A SET-VALUED APPROACH TO HEMIVARIATIONAL INEQUALITIES

ALEXANDRU KRISTÁLY — CSABA VARGA

Abstract. Let X be a Banach space, X^* its dual and let $T: X \rightarrow L^p(\Omega, \mathbb{R}^k)$ be a linear, continuous operator, where $p, k \geq 1$, Ω being a bounded open set in \mathbb{R}^N. Let K be a subset of X, $A: K \rightarrow X^*$, $G: K \times X \rightarrow \mathbb{R}$ and $F: \Omega \times \mathbb{R}^k \times \mathbb{R}^k \rightarrow \mathbb{R}$ set-valued maps with nonempty values. Using mainly set-valued analysis, under suitable conditions on the involved maps, we shall guarantee solutions to the following inclusion problem:

Find $u \in K$ such that, for every $v \in K$

$$
\sigma(A(u), v - u) + G(u, v - u) + \int_\Omega F(x, Tu(x), Tv(x) - Tu(x)) \, dx \subseteq \mathbb{R}_+.
$$

In particular, well-known variational and hemivariational inequalities can be derived.

1. Introduction

Let K be a nonempty subset of $H_0^1(\Omega)$, where Ω is a bounded open subset of \mathbb{R}^N with C^1 boundary, $N \geq 1$. Many papers treat inclusion problems of the form:

Find $u \in K$ such that

$$(1.1) \quad -\Delta u \in G(x, u(x)) \quad \text{in} \ \Omega,
$$

2000 Mathematics Subject Classification. 49J53, 49J40.

Key words and phrases. Measurable set-valued maps, variational-hemivariational inequalities.
where \(G: \Omega \times \mathbb{R} \rightharpoonup \mathbb{R} \) is a set-valued map with nonempty values, satisfying some growth and continuity conditions, see for instance [6] and [11]. In these papers critical point arguments were used.

Here, we suppose that \(G \) has the form

\[
G(x, u(x)) = H(x, u(x)) - b(x)u(x), \quad x \in \Omega, \ u \in K,
\]

where \(b \in L^\infty(\Omega) \), and \(H: \Omega \times \mathbb{R} \rightharpoonup \mathbb{R} \) satisfies for all \(x \in \Omega \) the following inclusion:

\[
H(x, u(x)) \cdot v(x) = \{ h \cdot v(x) : h \in H(x, u(x)) \} \subseteq [-g(x, u(x), v(x)), \infty),
\]

where \(g(\cdot, u(\cdot), v(\cdot)) \in L^1(\Omega) \) for every \(u \in K, v \in H^1_0(\Omega) \).

Multiplying (1.1) by \((v - u)\), integrating over \(\Omega \) and applying the Gauss–Green formula, from (1.2) and (1.3) we obtain:

\[
\int_\Omega \nabla u \cdot \nabla (v - u) \, dx + \int_\Omega b(x)u(x)(v(x) - u(x)) \, dx
+ \int_\Omega [g(x, u(x), v(x) - u(x)), \infty) \, dx \subseteq \mathbb{R}_+ \tag{1.4}
\]

for all \(v \in K \), where the last term from the left hand side is the integral of a set-valued map in the sense of Aumann (see [2]).

If \(H \) has the form

\[
H(x, u(x)) = -\partial j(x, u(x)), \quad x \in \Omega,
\]

where \(j: \Omega \times \mathbb{R} \rightarrow \mathbb{R} \) is a Carathéodory function such that \(j(x, \cdot) \) is locally Lipschitz continuous and \(\partial \) denotes the generalized gradient, then (1.3) is verified if we take \(g(x, y, z) = j^0_y(x; y; z), j^0_y \) being the (partial) generalized directional derivative, supposing that \(j \) satisfies a growth condition (see Section 4). In this situation, (1.4) reduces to the following classical hemivariational inequality, see for instance Motreanu and Panagiotopoulos [8], Naniewicz and Panagiotopoulos (see [9]):

\[
(HV \geq) \text{ Find } u \in K \text{ such that, for all } v \in K
\]

\[
\int_\Omega \nabla u \cdot \nabla (v - u) \, dx + \int_\Omega b(x)u(x)(v(x) - u(x)) \, dx
+ \int_\Omega j^0_y(x, u(x); v(x) - u(x)) \, dx \geq 0.
\]

So, it seems natural to study the following general problem.

