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POSITIVE SOLUTIONS
FOR A NONCONVEX ELLIPTIC DIRICHLET PROBLEM

WITH SUPERLINEAR RESPONSE

Andrzej Nowakowski — Aleksandra Orpel

Abstract. The existence of bounded solutions of the Dirichlet problem
for a ceratin class of elliptic partial differential equations is discussed here.

We use variational methods based on the subdifferential theory and the

comparison principle for difergence form operators. We present duality and
variational principles for this problem. As a consequences of the duality we

obtain also the variational principle for minimizing sequences of J which

gives a measure of a duality gap between primal and dual functional for
approximate solutions.

1. Introduction

The aim of this paper is to show that some class of Dirichlet problems gov-
erned by a second order partial differential equation possesses solutions from
a known pre-specified interval of the positive axis. We shall consider PDE of
elliptic type being a generalization of the membrane equation in the following
form

(1.1)

{
−div(k(y)∇x(y)) = Gx(y, x(y)) for a.e. y ∈ Ω,
x|∂Ω = 0
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with k ∈ C1(Ω,R+), Gx denoting the derivative with respect to x. We shall
assume that G is convex and differentiable with respect to the second variable
in some interval and it satisfies the Carathéodory condition. Throughout the
paper we shall assume the following conditions:

(Ω) Ω ⊂ Rn is a bounded domain in Rn having a piecewise C1,1 boundary.
(K) k ∈ C1(Ω,R), k0 ≥ k(y) ≥ k0 > 0 for all y ∈ Ω.
(G1) There exist z ∈ C10 (Ω), z0 ∈ W

1,2
0 (Ω,R) ∩W 2,∞(Ω,R) such that 0 <

z0(y) ≤ z(y) for all y ∈ Ω and

(1.2) Gx(y, z) ≤ −div(k(y)∇z0(y)).

(G2) G: Ω×R→ R is measurable in y, continuously differentiable and convex
with respect to the second variable in some closed neighbourhood Ĩ of
the interval I = [0, supy∈Ω z(y)] for all y ∈ Ω,

∫
ΩG(y, 0) dy <∞.

(G3) Gx is positive in I for all y ∈ Ω.

It is worth to note that the assumption (G1) is not very strong, as any
function Gx which is superlinear and increasing in some interval satisfies the
conditions from (G1). In particular, any polynomial of degree greater than two
(eventually shifted) has that property. How to find the functions z and z0 is
described in Example 4.2, they may be treated as model functions.
Recently an increasing interest has been observed in investigating the ex-

istence of positive solutions of similar problems. It is associated with the fact
that a lot of mathematical models of physical and technical phenomena involves
nonlinear elliptic problems. The elliptic partial differential equations in the di-
vergence form were discussed e.g. in [12], where G ∈ C(Ω×R), in [5], or in [10],
where the right-hand side is independent of x and Ω is a bounded n-dimensional
polyhedral domain. In [13] the existence of a solution x ∈W 1,p0 (Ω,R)∩L∞(Ω,R),
p > 1 for the below PDE

(1.3) −divA(y, x,Dx) = H(y, x,Dx) in Ω,

where Ω is an open set in Rn, n ≥ 1, follows from the existence of the solution
of an associated symmetrized semilinear problem. N. Grenon has obtained the
results under the assumptions that

(a) A: Ω×R×Rn → Rn andH: Ω×R×Rn → R are Carathéodory functions,
such that for a.e. y ∈ Ω, all x ∈ R and ξ ∈ Rn

|A(y, x, ξ)| ≤ β(|x|)|ξ|p−1 + b(y),(1.4)

|H(y, x, ξ)| ≤ γ(|x|){|ξ|p + d(y)},(1.5)

where β, γ are positive and locally bounded, b is a positive element of
Lp
′
(Ω,R), p′ = p/(p− 1), and d ∈ L1(Ω,R);
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(b) 〈A(y, x, ξ)−A(y, x, ξ′), ξ − ξ′〉 > 0 for all ξ 6= ξ′ and there exists α > 0
such that α|ξ|p ≤ 〈A(y, x, ξ), ξ〉;

(c) there are nondecreasing ki, θi∈C(R+,R+), nonnegative fi ∈ Lq(Ω,R+),
max{n/p, 1} < q ≤ ∞, i = 1, 2 with θi(0) > 0 such that

H(y, x, ξ) ≤ α{k1(x)|ξ|p + θ1(x)f1(y)} for all x ≥ 0,
H(y, x, ξ) ≤ α{−k2(−x)|ξ|p − θ2(−x)f2(y)} for all x ≤ 0.

Although for A(y, x, ξ) = k(y)ξ and H(y, x, ξ) = Gx(y, x), (1.3) gives (1.1),
we cannot use the results presented in [13] because we will not assume any
additional estimate on Gx like (1.5) and (c).

