hq−k(C(π, S)) of (π, S) to the cohomology
categorial Conley-Morse index Hq(π × π̃, S × {0}) := Hq(C(π × π̃, S × {0}))
of (π × π̃, S × {0}) such that the family of such isomorphisms commutes with
cohomology index sequences. This means that, given any isolated π-invariant set
S having a strongly π-admissible isolating neighborhood and given any attractor-
repeller pair (A,A∗) of S relative to π, the following diagram commutes:

Hq(π′, A′)oo Hq(π′, S′)oo Hq(π′, A∗′)oo Hq−1(π′, A′)oooo oo

Hq−k(π,A)oo

θq(π,eπ,A)

OO

Hq−k(π, S)

θq(π,eπ,S)

OO

oo Hq−k(π,A∗)

θq(π,eπ,A∗)

OO

oo Hq−k−1(π,A)

θq−1(π,eπ,A)

OO

oo oo

Here, the upper (resp. lower) horizontal sequence is the cohomology index se-
quence of (π′, S′, A′, A∗′) (resp. (π, S,A,A∗)), where we set π′ := π × π̃ and for
K ⊂ X, K ′ := K × {0E}.

This result implies that whenever P is a finite set, ≺ is a strict order relation
on P and (Mi)i∈P is a ≺-ordered Morse decomposition of S relative to π, then
(Mi × {0})i∈P is a ≺-ordered Morse decomposition of S × {0} relative to π × π̃

and there is a module braid isomorphism from the cohomology index braid of
(π, S, (Mi)i∈P ) to the cohomology index braid of (π× π̃, S×{0}, (Mi×{0})i∈P )
‘shifted to the right by k’.

Theorem 4.1 extends [6, Theorem 3.1] to the case of Alexander–Spanier co-
homology.

The construction of the suspension isomorphism for cohomology, see Theo-
rem 5.6 below, essentially follows by a standard dualization of the proof from [6]
for the homology case. In fact this construction is valid for an arbitrary coho-
mology theory.

On the other hand, additional ideas are required for the proof that the suspen-
sion isomorphism constructed in Theorem 5.6 commutes with cohomology index
sequences. More specifically, the proof is based on the concept of weakly coex-
act sequences, introduced in Definition 2.1 and on some technical results about
index triples and Alexander-Spanier cochain complexes established in Sections 3
and 6. We also require an anticommutativity result for 3×3-matrices of cochain
maps, established in Section 2.

An application of the results of this paper and the paper [6] to some singular
perturbation problems will be given in a forthcoming publication.
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In this paper we use the notation and results from [5] and [6] without further
explanation.

2. Weakly coexact sequences and anticommutativity
of the connecting homomorphisms

We now introduce the following general concept:

Definition 2.1. A sequence

C1
i // C2

p
// C3

of cochain maps is called weakly coexact if p is epic, p ◦ i = 0 and the map
Hq(µ):Hq(C1) → Hq(ker p) is an isomorphism for each q ∈ Z. Here, the map
µ:C1 → ker p is the (uniquely determined) cochain map with ν ◦ µ = i, where
ν: ker p → C2 is the inclusion map.

Remark. The concept of a weakly coexact sequence can be regarded as dual
to Franzosa’s concept of a weakly exact sequence, cf. [8].

Given a weakly exact sequence

C1
i // C2

p
// C3

and q ∈ Z, define ∂̂q:Hq(C3) → Hq+1(C1) by ∂̂q := Hq+1(µ)−1 ◦ ∂q∗, where
∂q∗:Hq(C3) → Hq+1(ker p), q ∈ Z, is the connecting homomorphism in the long
exact cohomology sequence induced by the short exact sequence

0 // ker p
ν // C2

p
// C3

// 0.

Using elementary cohomology theory we obtain the following result.

Proposition 2.2. Given a weakly coexact sequence

C1
i // C2

p
// C3

of cochain maps, the corresponding cohomology sequence

// Hq(C1)
Hq(i)

// Hq(C2)
Hq(p)

// Hq(C3)
b∂q

// Hq+1(C1) //

is exact. Moreover, given a commutative diagram

C1
i //

f1

��

C2
p

//

f2

��

C3

f3

��

C̃1
ei

// C̃2
ep

// C̃3
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of cochain maps with weakly coexact rows, the induced long cohomology ladder

// Hq(C1)
Hq(i)

//

Hq(f1)

��

Hq(C2)
Hq(p)

//

Hq(f2)

��

Hq(C3)
b∂q

//

Hq(f3)

��

Hq+1(C1) //

Hq+1(f1)

��

// Hq(C̃1)
Hq(ei)

// Hq(C̃2) Hq(ep)
// Hq(C̃3)

f

b∂q

// Hq+1(C̃1) //

is commutative.

Lemma 2.3. Consider the following commutative diagram

(2.1)

A
ι //

γA

��

B
κ //

γB

��

C

γC

��

Â
bι

// B̂
bκ

// Ĉ

of cochain maps in which the first row is weakly coexact and the vertical arrows
are isomorphisms. Then the sequence in the second row is weakly coexact.

Proof. Since κ is epic, γA and γB are isomorphims, the commutativity of
diagram (2.1) implies that κ̂ is epic. Moreover,

κ̂ ◦ ι̂ = (γC ◦ κ ◦ γ−1
B ) ◦ (γB ◦ ι ◦ γ−1

A ) = γC ◦ (κ ◦ ι) ◦ γ−1
A = 0

since the sequence in the first row of diagram (2.1) is weakly coexact. The
commutativity of (2.1) implies that γB maps kerκ into ker κ̂ and so γB induces
a cochain map ζ such that the following diagram commutes:

(2.2)

A
µ

//

γA

��

ker κ
ν //

ζ

��

B
κ //

γB

��

C

γC

��

Â
bµ

// ker κ̂ ν
// B̂

bκ
// Ĉ

Here, µ (resp. µ̂) is the uniquely determined cochain map such that ι = ν ◦ µ

(resp. ι̂ = ν̂ ◦ µ̂), where ν (resp. ν̂) is the inclusion map. Since ζ and γA are
isomorphisms and µ induces an isomorphism in cohomology, it follows that µ̂

induces an isomorphism in cohomology. �

We require the following important result from homological algebra, which
in its general and explicit form needed here is due to M. Scott Osborne:
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Proposition 2.4. ([12, Proposition 9.20]) Suppose that the diagram

(2.3)

0

��

0

��

0

��

0 // A1,1 //

��

A1,2 //

��

A1,3 //

��

0

0 // A2,1 //

��

A2,2 //

��

A2,3 //

��

0

0 // A3,1 //

��

A3,2 //

��

A3,3 //

��

0

0 0 0

of cochain maps is commutative and has exact columns and rows. For every
k ∈ {1, 2, 3}, let ∂k,q:Hq(Ak,3) → Hq+1(Ak,1), q ∈ Z, be the connecting homo-
morphism of the long cohomology sequence associated with the k-th row of (2.3)
and δk,q:Hq(A3,k) → Hq+1(A1,k), q ∈ Z, be the connecting homomorphism of
the long cohomology sequence associated with the k-th column of (2.3). Then

(2.4) δ1,q+1 ◦ ∂3,q = −∂1,q+1 ◦ δ3,q, q ∈ Z.

Proof. The original statement of Proposition 2.4 is for chain complexes,
chain maps and homology. The version stated here follows by the usual passage
from cochain complexes and cochain maps to chain complexes and chain maps
(and vice versa) using the index transformation q → −q. �

Proposition 2.5. Suppose that the diagram

(2.5)

0

��

0

��

0

��

A1,1
α1 //

��

A1,2
β1 //

f1
��

A1,3

��

A2,1 α2
//

��

A2,2
β2

//

f2
��

A2,3

��

A3,1 α3
//

��

A3,2
β3

//

��

A3,3

��

0 0 0

of cochain maps is commutative, has exact columns and weakly coexact last two
rows. If β1 is an epimorphism, then the first row of (2.5) is weakly coexact.
Furthermore, for every k ∈ {1, 2, 3}, let ∂̂k,q:Hq(Ak,3) → Hq+1(Ak,1), q ∈ Z be
the connecting homomorphism of the long cohomology sequence associated with



6 K. P. Rybakowski

the k-th row of (2.5) and δk,q:Hq(A3,k) → Hq+1(A1,k), q ∈ Z, be the connecting
homomorphism of the long cohomology sequence associated with the k-th column
of (2.5). Then

(2.6) δ1,q+1 ◦ ∂̂3,q = −∂̂1,q+1 ◦ δ3,q, q ∈ Z.