Let \(X \) be a Banach space, \(X^* \) its dual, and let \(T: X \rightarrow L^p(\Omega, \mathbb{R}^k) \) be a linear continuous operator, where \(1 \leq p < \infty, k \geq 1, \Omega \) being a bounded open set in \(\mathbb{R}^N \).
Let K be a subset of X, let $A: K \rightrightarrows X^*$, $G: K \times X \rightrightarrows \mathbb{R}$ and $F: \Omega \times \mathbb{R}^k \times \mathbb{R}^k \rightrightarrows \mathbb{R}$ be set-valued maps with nonempty values, such that

$$(H_1) \; x \in \Omega \rightrightarrows F(x, Tu(x), Tv(x) - Tu(x))$$

is a measurable set-valued map for all $u, v \in K$.

$$(H_2) \; \text{There exist } h_1 \in L^{p/(p-1)}(\Omega, \mathbb{R}_+) \text{ and } h_2 \in L^\infty(\Omega, \mathbb{R}_+) \text{ such that}$$

$$\text{dist}(0, F(x, y, z)) \leq (h_1(x) + h_2(x)|y|^{p-1})|z| \text{ for a.e. } x \in \Omega,$$

for every $y, z \in \mathbb{R}^k$.

The aim of this paper is to study the following hemivariational inclusion problem:

$$(HV_{\subseteq}) \; \text{Find } u \in K \text{ such that, for all } v \in K$$

$$\sigma(A(u), v - u) + G(u, v - u) + \int_{\Omega} F(x, Tu(x), Tv(x) - Tu(x))dx \subseteq \mathbb{R}_+.$$

We denoted by $\sigma(A(u), \cdot)$ the support function of $A(u)$, that is

$$\sigma(A(u), h) = \sup_{x^* \in A(u)} \langle x^*, h \rangle \text{ for all } h \in X.$$

The euclidean norm in \mathbb{R}^k and the duality pairing between the Banach space and its dual is denoted by $| \cdot |$, respectively $\langle \cdot, \cdot \rangle$.

2. Preliminaries

We need some definitions and notions in order to state existence results concerning the problem (HV_{\subseteq}).

Let $J: \Omega \rightrightarrows \mathbb{R}$ be a measurable set-valued map with nonempty closed values, see [1, p. 307]. Define the set

$$J = \{ j \in L^1(\Omega, \mathbb{R}) : j(x) \in J(x) \text{ a.e. in } \Omega \}.$$

DEFINITION 2.1 (see [2]). The integral of J on Ω is the set of integrals of integrable selections of J, i.e.

$$\int_{\Omega} J(x)dx = \left\{ \int_{\Omega} j(x)dx : j \in J \right\}.$$

From the above definition we clearly have

LEMMA 2.2. Let $J_1, J_2: \Omega \rightrightarrows \mathbb{R}$ be two measurable set-valued maps with closed values. Then the following assertions hold:

(a) If $J_1(x) \subseteq J_2(x)$ a.e. $x \in \Omega$, then $\int_{\Omega} J_1(x)dx \subseteq \int_{\Omega} J_2(x)dx$.

(b) $\int_{\Omega} J_1(x)dx + \int_{\Omega} J_2(x)dx \subseteq \int_{\Omega} (J_1 + J_2)(x)dx$.

(c) $\lambda \int_{\Omega} J_1(x)dx \subseteq \int_{\Omega} \lambda J_1(x)dx$ for all $\lambda \in \mathbb{R}$.
Definition 2.3. Let X be a Banach space, and let K be a nonempty subset of X. A set-valued map $A: K \rightrightarrows X^*$ with bounded values is said to be upper demicontinuous at $u_0 \in K$ (u.d.c. at $u_0 \in K$) if, for any $h \in X$, the real-valued function

$$u \in K \mapsto \sigma(A(u), h) = \sup_{x^* \in A(u)} \langle x^*, h \rangle$$

is upper semicontinuous at u_0. A is upper demicontinuous on K (u.d.c. on K) if it is udc at every $u \in K$.

Remark 2.4. If $A(u) = \{A(u)\}$ for all $u \in K$, that is, if A is a single-valued map, then A is u.d.c. at $u_0 \in K$ if and only if the map $A: K \to X^*$ is w*-demicontinuous at $u_0 \in K$, i.e. for each sequence $\{u_n\}$ in K converging to u_0 (in the strong topology), the image sequence $\{A(u_n)\}$ converges to $A(u_0)$ in the weak*-topology of X^*.