There are a lot of results concerning the case when k is a constant, among
others [14], [15], [28]. In [32] and [27] the existence of a classical solution of
(1.1) is discussed under the following assumptions: Gx( · , · ) ∈ C(Ω×R,R), Gx
satisfies the additional estimate on Ω×R and the following relations between G
and Gx holds: there exist µ > 0 and r ≥ 0 such that for |x| ≥ r

(1.6) 0 < µG(y, x) ≤ xGx(y, x).

The condition similar to (1.6) is used also in [9]. We can find a lot of papers
concerning similar problem for G being a polynomial with respect to x (see [30],
[26]). Here we point out that weaker assumptions made on G are still sufficient
to conclude the existence of a countable set of solutions for (1.1). A natural,
and widely used approach to solvability of our problem is to treat (1.1) as the
generalized Euler–Lagrange equation for the functional J given by

(1.7) J(x) =
∫
Ω

{
1
2
k(y)|∇x(y)|2 −G(y, x(y))

}
dy

for x ∈W 1,20 (Ω,R).
We see that under the our assumptions, J is not, in general, bounded on

W 1,20 (Ω,R); so that we must look for critical points of (1.7) of “minmax” type or
find subsets X and Xd, on which the action functional J or the dual one — JD
is bounded. We shall apply the other approach and choose the special sets over
which we will calculate minimum of J and JD. Our assumptions are not strong
enough to use, for example, the Mountain Pass Theorem (see e.g. [18], [32],
[27]): G is not sufficiently smooth, we do not assume any additional relations
concerning Gx and G, in consequence, J does not satisfied, in general, the (PS)-
condition. Of course, we also have the Morse theory and its generalization or
the saddle points theorems, but all these methods do not exhaust all critical
points of J . Moreover, our approach enables us the numerical characterization
of solutions of our problem.
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We will develop a duality theory which is similar to the duality presented
in [25], where the systems of ODE’s is considered. The duality is based on the
Fenchel transform, so we recall some properties of the Fenchel conjugate widely
discussed, e.g. in [11]. First denote by Γ0(Rn) the set of all convex and lower
semicontinuous functions f :Rn → R ∪ {+∞} which are not identically equal
to +∞.

Definition 1.1. Let f ∈ Γ0(Rn) and 〈a, b〉 :=
∑n
i=1 aibi for all a, b ∈ Rn.

The function f∗:Rn → R ∪ {+∞} given by

f∗(u∗) = sup
u∈Rn
{〈u∗, u〉 − f(u)}

is called the Fenchel transform (or conjugate) of f .

Definition 1.2. Let f ∈ Γ0(Rn). The set

∂f(u) := {u∗ ∈ Rn : 〈u∗, v − u〉+ f(u) ≤ f(v) for all v ∈ Rn}

is called the subdifferential of f at u. If ∂f(u) 6= ∅ then we say that f is
subdifferentiable at u.

Theorem 1.3 ([11, Chapter I, §5]). Let f ∈ Γ0(Rn). Then the following
conditions are equivalent

(a) f(u) + f∗(u∗) = 〈u∗, u〉,
(b) u∗ ∈ ∂f(u),
(c) u ∈ ∂f∗(u∗).

Theorem 1.4 ([11, Chapter IX, Proposition 2.1]). Assume that Ω is a
bounded domain in Rn, f : Ω× Rm → R ∪ {+∞} is a nonnegative Carathéodory
function and 1 < p < +∞. Let F : Lp(Ω,Rm)→ R ∪ {+∞} be given by

F (u) =
∫
Ω
f(y, u(y)) dy.

Denote by F ∗ the conjugate function defined as

F ∗(u∗) = sup
u∈L2(Ω,Rm)

{∫
Ω
〈u(y), u∗(y)〉 − f(y, u(y)) dy

}
for all u∗ ∈ Lq(Ω,Rm), with q = p/(p− 1). If there exists u0 ∈ L∞(Ω,Rm) such
that F (u0) < +∞ then for all u∗ ∈ Lq(Ω,Rm),

F ∗(u∗) =
∫
Ω
f∗(y, u∗(y)) dy,

where f∗ is the Fenchel transform of f .

Now we recall the relevant theorems from ([12]):
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Theorem 1.5. Let Ω be a bounded domain in Rn having a piecewise C1,1

boundary. Then, if f ∈ L∞(Ω,R), the Dirichlet problem{
div(k(y)∇u(y)) = f(y) for a.e. y ∈ Ω,
u ∈W 1,20 (Ω,R),

where k ∈ C1(Ω,R), k0 ≥ k(y) ≥ k0 > 0 for all y ∈ Ω, possesses a unique
solution u ∈W 1,20 (Ω,R) ∩W 2,∞(Ω,R).