Proof. Since β2 ◦α2 = 0 and the cochain map from A1,3 to A2,3 in (2.5) is
a monomorphism, it follows that β1 ◦ α1 = 0. Thus for each k ∈ {1, 2, 3} there
is a uniquely defined cochain map µk:Ak,1 → ker βk such that αk = νk ◦ µk,
where νk: kerβk → Ak,2 is the inclusion map. Moreover, f1 (resp. f2) induces
the cochain map g1: kerβ1 → ker β2 (resp. g2: kerβ2 → ker β3). It follows that
the diagram

(2.7)

0

��

0

��

0

��

0

��

A1,1
µ1 //

��

ker β1

g1

��

ν1 // A1,2
β1 //

f1
��

A1,3

��

A2,1
µ2 //

��

ker β2

g2

��

ν2 // A2,2
β2 //

f2
��

A2,3

��

A3,1 µ3
//

��

ker β3

��

ν3
// A3,2

β3

//

��

A3,3

��

0 0 0 0

is commutative. Now the diagram

(2.8)

0

��

0

��

0

��

0 // ker β1

g1

��

ν1 // A1,2
β1 //

f1
��

A1,3

��

// 0

0 // ker β2

g2

��

ν2 // A2,2
β2 //

f2
��

A2,3

��

// 0

0 // ker β3

��

ν3
// A3,2

β3

//

��

A3,3

��

// 0

0 0 0

is commutative, has exact rows, and exact second and third column. It fol-
lows from the 3 × 3-Lemma that the first column (2.8) is also exact. For every
k ∈ {1, 2, 3}, let ∂k′,q:Hq(Ak,3) → Hq+1(ker βk), q ∈ Z, be the connecting homo-
morphism of the long cohomology sequence associated with the k-th row of (2.8)
and δ1′,q:Hq(ker β3) → Hq+1(ker β1), q ∈ Z, be the connecting homomorphism
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of the long cohomology sequence associated with the first column of (2.8). Now,
using the commutativity of diagram (2.7) we obtain the induced long commuta-
tive cohomology ladder

(2.9)

// Hq(A1,1) //

Hq(µ1)

��

Hq(A2,1) //

Hq(µ2)

��

Hq(A3,1)
δ1,q

//

Hq(µ3)

��

Hq+1(A1,1) //

Hq+1(µ1)

��
// Hq(ker β1) // Hq(ker β2) // Hq(ker β3)

δ1′,q
// Hq+1(ker β1) //

Using the fact that both Hq(µ2) and Hq(µ3) are bijective for all q ∈ Z, it follows
from the Five-Lemma that Hq(µ1) is bijective for all q ∈ Z. This proves that
the first row of (2.5) is weakly coexact.

Now, applying Proposition 2.4 to diagram (2.8) we obtain that

(2.10) δ1′,q+1 ◦ ∂3′,q = −∂1′,q+1 ◦ δ3,q, q ∈ Z.

From diagram (2.9) we obtain that

(2.11) (Hq+1(µ1))−1 ◦ δ1′,q = δ1,q ◦ (Hq(µ3))−1, q ∈ Z.

Now ∂̂3,q = (Hq+1(µ3))−1 ◦ ∂3′,q and ∂̂1,q+1 = (Hq+2(µ1))−1 ◦ ∂1′,q+1, q ∈ Z.
This together with (2.10) and (2.11) implies (2.6). �

3. Alexander–Spanier cohomology and weakly coexact sequences

Let us briefly recall the basic definitions and notations concerning Alexander–
Spanier cohomology. The standard reference is [15].

Let X be a topological space. For every q ∈ Z with q ≥ 0 let Cq(X) =
Cq(X;G) be the Γ-module of all functions from the cartesian product Xq+1

to G. For q ∈ Z with q < 0 let Cq(X) = Cq(X, G) be the trivial Γ-module.
The coboundary operator δq:Cq(X) → Cq+1(X), q ∈ Z, q ≥ 0, is defined, for
ϕ ∈ Cq(X) by

δqϕ(x0, . . . , xq+1) =
q+1∑
j=0

(−1)jϕ(x0, . . . , x̂j , . . . , xq+1), (x0, . . . , xq+1) ∈ Xq+1

and δq = 0 for q ∈ Z, q < 0. It follows that δq+1 ◦ δq = 0 for q ∈ Z, so
C∗(X) := (Cq(X), δq)q∈Z is a cochain complex.

Given another topological space Y and an arbitrary function f , define, for
q ∈ Z with q ≥ 0,

f ]q:Cq(Y ) → Cq(X)

by
(f ]ϕ)(x0, . . . , xq) = ϕ(f(x0), . . . , f(xq))
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for ϕ ∈ Cq(Y ) and (x0, . . . , xq) ∈ Xq. Moreover, let f ]q be the trivial map for
q ∈ Z with q < 0. Then f ] := (f ]q)q∈Z is a cochain map.

Given q ∈ Z with q ≥ 0, a function ϕ ∈ Cq(X) is said to be locally zero if there
is an open covering U = Uϕ such that ϕ(x0, . . . , xq) = 0 for all (x0, . . . , xq) ∈⋃

U∈U Uq+1. Let Cq
0(X) be the set of all functions ϕ ∈ Cq(X) which are locally

zero. The set Cq
0(X) is a Γ-submodule of Cq(X). Moreover, let Cq

0(X) be
the trivial Γ-module for q ∈ Z with q < 0. Since δq(Cq

0(X)) ⊂ Cq+1
0 (X) for

q ∈ Z, C∗
0 (X) := (Cq

0(X), δq
|Cq

0 (X)
)q∈Z is a cochain subcomplex of C∗(X). The

quotient cochain complex C
∗
(X) := C∗(X)/C∗

0 (X) is called the Alexander–
Spanier cochain complex of X. The q-th cohomology module Hq(C

∗
(X)) is called

the q-th Alexander–Spanier cohomology module of X and is usually denoted by
H

q
(X) but we will simply write Hq(X), dropping the overline-sign.
If Y is another topological space and f :X → Y is continuous, then, for every

q ∈ Z, f ]q(Cq
0(Y )) ⊂ Cq

0(X), so f ]q induces a map f
]q

:C
q
(Y ) → C

q
(X). It

follows that f
]

:= (f
]q

)q∈Z is a cochain map, called the cochain map induced
by f . We will again drop the overline sign and write f ]q and f ] for f

]q
and f

]
.

Let A be a subspace of X and i:A → X be the inclusion map. Then
i]:C

∗
(X) → C

∗
(A) is an epimorphism (cf. Lemma 3.1 below). The kernel of

i] is a cochain subcomplex of C
∗
(X) and is denoted by C

∗
(X, A). For q ∈ Z

the q-th cohomology module Hq(C
∗
(X, A)) is called the q-th Alexander–Spanier

relative cohomology module of (X, A) and is usually denoted by H
q
(X, A) but

we will simply write Hq(X, A) for that.

Lemma 3.1. If Y and Z are topological spaces and f :Y → Z is continuous
and injective, then the induced map f ]q:C

q
(Z) → C

q
(Y ) is surjective for all

q ∈ Z.

Proof. Let q ∈ Z and [ϕ] ∈ C
q
(Y ) be arbitrary. Define α:Zq+1 → G by

α(z0, . . . , zq) =

{
ϕ(f−1(z0), . . . , f−1(zq)) if zi ∈ f(Y ) for all i ∈ [0 . . q]

0 otherwise

Since f is injective, α is well-defined. It follows that f ]q([α]) = [ϕ]. �

Proposition 3.2. Let (Y, Y1) and (Z,Z1) be topological pairs and f :Y → Z

be continuous and injective. Moreover, suppose that Z1 ∩ f(Y ) = f(Y1), that
f(Y1) is closed in Z1 and f :Y1 → f(Y1) is a homeomorphism. Then the induced
map f ]q:C

q
(Z,Z1) → C

q
(Y, Y1) is surjective for all q ∈ Z.

