APPROXIMATION AND LERAY–SCHAUDER
TYPE RESULTS FOR \mathcal{U}_c^κ MAPS

NASEER SHAHZAD

Abstract. The paper presents new approximation and fixed point results for \mathcal{U}_c^κ maps in Hausdorff locally convex spaces.

1. Introduction

In 1969, Ky Fan [2] proved an interesting result that combined fixed point theory with the study of proximity maps. Its normed space version is stated as follows:

Let C be a nonempty, compact, convex subset of a normed space E. Then for any continuous mapping f from C to E, there exists an $x_0 \in C$ with

$$
\|x_0 - f(x_0)\| = \inf_{y \in C} \|f(x_0) - y\|.
$$

During the last three decades, various multi-valued and single-valued versions of Fan’s result have been established by a number of authors; see, for instance, [1], [3], [5]–[7], [9], [10], [12], [13], [18], [19]. Recently, Lin and Park in [7] obtained a multivalued version of Ky Fan’s result for α-condensing \mathcal{U}_c^κ maps defined on a closed ball in a Banach space. More recently, O’Regan and Shahzad in [12] extended their result to countably condensing maps. The purpose of this paper is to prove some Ky Fan type approximation results for Φ-condensing...
\(\mathcal{U}_c \) multimaps, where \(C \) is a closed convex subset of a Hausdorff locally convex space \(E \) with \(0 \in \text{int}(C) \). Since every \(\alpha \)-condensing map \(F: C \to 2^E \) is \(\Phi \)-condensing if \(C \) is complete, the results of Lin and Park (see [7]) can be considered as special cases of our work. We also derive, as an application, the Leray–Schauder principle for \(\mathcal{U}_c \) multimaps, which was proved by Lin and Yu in [8]. The Leray–Schauder type results for compact admissible multimaps and approximable multimaps were obtained in [15] and [16].

2. Preliminaries

Let \(E \) be a Hausdorff locally convex space. For a nonempty set \(Y \subseteq E \), \(2^Y \) denotes the family of nonempty subsets of \(Y \). If \(L \) is a lattice with a minimal element \(0 \), a mapping \(\Phi: 2^E \to L \) is called a \textit{generalized measure of noncompactness} provided that the following conditions hold:

(a) \(\Phi(A) = 0 \) if and only if \(\overline{A} \) is compact.
(b) \(\Phi(\overline{\text{co}(A)}) = \Phi(A) \); here \(\overline{\text{co}(A)} \) denotes the closed convex hull of \(A \).
(c) \(\Phi(A \cup B) = \max\{\Phi(A), \Phi(B)\} \).

It is clear that if \(A \subseteq B \), then \(\Phi(A) \leq \Phi(B) \). Examples of the generalized measure of noncompactness are the Kuratowski–\(\check{\text{C}} \)ech measure and the Hausdorff measure of noncompactness (see [15]), which are defined below. Let \(C \) be a nonempty subset of a Banach space \(X \). The Kuratowski–\(\check{\text{C}} \)ech measure of noncompactness is the map \(\alpha: 2^C \to L \) defined by

\[
\alpha(A) = \inf \{ \varepsilon > 0 \mid A \text{ can be covered by a finite number of sets each of diameter less than } \varepsilon \},
\]

for \(A \in 2^C \). The Hausdorff measure of noncompactness is the map \(\chi: 2^C \to L \) defined by

\[
\chi(A) = \inf \{ \varepsilon > 0 \mid A \text{ can be covered by a finite number of balls with radius less than } \varepsilon \},
\]

for \(A \in 2^C \).

Let \(C \) be a nonempty subset of a Hausdorff locally convex space \(E \) and \(F: C \to 2^E \). Then \(F \) is called \(\Phi \)-\textit{condensing} provided that \(\Phi(A) = 0 \) for any \(A \subseteq C \) with \(\Phi(F(A)) \geq \Phi(A) \). Note that any compact map or any map defined on a compact set is \(\Phi \)-condensing.