We recall that a function u, weakly differentiable in Ω, satisfies Qu ≥ 0 (= 0,
≤ 0) in Ω if the functions A(x, u,Du) = {Ai(x, u,Du)}i=1,... ,n and B(x, u,Du)
are locally integrable in Ω and

Q(u, ϕ) =
∫
Ω
[A(y, u,Du)∇ϕ(y)−B(y, u,Du)ϕ(y)] dy ≤ 0 (= 0, ≥ 0)

for all non-negative ϕ ∈ C10 (Ω), where

Qu = div(A(y, u,Du)) +B(y, u,Du).

Theorem 1.6. Let u, v ∈ C0(Ω) ∩ C1(Ω) satisfy Qu ≥ 0, Qv ≤ 0 in Ω and
u ≤ v on ∂Ω, where A, B are continuous differentiable with respect to the second
and third variable in Ω × R × Rn, Q is elliptic in Ω, B is non-increasing in u.
Then, if either

(a) A is independent of u; or
(b) B is independent of Du

it follows that u ≤ v in Ω.

Now we shall construct the sets of arguments of J and JD. Let

X = {x ∈W 1,20 (Ω,R), x(y) ∈ I, x(y) ≤ z(y) on Ω
and div(k∇x) ∈ L∞(Ω,R)}.

Let us note that for each x ∈ X in view of (G2) and (G1) Gx(y, x(y)) ≤
−div(k(y)∇z0(y)) ∈ L∞ i.e. Gx( · , x( · )) ∈ L∞. Define X as the largest subset
of X having property:

(X) for every x ∈ X there exists x̃ ∈ X such that

(1.8) −div(k(y)∇x̃(y)) = Gx(y, x(y)) a.e. on Ω.

Now we shall derive some important facts about X.

Proposition 1.7. X 6= ∅ and X has the above property, i.e. X = X.

Proof. It is clear that z ∈ X. Fix any x ∈ X. By Theorem 1.5 there exists
a unique solution x ∈W 1,20 (Ω,R)∩W 2,∞(Ω,R) of the Dirichlet problem for the
equation

−div(k(y)∇x(y)) = Gx(y, x(y)) a.e. on Ω.
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The Sobolev imbedding theorem leads to the conclusion that x ∈ C0(Ω)∩C1(Ω).
Using (G3) (Gx(y, u) is positive for u ∈ I) we obtain, for all nonnegative ϕ ∈
C10 (Ω), ∫

Ω
k(y)∇x(y)∇ϕ(y) dy = −

∫
Ω
div(k(y)∇x(y))ϕ(y) dy

=
∫
Ω
Gx(y, x(y))ϕ(y) dy ≥ 0

and in consequence, by Theorem 1.6, Qx ≤ 0, so that x ≥ 0.
Combining (1.2) with the facts that Gx(y, · ) is increasing and x ≤ z we infer

div(k∇x) = −Gx(y, x(y)) ≥ −Gx(y, z(y)) ≥ div(k∇z0)

and further

div(k[∇(x− z0)]) ≥ 0.

Finally we have for all nonnegative ϕ ∈ C10 (Ω)∫
Ω
k(y)∇(x− z0)(y)∇ϕ(y) dy = −

∫
Ω
div(k(y)[∇(x− z0)](y))ϕ(y) dy ≤ 0

which implies Q(x− z0) ≥ 0.
Applying again Theorem 1.6 we can assert that x − z0 ≤ 0, so x ≤ z0 ≤ z.

Summarizing 0 ≤ x ≤ z and x ∈ X. Thus X has the property X. �

Let

Xd := {p ∈W 1,2(Ω,R) : there exists x ∈ X
such that p(y) = k(y)∇x(y) for a.e. y ∈ Ω and div p ∈ L∞(Ω,R)}.

Remark 1.8. For every x ∈ X, there exists p ∈ Xd satisfying the below
relation

−div p(y) = Gx(y, x(y)) for a.e. y ∈ Ω.

Proof. Fix x ∈ X. There exists x̃ ∈ X such that (1.8) holds. Taking
p( · ) = k( · )∇x̃( · ) ∈W 1,2(Ω,R) we can assert that p ∈ Xd and, in consequence,
the required relation is satisfied. �

2. Duality result

The aim of this section is to develop duality describing the connections be-
tween the critical values of J and the dual functional JD:Xd → R defined as
follows:

JD(p) =
∫
Ω

{
− 1
2k(y)

|p(y)|2 +G∗(y,−div p(y))
}
dy,
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where G∗(y, · ) (y ∈ Ω ) denotes the Fenchel conjugate of G̃(y, · ) and G̃ is given
by

G̃(y, x) =

{
G(y, x) if x ∈ I and y ∈ Ω,
∞ if x /∈ I and y ∈ Ω.