Proof. Let η:Y1 → Y and ζ:Z1 → Z be inclusion maps. Let q ∈ Z and
[ϕ] ∈ C

q
(Y, Y1) be arbitrary. It follows that η](ϕ) is locally zero, i.e. there is

an open covering U of Y1 such that η](ϕ)|Uq+1 = 0 for all U ∈ U . Define
α as in the proof of Lemma 3.1. Then f ]([α]) = [ϕ] and we only have to
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prove that [α] ∈ C
q
(Z,Z1). Now, since f :Y1 → f(Y1) is a homeomorphism it

follows that for each U ∈ U there is a set VU which is open in Z1 and such that
VU ∩ f(Y1) = f(U). Since f(Y1) is closed in Z1 we conclude that

V := {VU | U ∈ U } ∪ {Z1 \ f(Y1)}

is an open covering of Z1. Let V ∈ V and (z0, . . . zq) ∈ V q+1 be arbitrary.
Suppose first that zi ∈ f(Y ) for all i ∈ [0 . . q]. Then, since zi ∈ Z1, it follows
that zi ∈ f(Y1), i ∈ [0 . . q]. It follows that V 6= Z1 \ f(Y1) so V = VU for some
U ∈ U and so zi ∈ f(U) for all i ∈ [0 . . q]. We thus obtain that α(z0, . . . , zq) =
ϕ(y0, . . . , yq), where yi ∈ U with f(yi) = zi for all i ∈ [0 . . q]. It follows that
α(z0, . . . , zq) = 0. If, on the other hand, zi /∈ f(Y ) for some i ∈ [0 . . q], then
the definition of α implies that α(z0, . . . , zq) = 0 again. We thus obtain that
ζ](α)|V q+1 = 0 for all V ∈ V. Hence [α] ∈ C

q
(Z,Z1). The proposition is

proved. �

In this section we use the following notation: if (Y,A) and (Z,B) are topo-
logical pairs and f : (Y, A) → (Z,B) is a map then by f1:Y → Z we denote the
map f viewed as a map from Y to Z and by f2:A → B we denote the restriction
of f1 to A.

Proposition 3.3. Let Y be a topological space and (N1, N2, N3) be a triple
of subsets of Y with N1 ⊃ N2 ⊃ N3. Let

α: (N1, N3) → (N1, N2) and β: (N2, N3) → (N1, N3)

be the inclusion maps. The sequence

(3.1) 0 // C
∗
(N1, N2)

α]
// C

∗
(N1, N3)

β]

// C
∗
(N2, N3) // 0

is exact. In addition, for each q ∈ Z, C
q
(N1, N2) = kerβ]q and α]q is the

inclusion map. The connecting homomorphism ∂q∗, q ∈ Z, of (3.1) is just the
connecting homomorphism of the triple (N1, N2, N3).

Proof. For each q ∈ Z there is an inclusion induced commutative diagram

(3.2)

C
q
(N1, N2)

⊂
��

α]q
// C

q
(N1, N3)

⊂
��

β]q

// C
q
(N2, N3)

⊂
��

C
q
(N1)

β]q
1

��

α]q
1 // C

q
(N1)

fq

��

β]q
1 // C

q
(N2)

gq

��

C
q
(N2)

α]q
2

// C
q
(N3)

β]q
2

// C
q
(N3)
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Since β]q is a restriction of β]q
1 , β]q

1 is surjective by Lemma 3.1 and β]q
2 is the

identity function, it follows that β]q
1 is surjective. Similarly, α]q is a restriction

of an identity map, so α]q is an inclusion map, in particular, C
q
(N1, N2) ⊂

C
q
(N1, N3). The definition of C

q
(Ni, Nj) now easily implies that kerβ]q =

im α]q and so (3.1) is exact. Now, by definition, the q-th component of the
connecting homomorphism of the triple (N1, N2, N3) is the composite

Hq(N2, N3)
γq

// Hq(N2)
δq∗

// Hq+1(N1, N2)

where γq is induced by the inclusion N2 → (N2, N3) and δq∗, q ∈ Z, is the con-
necting homomorphism of the pair (N1, N2), i.e. the connecting homomorphism
of the short exact sequence

0 // C
∗
(N1, N2) // C

∗
(N1) // C

∗
(N2) // 0.

The inclusion map ζ: (N2, ∅) → (N2, N3) induces, for every n ∈ Z, the commu-
tative diagram

C
n
(N2, N3)

ζ]q

��

// C
n
(N2)

id

��

// C
n
(N3)

��

C
n
(N2, ∅) // C

n
(N2) // C

n
(∅)

This diagram implies that ζ]n is the inclusion map. It follows that γq is induced
by the family ζ]n, n ∈ Z, of inclusion maps. From (3.2) we also obtain the
commutative diagram

(3.3)

0 // C
∗
(N1, N2)

id

��

α]
// C

∗
(N1, N3)

⊂
��

β]

// C
∗
(N2, N3) //

ζ]

��

0

0 // C
∗
(N1, N2) ⊂

// C
∗
(N1)

β]
1

// C
∗
(N2) // 0

An application of the cohomology functor to (3.3) now shows that ∂q∗ = δq∗ ◦γq,
q ∈ Z, as claimed. The proof is complete. �

Proposition 3.4. Suppose X is a metric space, π is a local semiflow on X,
S is an isolated invariant set having a strongly π-admissible isolating neigborhood
and (A,A∗) is an attractor-repeller pair in S, relative to π. Let (N1, N2, N3) be
an FM -index triple for (π, S,A,A∗) with ClX(N1 \ N3) strongly π-admissible.
Let

ι: (N1/N3, {[N3]}) → (N1/N2, {[N2]}), κ: (N2/N3, {[N3]}) → (N1/N3, {[N3]})
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be inclusion induced maps. The sequence

(3.4) C
∗
(N1/N2, {[N2]})

ι]
// C

∗
(N1/N3, {[N3]})

κ]
// C

∗
(N2/N3, {[N3]})

is weakly coexact.

Proof. For each q ∈ Z there is a commutative diagram

(3.5)

C
q
(N1/N2, {[N2]})

⊂
��

ι]q
// C

q
(N1/N3, {[N3]})

⊂
��

κ]q
// C

q
(N2/N3, {[N3]})

⊂
��

C
q
(N1/N2)

��

ι]q
1 // C

q
(N1/N3)

��

κ]q
1 // C

q
(N2/N3)

��

C
q
({[N2]}) // C

q
({[N3]}) id

// C
q
({[N3]})

induced by ι and κ. Since κ1 is injective, being an inclusion map, Lemma 3.1
implies that κ]q

1 is surjective. It follows that κ]q is surjective. We have ι =
λ ◦ ξ, where ξ: (N1/N3, {[N3]}) → (N1/N3, N2/N3) and λ: (N1/N3, N2/N3) →
(N1/N2, {[N2]}) are inclusion maps. Now Proposition 3.3 implies that kerκ] =
C
∗
(N1/N3, N2/N3) and ξ] is the inclusion map. Thus κ] ◦ ι] = κ] ◦ ξ] ◦ λ] = 0.
We can write λ = λ′′ ◦ λ′ where

λ′: (N1/N3, N2/N3) → ((N1/N2)/(N2/N3), {[N2/N3]})

is the projection map and

λ′′: ((N1/N2)/(N2/N3), {[N2/N3]}) → (N1/N2, {[N2]})

is the canonical homeomorphism. It is well-known that N2/N3 is a weak defor-
mation retract of a neighborhood of itself in N1/N3. It follows that λ] induces
an isomorphism in cohomology. This completes the proof. �

Remark 3.5. In the situation of Proposition 3.4 we have the following com-
mutative diagram with weakly coexact rows

(3.6)

C
∗
(N1, N2)

α]
// C

∗
(N1, N3)

β]

// C
∗
(N2, N3)

C
∗
(N1/N2, {[N2]})

Q1,2,]

OO

ι]

// C
∗
(N1/N3, {[N3]})

Q1,3,]

OO

κ]

// C
∗
(N2/N3, {[N3]})

Q2,3,]

OO

where α and β are as in Proposition 3.3 and, for i, j ∈ {1, 2, 3} with i < j,
Qi,j : (Ni, Nj) → (Ni/Nj , {[Nj ]}) is the canonical projection map. Applying the
cohomology functor to (3.6) and using the fact that Qi,j induces an isomorphism
in cohomology we see that the connecting homomorphism for the weakly coexact
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sequence in Proposition 3.4 is identical to the map ∂̂q, q ∈ Z, defined in the
paragraph preceding [5, Proposition 2.13].

4. Statement of the main result

We can now state the main result of this paper.

Theorem 4.1. Let X be a metric space, π be a local semiflow on X, k ∈ N,
E be a k-dimensional normed real vector space and π̃ be the semiflow generated
by the equation ẏ = Ly, where L:E → E is a linear map with all eigenvalues
having positive real parts. Then there is a family of Γ-module isomorphisms

θq(π, π̃, S):Hq−k(π, S) → Hq(π × π̃, S × {0E}),

one for each q ∈ Z and each isolated π-invariant set S having a strongly π-
admissible isolating neighborhood, such that the following property is satisfied:
given any isolated π-invariant set S having a strongly π-admissible isolating
neighborhood and given any attractor-repeller pair (A,A∗) of S relative to π,
the following diagram commutes:

(4.1)

Hq(π′, A′)oo Hq(π′, S′)oo Hq(π′, A∗′)oo Hq−1(π′, A′)oooo oo

Hq−k(π,A)oo

θq(π,eπ,A)

OO

Hq−k(π, S)

θq(π,eπ,S)

OO

oo Hq−k(π,A∗)

θq(π,eπ,A∗)

OO

oo Hq−k−1(π,A)

θq−1(π,eπ,A)

OO

oo oo

Here, the upper (resp. lower) horizontal sequence is the cohomology index se-
quence of (π′, S′, A′, A∗′) (resp. (π, S,A,A∗)), where we set π′ := π × π̃ and for
K ⊂ X, K ′ := K × {0E}.