Let \(X \) and \(Y \) be subsets of Hausdorff topological vector spaces \(E_1 \) and \(E_2 \) respectively. Let \(F: X \to K(Y) \); here \(K(Y) \) denotes the family of nonempty compact subsets of \(Y \). Then \(F \) is \(\text{Kakutani} \) if \(F \) is upper semicontinuous with convex values. A nonempty topological space is called acyclic if all its reduced \(\check{\text{C}} \)ech homology groups over the rationals are trivial. Now \(F \) is \(\text{acyclic} \) if \(F \) is upper semicontinuous with acyclic values. The map \(F \) is said to be an \(\text{O’Neill} \) map.
if F is continuous and if the values of F consist of one or m acyclic components (here m is fixed).

For our next definition let X and Y be metric spaces. A continuous single valued map $p: Y \to X$ is called a Vietoris map if the following two conditions hold:

(a) for each $x \in X$, the set $p^{-1}(x)$ is acyclic,
(b) p is a proper map i.e., for every compact $A \subseteq X$ we have that $p^{-1}(A)$ is compact.

A multifunction $\phi: X \to K(Y)$ is admissible (strongly) in the sense of Górniewicz [4], if there exists a metric space Z and two continuous maps $p: Z \to X$ and $q: Z \to Y$ such that

(a) p is a Vietoris map, and
(b) $\phi(x) = q(p^{-1}(x))$, for any $x \in X$.

Let X be a nonempty convex subset of a Hausdorff topological vector space E and Y a topological space. A polytope P in X is any convex hull of a nonempty finite subset of X; or a nonempty compact convex subset of X contained in a finite dimensional subspace of E. Given a class \mathcal{X} of maps, $\mathcal{X}(X,Y)$ denotes the set of maps $F: X \to 2^Y$ belonging to \mathcal{X}, and \mathcal{X}_c the set of finite compositions of maps in \mathcal{X}. A class \mathcal{U} of maps is defined by the following properties:

(a) \mathcal{U} contains the class \mathcal{C} of single valued continuous functions,
(b) each $F \in \mathcal{U}_c$ is upper semicontinuous and compact valued,
(c) for any polytope P, $F \in \mathcal{U}_c(P,P)$ has a fixed point, where the intermediate spaces of composites are suitably chosen for each \mathcal{U}.

An important class related to $\mathcal{U}_c(X,Y)$ is given below.

$F \in \mathcal{U}_c^\kappa(X,Y)$ if for any compact subset K of X, there is a $G \in \mathcal{U}_c(K,Y)$ with $G(x) \subseteq F(x)$ for each $x \in K$.

Examples of \mathcal{U}_c^κ maps are the Kakutani maps, the acyclic maps, the O’Neill maps, and the maps admissible in the sense of Górniewicz. Note that $\mathcal{U}(X,Y) \subseteq \mathcal{U}_c(X,Y) \subseteq \mathcal{U}_c^\kappa(X,Y)$.

Let Q be a subset of a Hausdorff topological space X. We let \overline{Q} (respectively, $\partial(Q)$, $\operatorname{int}(Q)$) to denote the closure (respectively, boundary, interior) of Q.

Let C be a subset of a Hausdorff topological vector space E and $x \in X$. Then the inward set $I_C(x)$ is defined by

$I_C(x) = \{x + r(y - x) \mid y \in C, \ r \geq 0\}$.

If C is convex and $x \in C$, then

$I_C(x) = x + \{r(y - x) \mid y \in C, \ r \geq 1\}$.

We shall need the following results in the sequel.
Lemma 2.1 ([14]). Let C be a nonempty, convex subset of a Hausdorff locally convex space E. Suppose $F \in U^c_\kappa(C, C)$ is a compact map. Then F has a fixed point in C.

Lemma 2.2 ([11]). Let C be a nonempty, closed, convex subset of a Hausdorff topological vector space E. Suppose $G : C \to 2^C$ is a Φ-condensing map. Then there exists a nonempty compact convex subset K of C such that $G(K) \subset K$.

Let C be a convex subset of a Hausdorff locally convex space E with $0 \in \text{int}(C)$. The Minkowski functional p of C is defined by

$$p(x) = \inf \{ r > 0 \mid x \in rC \}.$$

Now, we list some properties of the Minkowski functional:

(a) p is continuous on E,
(b) $p(x + y) \leq p(x) + p(y)$, $x, y \in E$,
(c) $p(\lambda x) = \lambda p(x)$, $\lambda \geq 0$, $x \in E$,
(d) $0 \leq p(x) < 1$ if $x \in \text{int}(C)$,
(e) $p(x) > 1$, if $x \not\in \overline{C}$,
(f) $p(x) = 1$, if $x \in \partial C$.