Now we shall use G̃ to introduce a kind of perturbation of J . We investigate our
problem on X only, where G̃(y, x) = G(y, x) for y ∈ Ω, so that we will not change
a notation for the functional J containing G or G̃. We consider the following
perturbation Jx:L2(Ω,R)→ R of the functional J given by

Jx(g) =
∫
Ω

{
− 1
2
k(y)|∇x(y)|2 + G̃(y, g(y) + x(y))

}
dy,

It is clear that Jx(0) = −J(x) for all x ∈ X.
Let us define for every x ∈ X a type of conjugate J#x :Xd → R of Jx as below

(2.1) J#x (p)

= sup
g∈Lq(Ω,R)

∫
Ω

{
〈g(y),div p(y)〉 − G̃(y, g(y) + x(y)) + 1

2
k(y)|∇x(y)|2

}
dy

=
∫
Ω

{
G∗(y,div p(y)) +

1
2
k(y)|∇x(y)|2 − 〈x(y),div p(y)〉

}
dy.

Now we show two auxiliary lemmas.

Lemma 2.1. For all p ∈ Xd

(2.2) sup
x∈X
(−J#x (−p)) = −JD(p).

Proof. Fix p ∈ Xd. In order to avoid calculation of the conjugate with
respect to a nonlinear space (X is not a linear space) we use the special structure
of the sets Xd and X. By definition of Xd we infer the existence of x ∈ X
satisfying the equality p( · ) = k( · )∇x( · ) a.e. on Ω and, in consequence∫

Ω

{
〈∇x(y), p(y)〉 − 1

2
k(y)|∇x(y)|2

}
dy =

∫
Ω

1
2k(y)

|p(y)|2 dy,

so that

(2.3)
∫
Ω

{
〈∇x(y), p(y)〉 − 1

2
k(y)|∇x(y)|2

}
dy

≤ sup
x∈X

∫
Ω

{
〈∇x(y), p(y)〉 − 1

2
k(y)|∇x(y)|2

}
dy

≤ sup
v∈L2(Ω,Rn)

∫
Ω

{
〈v(y), p(y)〉 − 1

2
k(y)|v(y)|2

}
dy

=
∫
Ω

1
2k(y)

|p(y)|2 dy =
∫
Ω

{
〈∇x(y), p(y)〉 − 1

2
k(y)|∇x(y)|2

}
dy.
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(2.3) implies

sup
x∈X
(−J#x (−p))

= sup
x∈X

∫
Ω

{
〈∇x(y), p(y)〉 − 1

2
k(y)|∇x(y)|2 −G∗(y,−div p(y))

}
dy

=
∫
Ω

{
1
2k(y)

|p(y)|2 −G∗(y,−div p(y))
}
dy = −JD(p)

what we have claimed. �

Lemma 2.2. For each x ∈ X

(2.4) sup
p∈Xd
(−J#x (−p)) = −J(x).

Proof. To prove this we notice that from Remark 1.8 for each x ∈ X there
exists p ∈ Xd such that for a.e. y ∈ Ω

−div p(y) = Gx(y, x(y)),

and further∫
Ω
{〈x(y),−div p(y)〉 −G∗(y,−div p(y))} dy =

∫
Ω
G(y, x(y)) dy.

By arguments similar to that in the proof of (2.3), we obtain

(2.5) sup
p∈Xd

∫
Ω
{〈x(y),−div p(y)〉 −G∗(y,−div p(y))} dy

=
∫
Ω
G∗∗(y, x(y)) dy =

∫
Ω
G(y, x(y)) dy,

where G∗∗(y, z) = supx∈R{〈z, x〉 − G∗(y, x)} for a.a. y ∈ Ω and all z ∈ R. By
(2.5) and (2.1)

sup
p∈Xd
(−J#x (−p))

= sup
p∈Xd

∫
Ω

{
〈x(y),−div p(y)〉 −G∗(y,−div p(y))− 1

2
k(y)|∇x(y)|2

}
=
∫
Ω

{
− 1
2
k(y)|∇x(y)|2 +G(y, x(y))

}
dy = −J(x). �

Now we have the below duality principle

Theorem 2.3. infx∈X J(x) = infp∈Xd JD(p).

Proof. From (2.4) and (2.2)

sup
x∈X
(−J(x)) = sup

x∈X
sup
p∈Xd
(−J#x (−p)) = sup

p∈Xd
sup
x∈X
(−J#x (−p)) = sup

p∈Xd
(−JD(p)),
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so that

inf
x∈X
J(x) = inf

p∈Xd
JD(p). �

3. Variational principles

This section is devoted to necessary conditions for the existence of the mini-
mizer for (1.7). We present variational principle also for minimizing sequences of
functionals J and JD. This result enables numerical approximation of elements
satisfying (1.1).