The following result will reduce the proof of Theorem 4.1 to the proof of a
special case.

Theorem 4.2. Let X and X ′ be metric spaces and let π (resp. π′) be a
local semiflow on X (resp. on X ′). Let γ:X → X ′ be a homeomorphism which
conjugates π with π′.

(a) Let S be an isolated π-invariant set and (Y, Z) be an FM-index pair
for (π, S) such that ClX(Y \ Z) is strongly π-admissible. Then γ(S) is
an isolated π′-invariant set and (γ(Y ), γ(Z)) is an FM-index pair for
(π′, γ(S)) such that ClX′(γ(Y ) \ γ(Z)) is strongly π′-admissible. Let
γY,Z :Y/Z → γ(Y )/γ(Z) be the map induced by γ and, for q ∈ Z, let

Fq := Hq(γY,Z):Hq(γ(Y )/γ(Z), {[γ(Z)]}) → Hq(Y/Z, {[Z]})

be the induced cohomology map.
(b) The map

〈Fq〉 = 〈Fq〉C,Φ,C′,cΦ′ : Φ̂′(C′) → Φ̂(C)
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is independent of the choice of (Y, Z). Here, C (resp. C′) is the categorial
Conley–Morse index of (π, S) (resp. (π′, γ(S))) as defined in [5] and Φ
(resp. Φ′) is the restriction of Hq to C (resp. C′). Define the morphism
κq(π, S, γ):Hq(π′, γ(S)) → Hq(π, S) by κq(π, S, γ) = 〈Fq〉. κq(π, S, γ)
is a Γ-module isomorphism.

(c) Given an isolated π-invariant set S having a strongly π-admissible iso-
lating neighborhood and an attractor-repeller pair (A,A∗) of S relative
to π, then γ(S) is an isolated π′-invariant set having a strongly π′-
admissible isolating neighborhood, (γ(A), γ(A∗)) is an attractor-repeller
pair of γ(S) relative to π′ and the diagram

(4.2)

Hq(π,A)oo oo Hq(π, S)oo Hq(π,A∗)oo Hq−1(π,A)oooo oo

Hq(π′, γ(A))oo

κq(π,A,γ)

OO

oo Hq(π′, γ(S))

κq(π,S,γ)

OO

oo Hq(π′, γ(A∗))

κq(π,A∗,γ)

OO

oo Hq−1(π′, γ(A))

κq−1(π,A,γ)

OO

oo oo

commutes.

Proof. Part (a) is obvious. To prove the independence of 〈Fq〉 of the choice
of (Y, Z), let (Ŷ , Ẑ) be another FM -index pair for (π, S) with ClX(Ŷ \Ẑ) strongly
π-admissible. By [5, Proposition 4.6, Lemma 4.8 and Proposition 2.5] we obtain
sets L1, L2, W and Ŵ such that (L1, L2) ⊂ (Y ∩ Ŷ ,W ∩ Ŵ ), Z ⊂ W , Ẑ ⊂
Ŵ and (L1, L2), (Y, W ) and (Ŷ , Ŵ ) are FM -index pairs for (π, S) such that
ClX(L1 \ L2), ClX(Y \ Z) and ClX(Ŷ \ Ŵ ) are strongly π-admissible. We thus
obtain the commutative diagram

Hq(Y/Z, {[Z]}) Hq(γ(Y )/γ(Z), {[γ(Z)]})
Hq(γY,Z)

oo

Hq(Y/W, {[W ]})

OO

��

Hq(γ(Y )/γ(W ), {[γ(W )]})
Hq(γY,W )

oo

OO

��

Hq(L1/L2, {[L2]}) Hq(γ(L1)/γ(L2), {[γ(L2)]})
Hq(γL1,L2 )

oo

Hq(Ŷ /Ŵ , {[Ŵ ]})

OO

��

Hq(γ(Ŷ )/γ(Ŵ ), {[γ(Ŵ )]})
Hq(γ

bY , bW
)

oo

OO

��

Hq(Ŷ /Ẑ, {[Ẑ]}) Hq(γ(Ŷ )/γ(Ẑ), {[γ(Ẑ)]})
Hq(γ

bY ,bZ
)

oo

whose vertical maps are inclusion induced. Hence, by [5, Proposition 4.5] these
maps are induced by the unique morphisms in C (resp. in C′) between the corre-
sponding objects of these connected simple systems. In particular, the vertical
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maps are all bijective, and so we may invert the downward pointing arrows and
then compose the columns to obtain the commutative diagram

(4.3)

Hq(Y/Z, {[Z]}) Hq(γ(Y )/γ(Z), {[γ(Z)]})
Hq(γY,Z)

oo

Hq(Ŷ /Ẑ, {[Ẑ]})

OO

Hq(γ(Ŷ )/γ(Ẑ), {[γ(Ẑ)]})
Hq(γ

bY ,bZ
)

oo

OO

where the vertical maps are induced by the corresponding morphism in C (resp.
in C′). Now an application of [6, Proposition 2.4] to diagram (4.3) completes
the proof of part (b) of the theorem. To prove part (c) let (N1, N2, N3) be an
FM -index triple for (π, S,A,A∗) with ClX(N1 \ N3) strongly π-admissible. It
follows that

(N ′
1, N

′
2, N

′
3) := (γ(N1), γ(N2), γ(N3))

is an FM -index triple for (π′, γ(S), γ(A), γ(A∗)) such that ClX′(γ(N1) \ γ(N3))
is strongly π′-admissible. By Proposition 3.4 we thus have the following com-
mutative diagram of cochain maps with weakly coexact rows

(4.4)

C
∗
(N1/N2, {[N2]}) // C

∗
(N1/N3, {[N3]}) // C

∗
(N2/N3, {[N3]})

C
∗
(N ′

1/N
′
2, {[N ′

2]}) //

γ]
N1,N2

OO

C
∗
(N ′

1/N
′
3, {[N ′

3]}) //

γ]
N1,N3

OO

C
∗
(N ′

2/N
′
3, {[N ′

3]})

γ]
N2,N3

OO

Applying Proposition 2.2 to diagram (4.4) we obtain the induced long commu-
tative ladder with exact rows. An application of the 〈 · , · 〉-operation to that
ladder and using part (b) we obtain diagram (4.2). This proves part (c). �

The following result is well-known (cf. [1, Lemma 3 in Section 22 ]).

Proposition 4.3. Let k ∈ N, E be a k-dimensional normed real vector space
and π̃ be the semiflow generated by the equation ẏ = Ly, where L:E → E is a
linear map with all eigenvalues having positive real parts. Let πk be the semiflow
on Rk generated by the ordinary differential equation u̇ = u. Then there exists
a homeomorphism αk:E → Rk which conjugates π̃ with πk.

Theorem 4.4. Theorem 4.1 holds whenever k ∈ N, E := Rk, and π̃ := πk,
where πk is as in Proposition 4.3.

Proof of Theorem 4.1 using Theorem 4.4. Let γ:X ×E → X ×Rk be
given by (x, u) 7→ (x, αk(u)), (x, u) ∈ X × E, where αk is as in Proposition 4.3.
Then γ is a homeomorphism which conjugates π × π̃ with π × πk. If S is an
isolated π-invariant set having a strongly π-admissible isolating neighborhood
then let

θq(π, πk, S):Hq−k(π, S) → Hq(π × πk, S × {0Rk}),
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be the Γ-module isomorphism which exists by Theorem 4.4. Now use Theo-
rem 4.2 with our choice of γ. It follows that γ(S × {0E}) = S × {0Rk}. Set

θq(π, π̃, S) := κq(π, S, γ) ◦ θq(π, πk, S).

By Theorem 4.2 the family of these Γ-isomorphisms clearly satisfies the conclu-
sions of Theorem 4.1. �

The next result is the crucial step in the proof of Theorem 4.4.

Theorem 4.5. Theorem 4.4 holds for k = 1.