For $x \in E$, set $d_p(x, C) = \inf \{ p(x - y) \mid y \in C \}$.

3. Main results

Theorem 3.1. Let C be a closed, convex subset of a Hausdorff locally convex space E with $0 \in C$ and U a convex open neighbourhood of 0. Suppose $F \in U^c_\kappa(U \cap C, C)$ is a Φ-condensing map. Then there exist $x_0 \in U \cap C$ and $y_0 \in F(x_0)$ with

$$p(y_0 - x_0) = d_p(y_0, U \cap C) = d_p(y_0, \overline{U}(x_0) \cap C),$$

here p is the Minkowski functional of U. More precisely, either

(a) F has a fixed point $x_0 \in U \cap C$, or
(b) there exist $x_0 \in \partial_C(U)$ and $y_0 \in F(x_0)$ with

$$0 < p(y_0 - x_0) = d_p(y_0, U \cap C) = d_p(y_0, \overline{U}(x_0) \cap C).$$

Here $\partial_C(U)$ denotes the boundary of U relative to C.

Proof. Let $r : E \to \overline{U}$ be defined by

$$r(x) = \begin{cases} x & \text{if } x \in U, \\ x/p(x) & \text{if } x \not\in U, \end{cases}$$

that is

$$r(x) = \frac{x}{\max\{1, p(x)\}}, \text{ for } x \in E.$$
Since $0 \in U = \text{int}(U)$, p is continuous and so r is continuous. Let f be the restriction of r to C. Since C is convex and $0 \in C$, it follows that $f(C) \subseteq \overline{U} \cap C$. Also $f \in C(U \cap C)$. Since \mathcal{U}_C is closed under composition, $f \circ F \in \mathcal{U}_C(U \cap C)$. Let $G = f \circ F$. We show that G is Φ-condensing. Let A be a subset of $\overline{U} \cap C$ such that $\Phi(A) \subseteq \Phi(G(A))$. Then $G(A) \subseteq \text{co}(\{0\} \cup F(A))$ and so

\[
\Phi(A) \leq \Phi(G(A)) \leq \Phi(\text{co}(\{0\} \cup F(A))) \leq \Phi(\{0\} \cup F(A)) \leq \max\{\Phi(\{0\}), \Phi(F(A))\} = \Phi(F(A)),
\]

which gives \overline{A} is compact. This shows that G is Φ-condensing and so, by Lemma 2.2, there exists a nonempty compact convex subset K of $\overline{U} \cap C$ such that $G(K) \subseteq K$. Since $G \in \mathcal{U}_C(U \cap C, \overline{U} \cap C)$ and K is compact, there exists $T \in \mathcal{U}_C(K, \overline{U} \cap C)$ such that $T(x) \subseteq G(x)$ for all $x \in K$. This implies that $T(K) \subseteq G(K) \subseteq K$ and T is compact. Since $T \in \mathcal{U}_C(K, K)$, by Lemma 2.1, T has a fixed point $x_0 \in K$, that is, $x_0 \in T(x_0) \subseteq G(x_0)$. Clearly $x_0 \in \overline{U} \cap C$. Therefore, there exists some $y_0 \in F(x_0)$ with $x_0 = f(y_0)$. Now, we consider two cases:

(a) $y_0 \in \overline{U} \cap C$ or
(b) $y_0 \in C \setminus \overline{U}$.

Suppose $y_0 \in \overline{U} \cap C$. Then $x_0 = f(y_0) = y_0$. As a result

\[p(y_0 - x_0) = 0 = d_p(0, \overline{U} \cap C)\]

and x_0 is a fixed point of F. On the other hand, if $y_0 \in C \setminus \overline{U}$, then

\[x_0 = f(y_0) = \frac{y_0}{p(y_0)}.
\]

So, for any $x \in \overline{U} \cap C$,

\[p(y_0 - x_0) = p\left(y_0 - \frac{y_0}{p(y_0)}\right) = \left(\frac{p(y_0)}{p(y_0)} - 1\right)p(y_0) = p(y_0) - 1 \leq p(y_0) - p(x) = p((y_0 - x) + x) - p(x) \leq p(y_0 - x),\]

which gives

\[p(y_0 - x_0) = \inf\{p(y_0 - z) \mid z \in \overline{U} \cap C\} = d_p(y_0, \overline{U} \cap C).
\]

Since $p(y_0 - x_0) = p(y_0) - 1$, we have $p(y_0 - x_0) > 0$.