Theorem 3.1. Let x ∈ X satisfy the equality J(x) = infx∈X J(x). Then
there exists p ∈ Xd being a minimizer of JD:

JD(p) = inf
p∈Xd
JD(p)

and such that −div p ∈ ∂Jx(0) (where ∂Jx(0) denotes the subdifferential of Jx
at 0). Moreover,

J#x (−p) + Jx(0) = 0,(3.1)

J#x (−p)− JD(p) = 0.(3.2)

Proof. Using Remark 1.8 there exists p ∈ Xd such that∫
Ω
{〈x(y),−div p(y)〉 −G∗(y,−div p(y))} dy =

∫
Ω
G(y, x(y)) dy.

Thus, adding
∫
Ω{−(1/2)k(y)|∇x(y)|

2} dy to both sides of the previous assertion
we obtain (3.1).

Let J∗x denote the Fenchel conjugate of Jx. An easy computation shows that
J∗x(−div p) = J

#
x (−p) and, in consequence, by (3.1) and the properties of the

subdifferential, we have the inclusion −div p ∈ ∂Jx(0).
Our task is now to prove that p is a minimizer of JD:Xd → R. Combining

the equalities Jx(0) = −J(x), (3.1) and Lemma 2.1 we deduce that:

−J(x) = −J#x (−p) ≤ sup
x∈X
(−J#x (−p)) = −JD(p).

Now Theorem 2.3 leads to the chain of relations

JD(p) ≤ J(x) = inf
x∈X
J(x) = inf

p∈Xd
JD(p),

which is what we have claimed. (3.2) follows from (3.1) and the equalities Jx(0) =
−J(x) = −JD(p). �
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Corollary 3.2. Assume that x ∈ X is a minimizer of J , then

(3.3)

{
−div[k(y)∇x(y)] = Gx(y, x(y)) for a.e. y ∈ Ω,
x|∂Ω = 0.

Proof. By Theorem 3.1 we get the existence of p ∈ X for which (3.1)–(3.2)
hold. Hence∫

Ω

{
1
2k(y)

|p(y)|2 + 1
2
k(y)|∇x(y)|2− < ∇x(y), p(y) >

}
dy = 0

and ∫
Ω
{G∗(y,−div p(y)) +G(y, x(y))− < x(y),−div p(y) >} dy = 0.

Using the properties of the Fenchel conjugate, we obtain for a.e. y ∈ Ω
1
2k(y)

|p(y)|2 + 1
2
k(y)|∇x(y)|2 − 〈∇x(y), p(y)〉 = 0,

G∗(y,−div p(y)) +G(y, x(y))− 〈x(y),−div p(y)〉 = 0,

so that
p(y) = k(y)∇x(y) and − div p(y) = Gx(y, x(y))

for a.e. y ∈ Ω. Both equalities imply (3.3). �

Now we prove the numerical version of the above variational principle. We
present the result for minimizing sequences that is analogous to the previous
theorem.

Theorem 3.3. Let {xn}n∈N ⊂ X be a minimizing sequence of J :X → R.
Then for any n ∈ N there exists pn ∈ Xd satisfying the relations

−div pn ∈ ∂Jxn(0),
inf
n∈N
JD(pn) = inf

p∈Xd
JD(p).

Moreover, for all n ∈ N,

(3.4) Jxn(0) + J
#
xn(−pn) = 0

and for each ε > 0, there exists n0 ∈ N such that for all n > n0,

J#xn(−pn)− JD(pn) ≤ ε,(3.5)

|JD(pn)− J(xn)| ≤ ε.(3.6)

Proof. Our proof starts with the observation that J :X → R is bounded
below. Indeed, from the definition of X we infer that for all x ∈ X we have
0 ≤ x ≤ z and further, by the convexity of G in I,∫

Ω
G(y, 0) dy −

∫
Ω
G(y, x(y)) dy ≥

∫
Ω
Gx(y, x(y))(0− x(y)) dy
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and so

−
∫
Ω
G(y, x(y)) dy ≥ −

∫
Ω
Gx(y, x(y))x(y) dy −

∫
Ω
G(y, 0) dy.

Therefore

(3.7) J(x) =
∫
Ω

{
1
2
k(y)|∇x(y)|2 −G(y, x(y))

}
dy

≥
∫
Ω

1
2
k(y)|∇x(y)|2 dy −

∫
Ω
Gx(y, z(y))z(y) dy −

∫
Ω
G(y, 0) dy > −∞.

From the above estimate it is clear that

(3.8) inf
n∈N
J(xn) =: c > −∞.