Proof of Theorem 4.4 using Theorem 4.5. The proof is by induction
on k ∈ N. Theorem 4.5 implies that Theorem 4.4 holds for k = 1. Suppose that
Theorem 4.4 holds for some k. Let X be a metric space and let π be a local
semiflow on X. Notice that the semiflow π× πk+1 is conjugated to the semiflow
(π × πk)× π1 by the homeomorphism ϕ:X × Rk+1 → (X × Rk)× R given by

ϕ(x, u1, . . . , uk+1) = ((x, u1, . . . , uk), uk+1).

Let S be an isolated π-invariant set having a strongly π-admissible isolat-
ing neighborhood. We use Theorem 4.2 with γ := ϕ to obtain the Γ-module
isomorphism κq(π × πk+1, S, ϕ) from Hq((π × πk) × π1, (S × {0Rk}) × {0R}) to
Hq(π×πk+1, S×{0Rk+1}) as in that theorem. Using Theorem 4.5 we obtain the
Γ-module isomorphism θq(π × πk, π1, S × {0Rk}) from Hq−1(π × πk, S × {0Rk})
to Hq((π × πk)× π1, (S × {0Rk})× {0R}), as in that theorem. Since the present
Theorem 4.4 is valid for k, there is the Γ-module isomorphism θq−1(π, πk, S)
from H(q−1)−k(π, S) to Hq−1(π × πk, S × {0Rk}), as in this theorem.

Define the Γ-module isomorphism

θq(π × πk+1, S):Hq−k−1(π, S) → Hq(π × πk+1, S × {0Rk+1})

by

θq(π × πk+1, S)

:= κq(π × πk+1, S, ϕ) ◦ θq(π × πk, π1, S × {0Rk}) ◦ θq−1(π, πk, S).

The family θq(π×πk+1, S) obviously satisfies the conclusions of Theorem 4.4 for
k + 1. �

The rest of this paper is devoted to the proof of Theorem 4.5.
For the rest of this paper let X be a metric space and π be a local semiflow

on X. Since Theorem 4.5 is obvious for X = ∅ we assume that X 6= ∅.
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5. Construction of the suspension isomorphism

Recall the following notations from [6].

Definition 5.1. Let (N,Y, Z) be a triple of closed subsets of X with N 6= ∅
and Z ⊂ Y ⊂ N . Define

E(Y ) := Y × [−1, 1] ∪N × {−1, 1},
E(Z) := Z × [−1, 1] ∪N × {−1, 1},

Ω(Y, Z) := E(Y )/E(Z).

Define further I0 := {0}, I1 := [−1, 0], I2 := [0, 1] and

Ek(Y, Z) := Y × Ik ∪ E(Z), k ∈ {0, 1, 2}.

Let pY,Z :Y × [−1, 1] ∪N × {−1, 1} → Ω(Y, Z) be the quotient map and define

Ω1(Y, Z) := pY,Z(E1(Y, Z)),

Ω2(Y, Z) := pY,Z(E2(Y, Z)),

Ω0(Y, Z) := Ω1(Y, Z) ∩ Ω2(Y,Z),

and let zY,Z be the base-point of Ω(Y, Z), i.e. {zY,Z} = pY,Z(E(Z)).

Remark 5.2. It is clear that Ω0(Y, Z) = pY,Z(E0(Y, Z)). Moreover, for
k ∈ {0, 1, 2}, Ωk(Y, Z) and Ek(Y,Z)/E(Z) are identical, both as sets and as
topological spaces. In fact, since p−1

Y,Z(pY,Z(Ek(Y,Z))) = Ek(Y, Z) and Ek(Y, Z)
is closed in E(Y ), it follows that the restriction of pY,Z to Ek(Y, Z) is a quotient
map from Ek(Y,Z) to pY,Z(Ek(Y,Z)) = Ωk(Y,Z).

For the rest of this section, let N 6= ∅ be closed in X, S be an isolated
π-invariant set and (Y, Z) be an FM -index pair for (π, S) with Y ⊂ N and
ClX(Y \ Z) strongly π-admissible.

The following lemma is analogous to [6, Lemma 4.3], with the same proof.

Lemma 5.3. Let gY,Z :Y/Z → (Y ×{0})/(Z×{0}) be induced by the assign-
ment x 7→ (x, 0) and hY,Z : (Y ×{0})/(Z×{0}) → Ω0(Y, Z) = E0(Y, Z)/E(Z) be
inclusion induced. The map fY,Z :Y/Z → Ω0(Y, Z) defined by fY,Z = hY,Z ◦ gY,Z

is a base-point preserving homeomorphism. In particular,

Hq(fY,Z):Hq(Ω0(Y, Z), {zY,Z}) → Hq(Y/Z, {[Z]})

is bijective for all q ∈ Z.

We also have the following analogue of [6, Proposition 4.4].



On Suspension of Cohomology Index Braids 17

Proposition 5.4. Let `Y,Z : (Ω1(Y,Z),Ω0(Y,Z)) → (Ω(Y, Z),Ω2(Y,Z)) be
the inclusion induced map. Then the corresponding cohomology map

Hq(`Y,Z):Hq(Ω(Y, Z),Ω2(Y, Z)) → Hq(Ω1(Y,Z),Ω0(Y,Z))

is bijective for every q ∈ Z.

Proof. It was proved in [6, Lemma 4.6] that Ω0(Y, Z) is a strong deforma-
tion retract of a closed neighborhood of itself in Ω1(Y,Z). This together with
classical arguments from algebraic topology (see e.g. [10, Theorem 1.8 and its
proof]) completes the proof of the proposition. �

Proposition 5.4 and standard results from algebraic topology (cf. [10, Theo-
rem 1.4 and Remark 5.3]) imply that there exists a long exact Mayer–Vietoris
cohomology sequence

(5.1) Rq
γq

oo Sqαq
oo T q

βq

oo Rq−1
γq−1

oo Sq−1αq−1
oo

βq−1
oo

where, for q ∈ Z,

(5.2)

Rq = Rq(Y, Z) = Hq(Ω0(Y, Z), {zY,Z}),
T q = T q(Y,Z) = Hq(Ω(Y,Z), {zY,Z}),
Sq = Sq(Y, Z) = Hq(Ω1(Y,Z), {zY,Z})⊕Hq(Ω2(Y, Z), {zY,Z}),

(5.3)

ρY,Z : (Ω(Y, Z), {zY,Z}) → (Ω(Y, Z),Ω2(Y, Z)),

µk,Y,Z : (Ω0(Y, Z), {zY,Z}) → (Ωk(Y,Z), {zY,Z}),
νk,Y,Z : (Ωk(Y,Z), {zY,Z}) → (Ω(Y, Z), {zY,Z}), k ∈ {1, 2},

are inclusions and

(5.4)

αq :=Hq(µ1,Y,Z)−Hq(µ2,Y,Z),

βq :=Hq(ν1,Y,Z)⊕Hq(ν2,Y,Z),

γq :=Hq(ρY,Z) ◦Hq(`Y,Z)−1 ◦ ∂(q−1)∗(Ω1(Y,Z),Ω0(Y, Z), {zY,Z}).

Here, ∂q∗(Ω1(Y,Z),Ω0(Y,Z), {zY,Z}), q ∈ Z is the connecting homomorphism of
the triple (Ω1(Y, Z),Ω0(Y, Z), {zY,Z}).

The following lemma is analogous to [6, Lemma 4.7], with the same proof.

Lemma 5.5. Hq(Ω1(Y, Z), {zY,Z}) = 0 and Hq(Ω2(Y, Z), {zY,Z}) = 0 for
q ∈ Z.

Lemma 5.5 implies that Sq = 0 for all q ∈ Z. The exactness of diagram (5.1)
therefore shows that the map γq is bijective for all q ∈ Z. Recalling that
(Ω(Y,Z), {zY,Z}) = (E(Y )/E(Z), {[E(Z)]}) and that, by [6, Proposition 2.2],
(E(Y ), E(Z)) is an FM -index pair for (π × π1, S × {0}), and using Lemma 5.3
we thus arrive at the following result:
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Theorem 5.6.

(a) For every q ∈ Z, the map

ξq = ξq
Y,Z :Hq−1(Y/Z, {[Z]}) → Hq(E(Y )/E(Z), {[E(Z)]})

defined by

ξq = Hq(ρY,Z) ◦Hq(`Y,Z)−1 ◦ ∂̃q−1(Y, Z) ◦Hq−1(fY,Z)−1,

is bijective, where we set

∂̃q(Y, Z) := (−1)q∂q∗(Ω1(Y,Z),Ω0(Y, Z), {zY,Z}), q ∈ Z.