It is easy to verify that, for all $u \in K$, the function $h \in X \mapsto \sigma(A(u), h)$ is lower semicontinuous, subadditive and positive homogeneous. Moreover, due to Banach–Steinhaus theorem, we can state the following useful result.

Proposition 2.5. Let K be a nonempty subset of a Banach space X, and let $A: K \rightrightarrows X^*$ be an upper demicontinuous set-valued map with bounded values. Then the function $u \in K \mapsto \sigma(A(u), v - u)$ is upper semicontinuous for all $v \in K$.

Definition 2.6. Let W, Y be two metric spaces. A set-valued map (with nonempty values) $J: W \rightrightarrows Y$ is called lower semicontinuous at $w \in W$ (l.s.c. at w) if and only if for any $y \in J(w)$ and for any sequence $\{w_n\}$, converging to w, there exists a sequence $\{y_n\}$, $y_n \in J(w_n)$ converging to y. J is said to be lower semicontinuous (l.s.c.) if it is lsc at every point $w \in W$.

Definition 2.7. Let $\{K_n\}$ be a sequence of subsets of a metric space Y. The set

$$\text{Liminf } K_n = \{y \in Y : \lim_{n \to \infty} \text{dist}(y, K_n) = 0\}$$

is the (Kuratowski) lower limit of the sequence K_n.

Remark 2.8. Liminf$_{n \to \infty}$ is the set of limits of sequences $y_n \in K_n$ (see [1, p. 18]).

Proposition 2.9 (see [1, p. 42]). Let X be a normed space. A set-valued map $F: X \rightrightarrows \mathbb{R}$ is lower semicontinuous at $u \in X$ if and only if

$$F(u) \subseteq \text{Liminf } F(u_n)$$

for any sequence $\{u_n\}$ in X converging to u.

Lemma 2.10. Let Y be a real normed space, and let $\{K_n\}, \{L_n\}$ be two sequences of subsets of Y. Then the following assertions hold:

(a) $\liminf_{n \to \infty} K_n + \liminf_{n \to \infty} L_n \subseteq \liminf_{n \to \infty} (K_n + L_n)$.
(b) If $K_n \subseteq L_n$ for all $n \in \mathbb{N}$, then $\liminf_{n \to \infty} K_n \subseteq \liminf_{n \to \infty} L_n$.

Definition 2.11. Let W, Y be real normed spaces, $K \subset W$ be a convex subset. The set-valued map $J: K \to Y$ with nonempty values is convex if and only if $\forall w_1, w_2 \in K$, $\forall \lambda \in [0, 1] : \lambda J(w_1) + (1 - \lambda) J(w_2) \subseteq J(\lambda w_1 + (1 - \lambda) w_2)$.

Remark 2.12. $J: K \to Y$ is convex if and only if for all $w_i \in K$, for all $\lambda_i \geq 0$ such that $\sum_{i=1}^{n} \lambda_i = 1$, $n \in \mathbb{N}$, we have

$$\sum_{i=1}^{n} \lambda_i J(w_i) \subseteq J\left(\sum_{i=1}^{n} \lambda_i w_i\right).$$

Finally, we recall the well-known result of Ky Fan.

Lemma 2.13 (see [5]). Let X be a Hausdorff topological vector space, K a subset of X and for each $x \in K$, let $S(x)$ be a closed subset of X, such that

(a) there exists $x_0 \in K$ such that the set $S(x_0)$ is compact,
(b) S is a KKM-map, i.e. for each $x_1, \ldots, x_n \in K$, $\text{co}\{x_1, \ldots, x_n\} \subseteq \bigcup_{i=1}^{n} S(x_i)$, where co stands for the convex hull operator.

Then $\bigcap_{x \in K} S(x) \neq \emptyset$.

3. Main results

We need some additional hypotheses to obtain a solution for $(HV \subseteq)$.

(H3) $w \in X \rightharpoonup G(u, w)$ and $z \in \mathbb{R}^k \rightharpoonup F(x, y, z)$ are convex for all $u \in K$, $x \in \Omega$, $y \in \mathbb{R}^k$.

(H4) $G(u, 0) \subseteq \mathbb{R}^+$ and $F(x, y, 0) \subseteq \mathbb{R}^+$ for all $u \in K$, $x \in \Omega$, $y \in \mathbb{R}^k$.