Like in the proof of Theorem 3.1 we obtain for any n ∈ N the existence of
pn ∈ Xd satisfying (3.4) and the relation −div pn ∈ ∂Jxn(0). We proceed to
show that {pn}n∈N is a minimizing sequence for JD:Xd → R. To this end fix
ε > 0. Using (3.8) there exists n0 ∈ N such that, for all n > n0, c+ ε > J(xn),
and further, by the equalities Jxn(0) = −J(xn), (3.4) and (2.4) we may deduce
that, for all n > n0,

c+ ε > J(xn) = J#xn(−pn) ≥ infx∈X(J
#
x (−pn)) = JD(pn).

Moreover, Theorem 2.3 leads to the inequality

JD(pn) ≥ inf
p∈Xd
JD(p) = inf

x∈X
J(x) = c for all n ∈ N.

Combining both relations we can assert that infp∈Xd JD(p) = c and, in conse-
quence, using again Theorem 2.3, {pn}n∈N ⊂ X is a minimizing sequence of JD
on Xd.

(3.5) and (3.6) follow from the last assertion and the fact that J#xn(−pn) ≤
c+ ε for all n > n0. �

As a consequence of the previous theorem we can prove the following

Corollary 3.4. Suppose that {xn}n∈N ⊂ X is a minimizing sequence for J
on X. Then there exists a minimizing sequence {pn}n∈N ⊂ Xd with the property

−div pn(y) = Gx(y, xn(y))

for a.e. y ∈ Ω and every n ∈ N. Moreover,

(3.9) lim
n→∞

∫
Ω

{
1
2k(y)

|pn(y)|2 +
1
2
k(y)|∇xn(y)|2 − 〈pn(y),∇xn(y)〉

}
dy = 0.
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4. The existence of solutions for the Dirichlet problem

This section is devoted to the existence of a solution of (1.1) being a minimizer
of J .

Theorem 4.1. There exists x0 ∈ X such that

−div (k(y)∇x0(y)) = Gx(y, x0(y)) for a.e. y ∈ Ω.

Moreover, x0 is a minimizer of J on X:

J(x0) = inf
x∈X
J(x).

Proof. By (3.7) we have the lower boundedness of J on X. Taking into
account the conditions made on G we see at once that for ã ∈ R large enough
the set P

ea = {x ∈ X : ã ≥ J(x)} is not empty. Now we can choose a minimizing
sequence {xm}m∈N ⊂ Pea for J . According to (3.7) {∇xm}m∈N is bounded in the
norm ‖·‖L2(Ω,Rn) and further {xm}m∈N is bounded inW

1,2
0 (Ω,R). Thus, going if

necessary to a subsequence, we may deduce that {xm}m∈N tends weakly to some
x0 ∈ W 1,20 (Ω,R). So that we can write, by the Rellich–Kondrashov theorem,
xm

m→∞−−−−→ x0 in L2(Ω,R). Thus we can state pointwise convergence of a certain
subsequence (still denoted by {xm}m∈N ): for a.e. y ∈ Ω

(4.1) lim
m→∞

xm(y) = x0(y)

and in consequence

(4.2) 0 ≤ x0(y) ≤ z(y)

for a.e. y ∈ Ω, so that x0 ∈ L∞(Ω,R). Using Corollary 3.4 there exists a
minimizing sequence {pm}m∈N ⊂ Xd with the property

(4.3) −div pm(y) = Gx(y, xm(y))

for a.e. y ∈ Ω and every m ∈ N. Moreover,

(4.4) lim
m→∞

∫
Ω

{
1
2k(y)

|pm(y)|2 +
1
2
k(y)|∇xm(y)|2 − 〈pm(y),∇xm(y)〉

}
= 0.

By the assumptions concerning G we get, from (4.3)

lim
m→∞

(−div pm(y)) = lim
m→∞

Gx(y, xm(y)) = Gx(y, x0(y))

and further {div pm}m∈N is bounded in L∞(Ω,R). In consequence, we derive the
existence of A > 0 such that, for m ∈ N,∣∣∣∣ ∫

Ω
〈div pm(y), xm(y)〉 dy

∣∣∣∣ < A.
Taking into account (4.4), (4.5) and the boundedness of {∇xm}m∈N in L2(Ω,Rn)
it follows that {pm}m∈N is bounded in L2(Ω,Rn). Thus, by the boundedness
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of {div pm}m∈N in L∞(Ω,R) ⊂ L2(Ω,R), there exists a subsequence still de-
noted by {pm}m∈N weakly convergent to some p0 in L2(Ω,Rn) and such that
div pm

m→∞
⇁ z, where z ∈ L2(Ω,R). Now, we show that div p0 = z in L2(Ω,R).