(b) Whenever (Ŷ , Ẑ) is another FM -index pair for (π, S) such that ClX(Ŷ \
Ẑ) is strongly π-admissible, then the diagram

(5.5)

Φ(A) Φ′(A′)Foo

Φ(B)

Φ(f)

OO

G
// Φ′(B′)

G
oo

Φ′(f ′)

OO

commutes.
Here A = (E(Y )/E(Z), {[E(Z)]}), B = (E(Ŷ )/E(Ẑ), {[E(Ẑ)]}), A′ =
(Y/Z, {[Z]}), B′ = (Ŷ /Ẑ, {[Ẑ]}), C is the categorial Morse index of
(π × π1, S × {0}), C′ is the categorial Morse index of (π, S), Φ is the
restriction of the functor Hq to C, Φ′ is the restriction of Hq−1 to C′,
F = ξq

Y,Z , G = ξq
bY ,bZ

and f (resp. f ′) is the unique morphism in C (resp.
in C′) from A to B (resp. from A′ to B′).

(c) 〈F 〉C,Φ,C′,Φ′ = 〈G〉C,Φ,C′,Φ′ .

Remark. The reason for including the factor (−1)q in the definition of ξq
Y,Z

is crucial and will become apparent in Section 6.

Proof. We have just proved part (a). Part (c) follows from part (b) by
[6, Proposition 2.4]. To prove part (b) let us first assume that (Y, Z) ⊂ (Ŷ , Ẑ).
Given q ∈ Z, consider the following diagrams in the category of Γ-modules:

Hq(Ω(Y, Z), {zY,Z}) Hq(Ω(Y,Z),Ω2(Y, Z))
Hq(ρY,Z)

oo

Hq(Ω(Ŷ , Ẑ), {z
bY ,bZ})

OO

Hq(Ω(Ŷ , Ẑ),Ω2(Ŷ , Ẑ))
Hq(ρ

bY ,bZ
)

oo

OO
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Hq(Ω(Y,Z),Ω2(Y,Z)) Hq(Ω1(Y,Z),Ω0(Y, Z))
Hq(`Y,Z)−1

oo

Hq(Ω(Ŷ , Ẑ),Ω2(Ŷ , Ẑ))

OO

Hq(Ω1(Ŷ , Ẑ),Ω0(Ŷ , Ẑ))
Hq(`

bY ,bZ
)−1

oo

OO

Hq(Ω1(Y, Z),Ω0(Y,Z)) Hq−1(Ω0(Y,Z), {zY,Z})
e∂q−1(Y,Z)

oo

Hq(Ω1(Ŷ , Ẑ),Ω0(Ŷ , Ẑ))

OO

Hq−1(Ω0(Ŷ , Ẑ), {z
bY ,bZ})

e∂q−1(bY ,bZ)

oo

OO

Hq−1(Ω0(Y,Z), {zY,Z}) Hq−1(Y/Z, {[Z]})
Hq−1(fY,Z)−1

oo

Hq−1(Ω0(Ŷ , Ẑ), {z
bY ,bZ})

OO

Hq−1(Ŷ /Ẑ, {[Ẑ]})
Hq−1(f

bY ,bZ
)−1

oo

OO

Here, the vertical maps are inclusion induced. All these diagrams clearly com-
mute (the third diagram commutes by the naturality of connecting homomor-
phisms of space triples). Composing these diagrams we thus obtain the commu-
tative diagram

(5.6)

Hq(E(Y )/E(Z), {[E(Z)]}) Hq−1(Y/Z, {[Z]})
ξq

Y,Z
oo

Hq(E(Ŷ )/E(Ẑ), {[E(Ẑ)]})

OO

Hq−1(Ŷ /Ẑ, {[Ẑ]})
ξq

bY ,bZ

oo

OO

with inclusion induced vertical maps. Diagram (5.6) is just diagram (5.5) spelled
out. Now an application of [5, Proposition 4.5] completes the proof of part (b) is
in the special case (Y,Z) ⊂ (Ŷ , Ẑ). In the general case we use [5, Proposition 4.6,
Lemma 4.8 and Proposition 2.5] to obtain sets L1, L2, W and Ŵ such that

(L1, L2) ⊂ (Y ∩ Ŷ ,W ∩ Ŵ ), Z ⊂ W, Ẑ ⊂ Ŵ

and (L1, L2), (Y, W ), (Ŷ , Ŵ ) are FM -index pairs for (π, S) such that ClX(L1 \
L2), ClX(Y \Z) and ClX(Ŷ \ Ŵ ) are strongly π-admissible. By the special case
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just proved we thus obtain the commutative diagram

Hq(E(Y )/E(Z), {[E(Z)]}) Hq−1(Y/Z, {[Z]})
ξq

Y,Z
oo

Hq(E(Y )/E(W ), {[E(W )]})

OO

��

Hq−1(Y/W, {[W ]})
ξq

Y,W
oo

OO

��

Hq(E(L1)/E(L2), {[E(L2)]}) Hq−1(L1/L2, {[L2]})
ξq

L1,L2oo

Hq(E(Ŷ )/E(Ŵ ), {[E(Ŵ )]})

OO

��

Hq−1(Ŷ /Ŵ , {[Ŵ ]})
ξq

bY , bW

oo

OO

��

Hq(E(Ŷ )/E(Ẑ), {[E(Ẑ)]}) Hq−1(Ŷ /Ẑ, {[Ẑ]})
ξq

bY ,bZ

oo

The vertical maps in the above diagram are all inclusion induced, thus they are
induced by the unique morphisms in C(π×π1, S×{0}) (resp. in C(π, S)) between
the corresponding objects of these connected simple systems. In particular, the
vertical maps are all bijective and so we may invert the downward pointing arrows
then compose the columns to obtain a commutative diagram of the form (5.6)
where the vertical maps are induced by the corresponding morphism in C(π ×
π1, S × {0}) (resp. in C(π, S)). This completes the proof of part (b) of the
theorem. �

In view of Theorem 5.6 we can now make the following definition.

Definition 5.7. Given an isolated π-invariant set S having a strongly π-
admissible isolating neighborhood and q ∈ Z, let

θq(π, π1, S):Hq−1(π, S) → Hq(π × π1, S × {0R})

be defined by θq(π, S) := 〈F 〉C,Φ,C′,Φ′ , where C is the categorial Morse index of
(π× π1, S×{0R}), C′ is the categorial Morse index of (π, S), Φ is the restriction
of the functor Hq to C, Φ′ is the restriction of Hq−1 to C′ and F = ξq

Y,Z with
ξq
Y,Z defined in part (a) of Theorem 5.6. θq(π, π1, S) is a well-defined Γ-module

isomorphism, called the suspension isomorphism from Hq−1(π, S) to Hq(π ×
π1, S × {0R}).

Remark 5.8. The proof of the existence for both the suspension isomor-
phism θq(π, π1, S) as well as general suspension isomorphism θq(π, π̃, S) of The-
orem 4.1 does not use any particular properties of Alexander–Spanier cohomol-
ogy and so the result holds for an arbitrary (unreduced) cohomology theory with
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values in Γ-modules. On the other hand, the existence of long exact cohomology
sequences for attractor-repeller pairs and the commutativity of the suspension
isomorphism with such sequences, established in Section 6 below, does depend
on special properties of Alexander–Spanier cohomology.

6. The suspension isomorphism and attractor-repeller pairs

In this section we will complete the proof of Theorem 4.5. For the rest of
this section, let N 6= ∅ be closed in X, (A,A∗) be an attractor-repeller pair of S

relative to π and (N1, N2, N3) be an FM-index triple for (π, S,A,A∗) such that
N1 ⊂ N and ClX(N1 \N3) is strongly π-admissible. For i,j ∈ {1, 2, 3}, i < j, set
Ωi,j := Ω(Ni, Nj), Ωi,j

1 := Ω1(Ni, Nj), Ωi,j
2 := Ω2(Ni, Nj), Ωi,j

0 := Ω0(Ni, Nj),
zi,j := zNi,Nj

, pi,j := pNi,Nj
, f i,j := fNi,Nj

, ρi,j := ρNi,Nj
, `i,j := `Ni,Nj

and
ξq,i,j := ξq

Ni,Nj
, q ∈ Z. (For the notations used here cf Definition 5.1, Lemma 5.3,

Proposition 5.4, formula (5.4) and Theorem 5.6.)

Theorem 4.5 will follow from Theorem 5.6, already proved, and from the
following result.

Theorem 6.1.