(H5) $(u, w) \in K \times X \rightharpoonup G(u, w)$ is lower semicontinuous.

(H6) $(y, z) \in \mathbb{R}^k \times \mathbb{R}^k \rightharpoonup F(x, y, z)$ is lower semicontinuous for all $x \in \Omega$.

Remark 3.1. If $F: \Omega \times \mathbb{R}^k \times \mathbb{R}^k \rightharpoonup \mathbb{R}$ is a closed-valued Carathéodory map (i.e. for any $(y, z) \in \mathbb{R}^k \times \mathbb{R}^k$, $x \in \Omega \rightharpoonup F(x, y, z)$ is measurable and for any $x \in \Omega$, $(y, z) \in \mathbb{R}^k \times \mathbb{R}^k \rightharpoonup F(x, y, z)$ is continuous), then the hypotheses (H6) and (H1) hold automatically (see [1, p. 314]).

Now, we establish the main result of this paper.

Theorem 3.2. Let K be a nonempty compact convex subset of a Banach space X. Let $F: \Omega \times \mathbb{R}^k \times \mathbb{R}^k \rightharpoonup \mathbb{R}$ and $G: K \times X \rightharpoonup \mathbb{R}$ be two set-valued
maps satisfying \((H_1)–(H_6)\), of which \(F\) is closed-valued. If \(A: K \rightrightarrows X^*\) is upper demicontinuous on \(K\) with bounded values, then \((HV)\subseteq\) has at least a solution.

Proof. For any \(v \in K\) we set
\[
S_v = \left\{ u \in K : \sigma(A(u), v - u) + G(u, v - u) + \int_{\Omega} F(x, Tu(x), Tv(x) - Tu(x)) \, dx \subseteq \mathbb{R}^+ \right\}.
\]

First, we prove that \(S_v\) is closed set for all \(v \in K\). Fix a \(v \in K\). Of course, \(S_v \neq \emptyset\), since \(v \in S_v\), due to \((H_4)\). Now, let \(\{u_n\}\) be a sequence in \(S_v\) which converges to \(u \in X\). We prove that \(u \in S_v\). Since \(T: X \rightarrow L^p(\Omega, \mathbb{R}^k)\) is continuous, it follows that
\[
Tu_n \rightarrow Tu \quad \text{in } L^p(\Omega, \mathbb{R}^k) \quad \text{as } n \rightarrow \infty.
\]

Clearly, there exists a subsequence \(\{u_{n_l}\}\) of \(\{u_n\}\), see Proposition 2.5, such that
\[
\limsup_{n \rightarrow \infty} \sigma(A(u_n), v - u_n) = \lim_{m \rightarrow \infty} \sigma(A(u_m), v - u_m).
\]

Moreover, by [12, Lemma A.1, p.133] there exists a subsequence \(\{Tu_{l}\}\) of \(\{Tu_{n}\}\) and \(g \in L^p(\Omega, \mathbb{R}^+)\) such that
\[
|Tu_l(x)| \leq g(x), \quad Tu_l(x) \rightarrow Tu(x) \quad \text{for a.e. } x \in \Omega.
\]

In the relation
\[
\sigma(A(u_l), v - u_l) + G(u_l, v - u_l) + \int_{\Omega} F(x, Tu_l(x), Tv(x) - Tu_l(x)) \, dx \subseteq \mathbb{R}^+,
\]
letting the lower limit and using Lemma 2.10 (with \(Y = \mathbb{R}\)) we obtain
\[
\liminf_{l \rightarrow \infty} \sigma(A(u_l), v - u_l) \subseteq \liminf_{l \rightarrow \infty} G(u_l, v - u_l) \subseteq \liminf_{l \rightarrow \infty} \mathbb{R}^+ = \mathbb{R}^+.
\]

Using Remark 2.8, relation (3.1) and Proposition 2.5, we obtain
\[
\liminf_{l \rightarrow \infty} \sigma(A(u_l), v - u_l) = \lim_{l \rightarrow \infty} \sigma(A(u_l), v - u_l) = \limsup_{n \rightarrow \infty} \sigma(A(u_n), v - u_n) \leq \sigma(A(u), v - u).
\]

From \((H_5)\) and Proposition 2.9 we obtain
\[
G(u, v - u) \subseteq \liminf_{l \rightarrow \infty} G(u_l, v - u_l).
\]