From the above we have the following chain of relations∫
Ω
〈p0(y),∇h(y)〉 dy = lim

m→∞

∫
Ω
〈pm(y),∇h(y)〉 dy

= − lim
m→∞

∫
Ω
〈div pm(y), h(y)〉 dy = −

∫
Ω
〈z(y), h(y)〉 dy

for any h ∈ C∞0 (Ω,R), hence∫
Ω
(〈p0(y),∇h(y)〉+ 〈z(y), h(y)〉) dy = 0,

for all h ∈ C∞0 (Ω,R) and finally, by the Euler–Lagrange lemma, div p0(y) = z(y)
for a.e. y ∈ Ω. Thus, by div pm

m→∞
⇁ div p0 in L2(Ω,R) and xm

m→∞→ x0 in
L2(Ω,R), we can write

(4.6) lim
m→∞

∫
Ω
〈div pm(y), xm(y)〉 dy =

∫
Ω
〈div p0(y), x0(y)〉 dy.

On account of (4.1), the assumption (G2) (the continuity), we obtain

lim inf
m→∞

∫
Ω
G(y, xm(y)) dy =

∫
Ω
G(y, x0(y)) dy.

Moreover, we know that {div pm}m∈N tends weakly to div p0 in L2(Ω,R) and
L2(Ω,R) 3 z →

∫
ΩG
∗(y, z(y)) dy is weakly lower semicontinuous. This implies

(4.7) lim inf
m→∞

∫
Ω
G∗(y,−div pm(y)) dy ≥

∫
Ω
G∗(y,−div p0(y)) dy.

Combining (4.2), (4.7) and (4.3) we see that

(4.8)
∫
Ω
{G∗(y,−div p0(y)) +G(y, x0(y)) + 〈div p0(y), x0(y)〉} dy ≤ 0.

Thus, by the properties of the Fenchel transform, we have the equality in (4.8),
and, in consequence, for a.e. y ∈ Ω

G∗(y,−div p0(y)) +G(y, x0(y)) + 〈div p0(y), x0(y)〉 = 0.

Finally, we obtain

(4.9) −div p0(y) = Gx(y, x0(y)) for a.e. y ∈ Ω.

Now using (3.9) and (4.6) we can assert that

0 = lim
m→∞

∫
Ω

{
1
2k(y)

|pm(y)|2 +
1
2
k(y)|∇xm(y)|2 − 〈pm(y),∇xm(y)〉

}
dy

≥
∫
Ω

[
1
2k(y)

|p0(y)|2 +
1
2
k(y)|∇x0(y)|2 − 〈p0(y),∇x0(y)〉

]
dy.
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On account of the last relation, analysis similar to that in the proof of (4.9)
shows that

(4.10) p0(y) = k(y)∇x0(y) for a.e. y ∈ Ω.

Combining (4.2), (4.9), (4.10) and the relation div p0 ∈ L∞(Ω,R) we derive that
x0 ∈ X. (4.9) and (4.10) imply

−div(k(y)∇x0(y)) = Gx(y, x0(y))

for a.e. y ∈ Ω. Summarizing, the last equality yields x0 ∈ X.
To prove the assertion infx∈X J(x) = J(x0), it is sufficient to note that

inf
x∈X
J(x) = lim inf

m→∞

∫
Ω

{
1
2
k(y)|∇xm(y)|2 −G(y, xm(y))

}
dy

≥
∫
Ω

1
2
k(y)|∇x0(y)|2 dy −

∫
Ω
G(y, x0(y)) dy = J(x0). �

Example 4.2. Define Ω = {y = (y1, y2) ∈ R2 : y1, y2 ∈ [0, 3]} and
4.5y1 − 6y21 y1 ∈ [0, 0.75], y2 ∈ [0, 3],
4.5(y1 − 0.75)− 6(y1 − 0.75)2 y1 ∈ [0.75, 1.5], y2 ∈ [0, 3],
4.5(y1 − 1.5)− 6(y1 − 1.5)2 y1 ∈ [1.5, 2.25], y2 ∈ [0, 3],
4.5(y1 − 2.25)− 6(y1 − 2.25)2 y1 ∈ [2.25, 3], y2 ∈ [0, 3].

Let us put

Gx(y, x) = x+
1
2
x6
(
sin
1
2
x

)2
+ exp

(
− 1
x2

)
and k(y) = 1 for all y ∈ Ω. Then

Gxx(y, x) = 1 + 3x5 sin2
1
2
x+
1
4
x6 sinx+

2 exp(−1/x2)
x3

.