(a) The inclusion induced diagram

(6.1)

C
∗
(Ω1,2, {z1,2}) // C

∗
(Ω1,3, {z1,3}) // C

∗
(Ω2,3, {z2,3})

C
∗
(Ω1,2,Ω1,2

2 )

ρ1,2,]

OO

`1,2,]

��

// C
∗
(Ω1,3,Ω1,3

2 )

`1,3,]

��

ρ1,3,]

OO

// C
∗
(Ω2,3,Ω2,3

2 )

`2,3,]

��

ρ2,3,]

OO

C
∗
(Ω1,2

1 ,Ω1,2
0 ) // C

∗
(Ω1,3

1 ,Ω1,3
0 ) // C

∗
(Ω2,3

1 ,Ω1,2
0 )

is commutative with weakly coexact rows.
(b) The diagram

(6.2)

C
∗
(N1/N2, {[N2]}) // C

∗
(N1/N3, {[N3]}) // C

∗
(N2/N3, {[N3]})

C
∗
(Ω1,2

0 , {z1,2})

f1,2,]

OO

// C
∗
(Ω1,3

0 , {z1,3})

f1,3,]

OO

// C
∗
(Ω2,3

0 , {z2,3})

f2,3,]

OO

is commutative with weakly exact rows. Here, the horizontal maps are
inclusion induced.
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(c) The following inclusion induced diagram of chain maps is commutative
with exact columns and weakly exact rows:

(6.3)

0

��

0

��

0

��

C
∗
(Ω1,2

1 ,Ω1,2
0 ) //

��

C
∗
(Ω1,3

1 ,Ω1,3
0 ) //

��

C
∗
(Ω2,3

1 ,Ω2,3
0 )

��

C
∗
(Ω1,2

1 , {z1,2}) //

��

C
∗
(Ω1,3

1 , {z1,3}) //

��

C
∗
(Ω2,3

1 , {z2,3})

��

C
∗
(Ω1,2

0 , {z1,2}) //

��

C
∗
(Ω1,3

0 , {z1,3}) //

��

C
∗
(Ω2,3

0 , {z2,3})

��

0 0 0

Lemma 6.2. For every q ∈ Z the inclusion induced chain maps

C
q
(Ω1,3,Ω1,3

2 ) → C
q
(Ω2,3,Ω2,3

2 ) and C
q
(Ω1,3

1 ,Ω1,3
0 ) → C

q
(Ω2,3

1 ,Ω2,3
0 )

are surjective.

Proof. Consider the following commutative diagram:

(6.4)

E(N2)
κ //

p2,3

��

E(N1)

p1,3

��

Ω2,3
ι

// Ω1,3

where κ:E(N2) → E(N1) is the inclusion map. It was proved in [6] that ι: Ω2,3 →
Ω1,3 is continuous, injective and ι(z2,3) = z1,3. Moreover, ι(Ω2,3

i ) ⊂ Ω1,3
i and

Ω1,3
i ∩ ι(Ω2,3) ⊂ ι(Ω2,3

i ), for i ∈ {0, 1, 2}. It follows that Ω1,3
2 ∩ ι(Ω2,3) = ι(Ω2,3

2 )
and Ω1,3

0 ∩ ι(Ω2,3
1 ) = ι(Ω2,3

0 ). We claim that

(6.5) ι(Ω2,3) is closed in Ω1,3.

To prove this claim notice that, in view of the commutativity of diagram (6.4),
we have that w ∈ (p1,3)−1(ι(Ω2,3)) if and only if there is a w′ ∈ E(N2) such that
p1,3(w) = p1,3(w′) if and only if w ∈ E(N2). Thus (p1,3)−1(ι(Ω2,3)) = E(N2)
and since E(N2) is closed in E(N1) it follows that ι(Ω2,3) is closed in Ω1,3.

We also claim that

(6.6) Whenever U is open in Ω2,3, then ι(U) is open in ι(Ω2,3).

To prove this claim, let U be an arbitrary open set in Ω2,3. Then Ũ :=
(p2,3)−1(U) is open in E(N2). Hence there is an open set Ṽ in E(N1) such
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that Ṽ ∩ E(N2) = Ũ . We have two possible cases: either Ũ ⊃ E(N3) or else
Ũ ∩ E(N3) = ∅. In the former case Ṽ ⊃ E(N3). In the latter case, intersecting,
if necessary, the set Ṽ with the set E(N1) \E(N3) (which is open in E(N1)) we
may assume that Ṽ ∩E(N3) = ∅. In both cases it follows that Ṽ = (p1,3)−1(V )
where V := p1,3(Ṽ ). Thus V is open in Ω1,3. Now b ∈ V ∩ ι(Ω2,3) if and only
if there are w ∈ Ṽ and w′ ∈ E(N2) with b = p1,3(w) = p1,3(w′) if and only
if there is a w ∈ Ṽ ∩ E(N2) = Ũ with b = p1,3(w) = ι(p2,3(w)) if and only if
b ∈ ι(p2,3(Ũ)) = ι(U). We thus obtain V ∩ ι(Ω2,3) = ι(U) so ι(U) is open in
ι(Ω2,3), as claimed.

Claim (6.6) implies, in view of the continuity and injectivity of ι, that ι

induces a homeomorphism of Ω2,3 onto ι(Ω2,3) and of Ω2,3
i onto ι(Ω2,3

i ) for i ∈
{0, 1, 2}. Since (p2,3)−1(Ω2,3

i ) = Ei(N2, N3) and Ei(N2, N3) is closed in E(N2)
it follows that Ω2,3

i is closed in Ω2,3 so ι(Ω2,3
i ) is closed in ι(Ω2,3), which itself is

closed in Ω1,3 by claim (6.5). Thus ι(Ω2,3
2 ) is closed in Ω1,3

2 and ι(Ω2,3
0 ) is closed

in Ω1,3
0 . Now Proposition 3.2 completes the proof of the lemma. �

Let us make the following

Definition 6.3. A triple (M1,M2,M3) is called an admissible index triple
if there are: a metric space X̃, a local semiflow π̃ on X̃, an isolated π̃-invariant
set S̃ having a strongly π̃-admissible isolating neighborhood and an attractor-
repeller pair (Ã, Ã∗) of S̃, rel. to π̃, such that (M1,M2,M3) is an FM -index
triple for (π̃, S̃, Ã, Ã∗) and Cl

eX(M1 \M3) is strongly π̃-admissible.

Lemma 6.4. The sequences

C
∗
(Ω1,2, {z1,2}) // C

∗
(Ω1,3, {z1,3}) // C

∗
(Ω2,3, {z2,3})

C
∗
(N1/N2, {[N2]}) // C

∗
(N1/N3, {[N3]}) // C

∗
(N2/N3, {[N3]})

are weakly coexact.

Proof. Since (N1, N2, N3) is an admissible index triple, Proposition 3.4
implies that the second sequence is weakly coexact. Results in [6] imply that
(E(N1), E(N2), E(N3)) is an admissible index triple and so Proposition 3.4 im-
plies that the first sequence is weakly coexact. �

Lemma 6.5. For j ∈ {0, 1, 2} the sequence

C
∗
(Ω1,2

j , {z1,2}) // C
∗
(Ω1,3

j , {z1,3}) // C
∗
(Ω2,3

j , {z2,3})

is weakly coexact.

Proof. Define R0 := {0}, R1 := ]−∞, 0] and R2 := [0,∞[. Fix j ∈ {0, 1, 2}.
For i ∈ {1, 2, 3} let Mi = M j

i := (Ni×Ij)∪ (N× (Ij ∩{−1, 1})). By results in [6]
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(M1,M2,M3) is an admissible index triple and for i, ` ∈ {0, 1, 2} with i < ` the
inclusion induced map

Mi/M` → Ej(Ni, N`)/E(N`)

is a base-point preserving homeomorphism. Moreover, the following inclusion
induced diagram is commutative

(6.7)

M2/M3
//

��

M1/M3
//

��

M1/M2

��

Ej(N2, N3)/E(N3) // Ej(N1, N3)/E(N3) // Ej(N1, N2)/E(N2)

Notice that, by Remark 5.2, Ωi,`
j = Ej(Ni, N`)/E(N`), i, ` ∈ {1, 2, 3}, i < ` and

j ∈ {0, 1, 2}, both as sets and as topological spaces.
Hence, the commutativity of diagram (6.7) implies the commutativity of the

following inclusion induced diagram

(6.8)

C
∗
(M1/M2, {[M2]}) // C

∗
(M1/M3, {[M3]}) // C

∗
(M2/M3, {[M3]})

C
∗
(Ω1,2

j , {z1,2}) //

OO

C
∗
(Ω1,3

j , {z1,3}) //

OO

C
∗
(Ω2,3

j , {z2,3})

OO

where the vertical arrows are isomorphims. Since the upper row of diagram (6.8)
is weakly coexact by Proposition 3.4, reversing the upward pointing arrows in dia-
gram (6.8) and using Lemma 2.3 we conclude that the lower row of diagram (6.8)
is weakly coexact. �

We can finally give a

Proof of Theorem 6.1. Diagram (6.2) is commutative by the definition
of fY,Z and it has weakly coexact rows by Lemmas 6.4 and 6.5. Consider the
following inclusion induced diagram of chain maps:

(6.9)

0

��

0

��

0

��

C
∗
(Ω1,2,Ω1,2

2 ) //

��

C
∗
(Ω1,3,Ω1,3

2 ) //

��

C
∗
(Ω2,3,Ω2,3

2 )

��

C
∗
(Ω1,2, {z1,2}) //

��

C
∗
(Ω1,3, {z1,3}) //

��

C
∗
(Ω2,3, {z2,3})

��

C
∗
(Ω1,2

2 , {z1,2}) //

��

C
∗
(Ω1,3

2 , {z1,3}) //

��

C
∗
(Ω2,3

2 , {z2,3})

��

0 0 0
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Both (6.9) and (6.3) are clearly commutative. Proposition 3.3 implies that
the columns in each of those diagrams are exact. It follows from Lemmas 6.4
and 6.5 that the last two rows in each of those diagrams are weakly coexact.
Now an application of Lemma 6.2 and Proposition 2.5 implies that the first row
in each of those diagrams is weakly coexact. We have therefore proved that the
rows of diagrams (6.1), (6.2) and (6.3) are weakly coexact. �

We can now complete the

Proof of Theorem 4.5. For i, j ∈ {1, 2, 3} with i < j define the following
sets:

Ai,j
1 := C

∗
(Ωi,j , {zi,j}), Ai,j

2 := C
∗
(Ωi,j ,Ωi,j

2 ), Ai,j
3 := C

∗
(Ωi,j

1 ,Ωi,j
0 ),

Ai,j
4 := C

∗
(Ωi,j

1 , {zi,j}), Ai,j
5 := C

∗
(Ωi,j

0 , {zi,j}), Ai,j
6 := C

∗
(Ni/Nj , {[Nj ]}).

Using Proposition 5.4 and Lemma 5.3 we see that diagrams (6.1) and (6.2) in
Theorem 6.1 induce the following commutative diagrams in cohomology with
long exact rows

(6.10)

Hq(A2,3
1 )oo Hq(A1,3

1 )oo Hq(A1,2
1 )oo Hq−1(A2,3

1 )oo oo

Hq(A2,3
2 )oo

Hq(ρ2,3)

OO

Hq(A1,3
2 )oo

Hq(ρ1,3)

OO

Hq(A1,2
2 )oo

Hq(ρ1,2)

OO

Hq−1(A2,3
2 )oo

Hq−1(ρ2,3)

OO

oo

Hq(A2,3
3 )

Hq(`2,3)−1
OO

oo Hq(A1,3
3 )

Hq(`1,3)−1
OO

oo Hq(A1,2
3 )oo

Hq(`1,2)−1
OO

Hq−1(A2,3
3 )

Hq−1(`2,3)−1
OO

oo oo

(6.11)

Hq(A2,3
5 )oo Hq(A1,3

5 )oo Hq(A1,2
5 )oo Hq−1(A2,3

5 )oo oo

Hq(A2,3
6 )oo

Hq(f2,3)−1
OO

Hq(A1,3
6 )oo

Hq(f1,3)−1
OO

Hq(A1,2
6 )oo

Hq(f1,2)−1
OO

Hq−1(A2,3
6 )oo

Hq−1(f2,3)−1
OO

oo

Note that diagram (6.3) in Theorem 6.1 can be written as

(6.12)

0

��

0

��

0

��

A1,2
3

//

��

A1,3
3

//

��

A2,3
3

��

A1,2
4

//

��

A1,3
4

//

��

A2,3
4

��

A1,2
5

//

��

A1,3
5

//

��

A2,3
5

��

0 0 0



26 K. P. Rybakowski

Let ∂̂3,q:Hq(A2,3
5 ) → Hq+1(A1,2

5 ), (resp. ∂̂1,q:Hq(A2,3
3 ) → Hq+1(A1,2

3 )), q ∈ Z,
be the connecting homomorphism of the long cohomology sequence associated
with the third (resp. first) row of (6.12) while δ3,q:Hq(A2,3

5 ) → Hq+1(A2,3
3 ),

(resp. δ2,q:Hq(A1,3
5 ) → Hq+1(A1,3

3 ), resp. δ1,q:Hq(A1,2
5 ) → Hq+1(A1,2

3 )), q ∈ Z,
be the connecting homomorphism of the long cohomology sequence associated
with the third (resp. second, resp. first) column of (6.12). Proposition 2.5 implies
that

(6.13) δ1,q+1 ◦ ∂̂3,q = −∂̂1,q+1 ◦ δ3,q, q ∈ Z.

Thus we obtain the following diagram

(6.14)

Hq(A2,3
3 )oo Hq(A1,3

3 )oo Hq(A1,2
3 )oo Hq−1(A2,3

3 )
b∂1,q−1
oo oo

Hq−1(A2,3
5 )oo

(−1)q−1δ3,q−1

OO

Hq−1(A1,3
5 )oo

(−1)q−1δ2,q−1

OO

Hq−1(A1,2
5 )oo

(−1)q−1δ1,q−1

OO

Hq−2(A2,3
5 )

b∂3,q−2
oo

(−1)q−2δ3,q−2

OO

oo

The diagram

Hq(A2,3
3 ) Hq(A1,3

3 )oo Hq(A1,2
3 )oo

Hq−1(A2,3
5 )

(−1)q−1δ3,q−1

OO

Hq−1(A1,3
5 )oo

(−1)q−1δ2,q−1

OO

Hq−1(A1,2
5 )oo

(−1)q−1δ1,q−1

OO

commutes by the naturality of (δi
q)q∈Z, i ∈ {1, 2, 3} while the diagram

Hq(A1,2
3 ) Hq−1(A2,3

3 )
b∂1,q−1

oo

Hq−1(A1,2
5 )

(−1)q−1δ1,q−1

OO

Hq−2(A2,3
5 )

b∂3,q−2
oo

(−1)q−2δ3,q−2

OO

commutes in view of (6.13). It follows that diagram (6.14) is commutative.
Now, composing diagrams (6.10), (6.14) and (6.11) (from bottom to top) and

using Theorem 5.6 we obtain the commutative diagram

(6.15)

Hq(A2,3
1 )oo Hq(A1,3

1 )oo Hq(A1,2
1 )oo Hq−1(A2,3

1 )oo oo

Hq−1(A2,3
6 )

ξq,2,3

OO

oo Hq−1(A1,3
6 )

ξq,1,3

OO

oo Hq−1(A1,2
6 )

ξq,1,2

OO

oo Hq−2(A2,3
6 )oo

ξq−1,2,3

OO

oo

Applying the 〈 · , · 〉-operation to diagram (6.15) and using Definition 5.7 together
with [5, Theorem 5.1 ] we obtain diagram (4.1). This combined with Theorem 5.6
completes the proof of Theorem 4.5. �
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7. The suspension isomorphism and cohomology index braids

In this section let P be a finite set, ≺ be a strict partial order on P and
(Mi)i∈P be a Morse decomposition of S relative to π. Using the notation of
Theorem 4.1 we have that (M ′

i)i∈P is a ≺-ordered Morse decomposition of S′

relative to π′. Given (I, J) ∈ I2(≺), (M(I),M(J)) is an attractor-repeller pair in
M(IJ) (where IJ = I∪J) relative to π, so (M(I)′,M(J)′) is an attractor-repeller
pair in M(IJ)′ relative to π′. Setting, for K ∈ I(≺) and q ∈ Z, Hq ′(K) :=
Hq(π′,M(K)′), Hq(K) := Hq(π,M(K)) and θq(K) := θq(π, π̃,M(K)) and us-
ing Theorem 4.1 we thus arrive at the commutative diagram

(7.1)

Hq ′(I)oo Hq ′(IJ)oo Hq ′(J)oo H(q−1)′(I)oo oo

Hq−k(I)

θq(I)

OO

oo Hq−k(IJ)

θq(IJ)

OO

oo Hq−k(J)

θq(J)

OO

oo Hq−k−1(I)

θq−1(I)

OO

oo oo

Here, the upper (resp. lower) horizontal sequence is the cohomology index se-
quence of (π′,M(IJ)′,M(I)′,M(J)′) (resp. the cohomology index sequence of
(π,M(IJ),M(I),M(J)) shifted to the left by k). We thus obtain the following
result.

Theorem 7.1. (θq(J))q∈Z, J ∈ I(≺), is an isomorphism from the graded
module braid obtained by shifting the cohomology index braid of (π, S, (Mi)i∈P )
to the left by k to the cohomology index braid of (π′, S′, (M ′

i)i∈P ).
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