Let \(F_l = F(\cdot, Tu_l(\cdot), Tv(\cdot) - Tu_l(\cdot))\). From \((H_1)\), \(F_l\) is measurable, for any \(l\).
The function $x \in \Omega \mapsto \sup \dist(0, F_l(x))$ is integrable. Indeed, from (H2) and relation (3.2) we have

$$\dist(0, F_l(x)) \leq (h_1(x) + h_2(x))|Tu_1(x)|^{p-1}|Tv(x) - Tu_l(x)| \leq (h_1(x) + h_2(x) \cdot |g(x)|^{p-1})(|Tv(x)| + g(x)) \ a.e. \ x \in \Omega.$$

Let $h(x) = (h_1(x) + h_2(x) \cdot |g(x)|^{p-1})(|Tv(x)| + g(x))$. From Hölder’s inequality and from the conditions for h_1 and h_2 it follows that $h \in L^1(\Omega, \mathbb{R})$. Therefore, the function $x \in \Omega \mapsto \sup_l \dist(0, F_l(x))$ is integrable. Applying the Lebesgue dominated convergence theorem for set-valued maps (see [1, p. 331]), one has

$$(3.6) \quad \int_{\Omega} \liminf_{l \to \infty} F(x, Tu_l(x), Tv(x) - Tu_l(x)) \, dx \subseteq \liminf_{l \to \infty} \int_{\Omega} F(x, Tu_l(x), Tv(x) - Tu_l(x)) \, dx.$$

Of course, the first integrand is measurable (see [1, p. 312]). Using the hypothesis (H6) (therefore Proposition 2.9) and (3.2), one has

$$F(x, Tu(x), Tv(x) - Tu(x)) \subseteq \liminf_{l \to \infty} F(x, Tu_l(x), Tv(x) - Tu_l(x))$$

a.e. $x \in \Omega$. From Lemma 2.2(a) and (3.6), we obtain

$$(3.7) \quad \int_{\Omega} F(x, Tu(x), Tv(x) - Tu(x)) \, dx \subseteq \liminf_{l \to \infty} \int_{\Omega} F(x, Tu_l(x), Tv(x) - Tu_l(x)) \, dx.$$

Therefore, from (3.4), (3.5), (3.7) and (3.3) we obtain

$$\sigma(A(u), v - u) + G(u, v - u) + \int_{\Omega} F(x, Tu(x), Tv(x) - Tu(x)) \, dx \subseteq \mathbb{R}_+,$$

i.e. $u \in S_\nu$.

Finally, we prove that $S: K \to K$ is a KKM-map. To this end, let $\{v_1, \ldots, v_n\}$ be an arbitrary finite subset of K. We prove that $\co\{v_1, \ldots, v_n\} \subseteq \bigcup_{i=1}^n S_{\nu_i}$. Supposing the contrary, there exist $\lambda_i > 0 \ (i \in \{1, \ldots, n\})$ such that $\sum_{i=1}^n \lambda_i = 1$ and $v = \sum_{i=1}^n \lambda_i v_i \not\in S_{\nu_i}$ for all $i \in \{1, \ldots, n\}$. The above relations mean that for all $i \in \{1, \ldots, n\}$

$$\left[\sigma(A(\nu), v_i - \nu) + G(\nu, v_i - \nu) + \int_{\Omega} F(x, T\nu(x), Tv_i(x) - T\nu(x)) \, dx\right] \cap \mathbb{R}_+^* \neq \emptyset.$$

(Here, $\mathbb{R}_+^* = [-\infty, 0[^*$. Let $I = \{i \in \{1, \ldots, n\} : \lambda_i > 0\}$. From the above we obtain

$$0 \neq \left\{ \sum_{i \in I} \lambda_i \left[\sigma(A(\nu), v_i - \nu) + G(\nu, v_i - \nu) + \int_{\Omega} F(x, T\nu(x), Tv_i(x) - T\nu(x)) \, dx\right] \right\} \cap \mathbb{R}_+^*.$$
Using the sublinearity of the function $h \in X \mapsto \sigma(A(v), h)$, (H$_3$), Lemma 2.2, the linearity of T and (H$_4$), we obtain

$$\emptyset \neq \left\{ \sigma(A(v), \sum_{i \in I} \lambda_i v_i - \sum_{i \in I} \lambda_i \bar{v}) + \sum_{i \in I} \lambda_i G(v_i - \bar{v}) \right\} \cap \mathbb{R}_+^*$$