We easily check that Gxx(y, x) > 0 for x from some neighbourhood Ĩ of I =
[0, 4.5]. That means G(y, x) (the primitive of Gx) is convex in Ĩ and Gx(y, x) > 0
in I. However, G is not convex in [−1, 6] and Gx does not satisfy condition (c)
in Section 1. The last means that we cannot apply the results of [13]. Let us
define

z0(y) = h(y) exp
(
− 1
(10y1)2

)
exp
(
− 1
(10(3− y1))2

)
· exp
(
− 1
(10y2)2

)
exp
(
− 1
(10(3− y2))2

)
,
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for y1, y2 ∈ [0, 3]. Now define

z(y) = exp
(
− 1
(10y1)2

)
exp
(
− 1
(10(3− y1))2

)
· exp(− 1

(10y2)2
) exp
(
− 1
(10(3− y2))2

)
,

for y1, y2 ∈ [0, 3] Since 0 ≤ h(y) < 1 and hy1y1 = −12, y1, y2 ∈ [0, 3] we easily
check that assumption (G1) is satisfied for the above functions z0(y) and z(y).
Therefore, we can apply the above theorem to our example to get the existence
of positive solution.

5. The existence of a countable set of solutions

Let us introduce the following conditions:

(G1a) there exist {ai}i∈N ∈ C10 (Ω), {ai}i∈N ∈ W
1,2
0 (Ω,R) ∩W 2,∞(Ω,R) such

that for all y ∈ Ω and all i ∈ N,

0 < ai(y) ≤ ai(y), Gx(y, ai) ≥ −div(k(y)∇ai(y));

(G1b) there exist {bi}i∈N ∈ C10 (Ω), {bi}i∈N ∈ W
1,2
0 (Ω,R) ∩W 2,∞(Ω,R) such

that for all y ∈ Ω and all i ∈ N,

0 < bi(y) ≤ bi(y), Gx(y, bi) ≤ −div(k(y)∇bi(y));

(G1c) for each i ∈ N, ai < bi < ai+1;
(G2a) for each i ∈ I , G: Ω × R → R is measurable in y, is continuously

differentiable and convex with respect to the second variable in some
closed neighbourhood Ĩi of the interval

Ii = [0, sup
y∈Ω
bi(y)] for all y ∈ Ω,

∣∣∣∣ ∫
Ω
G(y, ai(y)) dy

∣∣∣∣ <∞;
(G3a) Gx is positive in Ii for each i ∈ N.

Now for each i ∈ N we shall construct the sets of arguments of J and JD.
Let

Xi = {x ∈W 1,20 (Ω,R) ∩W 2,∞(Ω,R) : ai(y) ≤ x(y) ≤ bi(y) on Ω
and div(k∇x) ∈ L∞(Ω,R)}.

Define Xi as the largest subset of Xi having property:

(Xi) for every x ∈ Xi, there exists x̃ ∈ Xi such that

−div(k(y)∇x̃(y)) = G(y, x(y))

Now we shall derive some important facts about Xi. First of all we show that
Xi 6= ∅.
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Lemma 5.1. Assume that conditions (Ω), (K), (G1a)–(G3a) are satisfied.
Xi has the above property i.e. Xi = Xi 6= ∅.

Proof. Fix x ∈ Xi. As in the proof of Proposition 1.7 we infer the existence
of x ∈W 1,20 (Ω,R)∩W 2,∞(Ω,R) being a unique solution of the Dirichlet problem
for the equation

−div (k(y)∇x(y)) = Gx(y, x(y)) a.e. on Ω.

Applying (G1a) we get what follows

−div(k∇x) = Gx(y, x(y)) ≥ Gx(y, ai(y)) ≥ −div(k∇ai)

and further for all nonnegative ϕ ∈ C10 (Ω)∫
Ω
k(y)[∇{x(y)− ai(y)}]∇ϕ(y) dy

= −
∫
Ω
div(k(y)[∇{x(y)− ai(y)}])ϕ(y) dy ≥ 0

and, in consequence,

Q(x− ai) ≤ 0

so that, by Theorem 1.6, x ≥ ai ≥ ai.
The same arguments apply to the x and bi (assumption (G1b)) give the below

chain of relations

−div(k∇x) = Gx(y, x(y)) ≤ Gx(y, b(y)) ≤ −div(k∇bi).

Thus −div(k[∇(x− bi)]) ≤ 0 and for all nonnegative ϕ ∈ C10 (Ω) we have∫
Ω
k(y)∇(x− bi)(y)∇ϕ(y) dy = −

∫
Ω
div(k[∇(x− bi)])ϕ(y) dy ≤ 0

which implies

Q(x− bi) ≥ 0.

Applying again Theorem 1.6 we can assert that x − bi ≤ 0, so x ≤ bi ≤ bi.
Summarizing ai ≤ x ≤ bi and x ∈ Xi. Thus Xi has the property Xi. Finally
Xi ⊂ Xi. �

Applying Theorem 4.1 for the sequence of nonempty setsXi give the following
main result

Theorem 5.2. Under hypotheses (Ω), (K) and (G1a)–(G3a) for each i ∈ N,
there exists xi > 0 being a solution for (1.1) and xi 6= xj for i 6= j. Moreover,
for all i ∈ N, the element xi is a minimizer of J on the set Xi.
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