Let $z \in \mathcal{T}(x_0) \cap C \setminus (\overline{U} \cap C)$. Then there exists $y \in \overline{U}$ and $c \geq 1$ with

\[z = x_0 + c(y - x_0).
\]

Suppose that $p(y_0 - z) < p(y_0 - x_0)$.

The convexity of C implies that

\[\frac{1}{c}z + \left(1 - \frac{1}{c}\right)x_0 \in C.
\]
Since \(\frac{1}{c} z + \left(1 - \frac{1}{c}\right)x_0 = y \in \mathcal{U} \),

it follows that

\[
p(y_0 - y) = p \left[\frac{1}{c}(y_0 - z) + \left(1 - \frac{1}{c}\right)(y_0 - x_0) \right] \\
\leq \frac{1}{c} p(y_0 - z) + \left(1 - \frac{1}{c}\right)p(y_0 - x_0) < p(y_0 - x_0).
\]

This contradicts the choice of \(y_0 \). Consequently, we have

\[
p(y_0 - x_0) \leq p(y_0 - z) \quad \text{for all } z \in I_{\mathcal{U}}(x_0) \cap C.
\]

The continuity of \(p \) further implies that

\[
p(y_0 - x_0) \leq p(y_0 - z) \quad \text{for all } z \in I_{\mathcal{U}}(x_0) \cap C.
\]

Hence

\[
0 < p(y_0 - x_0) = d_p(y_0, \mathcal{U} \cap C) = d_p(y_0, I_{\mathcal{U}}(x_0) \cap C).
\]

If \(x_0 \in U \), then \(I_{\mathcal{U}}(x_0) = E \) and so \(d_p(y_0, I_{\mathcal{U}}(x_0) \cap C) = 0 \). Thus \(x_0 \in \partial_C(U) \).

Essentially the same reasoning as before yields the following result.

Theorem 3.2. Let \(C \) be a closed, convex subset of a Hausdorff locally space \(E \) with \(0 \in \text{int}(C) \). Suppose \(F \in \mathcal{U}_c^\Phi(C, E) \) is a \(\Phi \)-condensing map. Then there exist \(x_0 \in C \) and \(y_0 \in F(x_0) \) with

\[
p(y_0 - x_0) = d_p(y_0, C) = d_p(y_0, I_C(x_0)),
\]

here \(p \) is the Minkowski functional of \(C \) in \(E \). More precisely, either

(a) \(F \) has a fixed point \(x_0 \in C \), or

(b) there exist \(x_0 \in \partial(C) \) and \(y_0 \in F(x_0) \) with

\[
0 < p(y_0 - x_0) = d_p(y_0, C) = d_p(y_0, I_C(x_0)).
\]

Since \(p(x) = \|x\|/R \) is the Minkowski functional on \(B_R \), we have the following result.

Corollary 3.3. Let \(E \) be a normed space. Suppose \(F \in \mathcal{U}_c^\Phi(B_R, E) \) is a \(\Phi \)-condensing map. Then there exist \(x_0 \in B_R \) and \(y_0 \in F(x_0) \) with

\[
\|y_0 - x_0\| = d(y_0, B_R) = d(y_0, I_{B_R}(x_0)).
\]

More precisely, either

(a) \(F \) has a fixed point \(x_0 \in B_R \) or

(b) there exist \(x_0 \in \partial(B_R) \) and \(y_0 \in F(x_0) \) with

\[
0 < \|y_0 - x_0\| = d(y_0, B_R) = d(y_0, I_{B_R}(x_0)).
\]
Remark 3.1. Theorem 1 of Lin and Park [7] and a result of Lin [6] can be considered as special cases of Corollary 3.3.

As applications of our approximation theorems, we now derive some fixed point results.