$$\subseteq \left\{ \sigma(A(v), 0) + \sum_{i \in I} \lambda_i v_i - \sum_{i \in I} \lambda_i \bar{v} \right\} \cap \mathbb{R}_+^*$$

$$\subseteq \left\{ G(v, 0) + \int_{\Omega} F(x, T\bar{v}(x), 0) dx \right\} \cap \mathbb{R}_+^* \subseteq \{ \mathbb{R}_+ + \int_{\Omega} \mathbb{R}_+ dx \} \cap \mathbb{R}_+^* = \emptyset,$$

contradiction. This means that S is a KKM-map. Since K is compact, applying Lemma 2.13, we obtain $\cap_{v \in K} S_v \neq \emptyset$, i.e. (HV$\subseteq$) has at least a solution. \square

When K is not compact, we can state the following result, using a coercivity assumption.

Theorem 3.3. Let K be a nonempty closed, convex subset of a Banach space X. Let A, G and F be as in Theorem 3.2. In addition, suppose that there exists a compact subset K_0 of K and an element $w_0 \in K_0$ such that

$$\left\{ \sigma(A(u), w_0 - u) + \int_{\Omega} F(x, Tu(x), Tw_0(x) - Tu(x)) dx \right\} \cap \mathbb{R}_+^* \neq \emptyset$$

for all $u \in K \setminus K_0$. Then (HV\subseteq) has at least a solution.

Proof. We define the map S as in Theorem 3.2. Clearly, S is a KKM-map and S_v is closed for all $v \in K$, as seen above. Moreover, $S_{w_0} \subseteq K_0$. Indeed, supposing the contrary, there exists an element $u \in S_{w_0} \subseteq K$ such that $u \notin K_0$. But this contradicts (3.8). Since K_0 is compact, the set S_{w_0} is also compact. Applying again Lemma 2.13, we obtain a solution for (HV\subseteq). \square

4. Consequences

First, we obtain a result of Browder concerning variational inequalities (see [3, Theorem 6]).
Corollary 4.1. Let K be a nonempty compact convex subset of a Banach space X, and let $\mathcal{A}:K \rightrightarrows X^*$ be an upper demicontinuous set-valued map with bounded values. Then there exists $\overline{\alpha} \in K$ such that
\[\sigma(\mathcal{A}(\overline{\alpha}), v - \overline{\alpha}) \geq 0 \text{ for all } v \in K. \]

Proof. Choose $F \equiv 0$ and $G \equiv 0$ in Theorem 3.2. \hfill \square

In particular, Corollary 4.1 reduces to a classical result of Hartman and Stampacchia [7] if \mathcal{A} is a single-valued continuous operator and X is of finite dimension.

Now, we give a solution for the hemivariational inequality treated by Panagiotopoulos, Fundo and Rădulescu (see [10]). Before to do this, we recall two elementary facts.

Lemma 4.2. Let K be a nonempty subset of a normed space X, and let $j:K \to \mathbb{R}$ be a function. Define $J:K \rightrightarrows \mathbb{R}$ by $J(u) = [j(u), \infty)$ for all $u \in K$. If j is upper semicontinuous on K, then J is lower semicontinuous on K.

Lemma 4.3. If $h: \Omega \to \mathbb{R}$ is a measurable function, then $H: \Omega \rightrightarrows \mathbb{R}$ defined by $H(x) = [h(x), \infty)$ for all $x \in \Omega$, is also measurable (as set-valued map).

Let Ω, X, K and T be as in the Introduction, let $\mathcal{A}:K \to X^*$ be an operator, and we suppose that $j: \Omega \times \mathbb{R}^k \to \mathbb{R}$ is a Carathéodory function which is locally Lipschitz continuous with respect to the second variable and which satisfies the following assumption:

(j) there exist h_1 and h_2 as in (H$_2$) such that
\[|w| \leq h_1(x) + h_2(x)|y|^{p-1} \]
for a.e. $x \in \Omega$, every $y \in \mathbb{R}^k$ and $w \in \partial j(x, y)$.