Theorem 3.4. Let C be a closed, convex subset of a Hausdorff locally convex space E with $0 \in C$ and U a convex open neighbourhood of 0. Suppose $f \in \mathcal{U}(U \cap C, C)$ is a Φ-condensing map. If f satisfies any one of the following conditions for any $x \in \partial_C(U) \setminus f(x)$:

(a) for each $y \in f(x)$, $p(y - z) < p(y - x)$ for some $z \in \overline{T_U(x)} \cap C$,
(b) for each $y \in f(x)$, there exists λ with $|\lambda| < 1$ such that $\lambda x + (1 - \lambda)y \in \overline{T_U(x)} \cap C$,
(c) $f(x) \subseteq \overline{T_U(x)} \cap C$,
(d) $f(x) \cap \{ \lambda x \mid \lambda > 1 \} = \emptyset$,
(e) for each $y \in f(x)$, $p(y - x) \neq p(y) - 1$,
(f) for each $y \in f(x)$, there exists $\alpha \in (1, \infty)$ such that

$$p^\alpha(y) - 1 \leq p^\alpha(y - x),$$

(g) for each $y \in f(x)$, there exists $\beta \in (0, 1)$ such that $p^\beta(y) - 1 \geq p^\beta(y - x)$,

then f has a fixed point.

Proof. Theorem 3.1 guarantees that either

(1) f has a fixed point in $U \cap C$ or
(2) there exist $x_0 \in \partial_C(U)$ and $y_0 \in f(x_0)$ with $x_0 = f(y_0)$ such that

$$0 < p(y_0) - 1 = p(y_0 - x_0) = d_p(y_0, U \cap C) = d_p(y_0, \overline{T_U(x_0)} \cap C),$$

where p is the Minkowski functional of U and f is the restriction of the continuous retraction r to C.

Suppose (2) holds (with some x_0 and y_0) and $x_0 \notin f(x_0)$. We shall show contradictions in all conditions (a)–(g).

If f satisfies condition (a), then we have $p(y_0 - z) < p(y_0 - x_0)$, for some $z \in \overline{T_U(x_0)} \cap C$. This contradicts the choice of x_0.

If f satisfies condition (b), then there exists λ with $|\lambda| < 1$ such that $\lambda x_0 + (1 - \lambda)y_0 \in \overline{T_U(x_0)} \cap C$. This implies that

$$p(y_0 - x_0) \leq p(y_0 - (\lambda x_0 + (1 - \lambda)y_0)) = p(\lambda(y_0 - x_0)) = |\lambda|p(y_0 - x_0) < p(y_0 - x_0),$$

which is a contradiction.

The proof for condition (c) is obvious.
If F satisfies condition (d), then $\lambda x_0 \neq y_0$ for each $\lambda > 1$. But we have $x_0 = f(y_0) = y_0/p(y_0)$. Therefore, $y_0 = \lambda_0 x_0$ with $\lambda_0 = p(y_0) > 1$, which is a contradiction.

If F satisfies condition (e), then $p(y_0 - x_0) \neq p(y_0) - 1$ and this contradicts $p(y_0 - x_0) = p(y_0) - 1$.

If F satisfies condition (f), then there exists $\alpha \in (1, \infty)$ with $p^\alpha(y_0) - 1 \leq p^\alpha(y_0 - x_0)$. Set $\lambda_0 = 1/p(y_0)$. Then $\lambda_0 \in (0, 1)$ and
\[
\frac{(p(y_0) - 1)^\alpha}{p^\alpha(y_0)} = (1 - \lambda_0)^\alpha < 1 - \lambda_0^\alpha = \frac{p^\alpha(y_0) - 1}{p^\alpha(y_0)} \leq \frac{p^\alpha(y_0 - x_0)}{p^\alpha(y_0)}.
\]
This implies that $p(y_0 - x_0) > p(y_0) - 1$. This contradicts the fact that $p(y_0 - x_0) = p(y_0) - 1$.

Finally if F satisfies condition (g), then, as above (see the proof of (f)), we can get a contradiction to $p(y_0 - x_0) = p(y_0) - 1$.

\begin{remark}
We have derived the Leray–Schauder principle as an application of Theorem 3.1 (see Theorem 3.4(d)), which was established by Lin and Yu in [8].

Essentially the same reasoning as in Theorem 3.4 (with Theorem 3.2 replacing Theorem 3.1) yields the following result.
\end{remark}

\begin{theorem}
Let C be a closed, convex subset of a Hausdorff locally convex space E with $0 \in \operatorname{int}(C)$. Suppose $F \in \mathcal{K}(C, E)$ is a Φ-condensing map. If F satisfies any one of the following conditions for any $x \in \partial(C) \setminus F(x)$:
\begin{enumerate}[(a)]
\item for each $y \in F(x)$, $p(y - z) < p(y - x)$, for some $z \in I_C(x)$,
\item for each $y \in F(x)$, there exists λ with $|\lambda| < 1$ such that $\lambda x + (1 - \lambda)y \in I_C(x)$,
\item $F(x) \subseteq \overline{I_C(x)}$,
\item $F(x) \cap \{x : \lambda > 1\} = \emptyset$,
\item for each $y \in F(x)$, $p(y - x) \neq p(y) - 1$,
\item for each $y \in F(x)$, there exists $\alpha \in (1, \infty)$ such that $p^\alpha(y) - 1 \leq p^\alpha(y - x)$,
\item for each $y \in F(x)$, there exists $\beta \in (0, 1)$ such that $p^\beta(y) - 1 \geq p^\beta(y - x)$,
\end{enumerate}
then F has a fixed point.
\end{theorem}

\begin{corollary}
Let E be a normed space. Suppose $F \in \mathcal{K}(B_R, E)$ is a Φ-condensing map. If F satisfies any one of the following conditions for any $x \in \partial(B_R) \setminus F(x)$:
\begin{enumerate}[(a)]
\item for each $y \in F(x)$, $\|y - z\| < \|y - x\|$, for some $z \in \overline{I_{B_R}(x)}$,
\end{enumerate}
then F has a fixed point.
\end{corollary}
(b) for each \(y \in F(x) \), there exists \(\lambda \) with \(|\lambda| < 1 \) such that \(\lambda x + (1-\lambda)y \in T_B(x) \),
(c) \(F(x) \subseteq T_B(x) \),
(d) \(F(x) \cap \{ \lambda x \mid \lambda > 1 \} = \emptyset \),
(e) for each \(y \in F(x) \), \(\| y - x \| \neq \| y \| - R \),
(f) for each \(y \in F(x) \), there exists \(\alpha \in (1, \infty) \) such that \(\| y \|^{\alpha} - R \leq \| y - x \|^{\alpha} \),
(g) for each \(y \in F(x) \), there exists \(\beta \in (0, 1) \) such that \(\| y \|^{\beta} - R \geq \| y - x \|^{\beta} \),

then \(F \) has a fixed point.

Remark 3.3. Corollary 3.6 contains, as special cases, Theorem 2 of Lin and Park [7] as well as a result of Lin [6].

Essentially the same reasoning as above gives the following results in Hilbert spaces (here the retraction \(r \) is replaced by the proximity map \(p \)), which extend Theorem 3 and Theorem 4 of Lin and Park [7].

Theorem 3.7. Let \(C \) be a nonempty, closed, convex subset of a Hilbert space \(H \). Suppose \(F \in U^k_c(C, H) \) is a \(\Phi \)-condensing map. Then there exist \(x_0 \) and \(y_0 \in F(x_0) \) with

\[
\| y_0 - x_0 \| = d(y_0, C) = d(y_0, I_C(x_0)),
\]

here \(\| \cdot \| \) is the norm induced by the inner product. More precisely, either

(a) \(F \) has a fixed point \(x_0 \in C \) or
(b) there exist \(x_0 \in \partial(C) \) and \(y_0 \in F(x_0) \) with

\[
0 < \| y_0 - x_0 \| = d(y_0, C) = d(y_0, I_C(x_0)).
\]

Theorem 3.8. Let \(C \) be a nonempty, closed, convex subset of a Hilbert space \(H \). Suppose \(F \in U^k_c(C, H) \) is a \(\Phi \)-condensing map. If \(F \) satisfies any one of the following conditions for any \(x \in \partial(C) \setminus F(x) \):

(a) for each \(y \in F(x) \), \(\| y - z \| < \| y - x \| \), for some \(z \in I_C(x) \),
(b) for each \(y \in F(x) \), there exists \(\lambda \) with \(|\lambda| < 1 \) such that \(\lambda x + (1-\lambda)y \in I_C(x) \),
(c) \(F(x) \subseteq I_C(x) \),

then \(F \) has a fixed point.

Acknowledgements. The author wishes to thank the referee for his valuable suggestions.

References

Manuscript received December 20, 2003

Naseer Shahzad
Department of Mathematics
King Abdul Aziz University
P.O. Box 80203
Jeddah 21589, SAUDI ARABIA

E-mail address: naseer_shahzad@hotmail.com