Here $\partial j(x, y)$ is the Clarke generalized gradient of j, i.e.
\[\partial j(x, y) = \{ w \in \mathbb{R}^k : \langle w, z \rangle \leq j^0_y(x, y; z) \text{ for all } z \in \mathbb{R}^k \}, \]
where $j^0_y(x, y; z)$ is the (partial) generalized directional derivative of the locally Lipschitz continuous function $j(x, \cdot)$ at the point $y \in \mathbb{R}^k$ with respect to the direction $z \in \mathbb{R}^k$, where $x \in \Omega$, that is
\[j^0_y(x, y; z) = \limsup_{y' \to y, t \to 0^+} \frac{j(x, y' + tz) - j(x, y')}{t}. \]

We consider the following hemivariational inequality problem:

(P) Find $\overline{\alpha} \in K$ such that
\[\langle \mathcal{A}(\overline{\alpha}), v - \overline{\alpha} \rangle + \int_\Omega j^0_y(x, T\overline{\alpha}(x); T\overline{\alpha}(x) - T\overline{\alpha}(x)) \, dx \geq 0 \quad \text{for all } v \in K. \]
Corollary 4.4 (see [10]). Let K be a nonempty compact convex subset of a Banach space X, and let $j : \Omega \times \mathbb{R}^k \to \mathbb{R}$ satisfying the condition (j). If the operator $A : K \to X^*$ is w^*-demicontinuous, then (P) has at least a solution.

Proof. We choose $A(u) = \{A(u)\}$ for all $u \in K$, $G \equiv 0$ and $F : \Omega \times \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}$ as $F(x, y, z) = j^0_y(x, y; z)$ for all $(x, y, z) \in \Omega \times \mathbb{R}^k \times \mathbb{R}^k$. Due to Remark 2.4, the operator A is upper demicontinuous (with bounded values). We will verify the hypotheses from Theorem 3.2 for F.

(H1) Using the linearity of T and the measurability of

$$x \in \Omega \mapsto j^0_y(x, Tu(x); Tv(x) - Tu(x))$$

for all $u, v \in K$ (see [8, p. 15]), from Lemma 4.3 we obtain that $x \in \Omega \mapsto F(x, Tu(x), Tv(x) - Tu(x))$ is measurable.

(H2) Since $j^0_y(x, y; z) = \max\{\langle w, z \rangle : w \in \partial j(x, y)\} = \langle w_0, z \rangle$, for some $w_0 \in \partial j(x, y)$ (using (j)) we have

$$|j^0_y(x, y; z)| \leq |w_0| \cdot |z| \leq (h_1(x) + h_2(x)|y|^{p-1})|z|.$$

Since $\text{dist}(0, F(x, y, z)) \leq |j^0_y(x, y; z)|$, we obtain the desired relation.

(H3) Since $z \in \mathbb{R}^k \mapsto j^0_y(x, y; z)$ is convex (see [4, p. 25]) we obtain that $z \in \mathbb{R}^k \mapsto F(x, y, z)$ is convex for all $x \in \Omega$ and all $y \in \mathbb{R}^k$.

(H4) Since $j^0_y(x, y; 0) = 0$, we have $F(x, y, 0) = \mathbb{R}_+$ for all $x \in \Omega$ and all $y \in \mathbb{R}^k$.

(H6) Since $(y, z) \in \mathbb{R}^k \times \mathbb{R}^k \mapsto j^0_y(x, y; z)$ is upper semicontinuous (see [4, p. 25]), and using Lemma 4.2 we obtain that $(y, z) \in \mathbb{R}^k \times \mathbb{R}^k \mapsto F(x, y, z)$ is lower semicontinuous for all $x \in \Omega$.

Therefore, from Theorem 3.2 we have a solution $\pi \in K$ such that

$$\langle A\pi, v - \pi \rangle + \int_\Omega F(x, T\pi(x), Tv(x) - T\pi(x))dx \subseteq \mathbb{R}_+$$

for all $v \in K$.

In particular, for the “lower” selection of $F(\cdot, T\pi(\cdot), Tv(\cdot) - T\pi(\cdot))$, i.e. for $j^0_y(\cdot, T\pi(\cdot); Tv(\cdot) - T\pi(\cdot))$, which is integrable due to (j), we have

$$\langle A\pi, v - \pi \rangle + \int_\Omega j^0_y(x, T\pi(x); Tv(x) - T\pi(x))dx \geq 0$$

for all $v \in K$,

i.e. π is a solution for (P). \hfill \Box

References

Manuscript received March 12, 2002

Alexandru Kristály and Csaba Varga
Faculty of Mathematics and Informatics
University of “Babeș-Bolyai”
3400 Cluj-Napoca, ROMANIA

E-mail address: alexandru.kristaly@yahoo.com, csvarga@cs.ubbcluj.ro