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ON THE EXTERIOR NEUMANN PROBLEM
INVOLVING THE CRITICAL SOBOLEV EXPONENT

Jan Chabrowski — Pedro Girão

Abstract. In this paper we consider the exterior Neumann problem (P)

involving the critical Sobolew exponent. We investigate two cases where
the coefficient a interferes or not with the spectrum of the Lapalce operator

with the Neumann boundary conditions. In both cases we establish the

existence of solutions.

1. Introduction

We are concerned with obtaining solutions of the exterior Neumann problem

(P)

{ −∆u + au = Q|u|2∗−2u in ΩC ,

∂u

∂ν
= 0 on ∂Ω.

Here ΩC = RN \ Ω, where Ω is a smooth bounded domain in RN with N ≥ 3,
the value 2∗ is the critical Sobolev exponent, Q is positive, bounded and locally
Hölder continuous on ΩC , and a ∈ LN/2(ΩC) ∩ L∞(ΩC) ∩ C1(ΩC) is such that
{x ∈ ΩC : a(x) < 0} 6= ∅.

Related to our work are [3], by Chen and Li, who considered the exterior
Dirichlet problem in the case where Q is constant, and [4], by Chabrowski and
Ruf, who considered the case where the function a is identically equal to a po-
sitive constant.
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Our argument relies on the analysis of an eigenvalue problem and on a
linking argument, similar to the ones in [3]. We give conditions that guar-
antee existence of solutions to (P). These depend on the relative values of
22/(N−2)Qm = 22/(N−2) max∂Ω Q, QM = supΩC Q, and Q(∞) = lim|x|→∞ Q(x),
where the last limit is always assumed to exist. The conditions are related to
the ones in [4], where the proof relies entirely on constrained minimization.

The importance of the shape of Q on the existence of solutions to Neumann
semilinear elliptic equations with critical Sobolev exponents was analyzed in [5]
by Chabrowski and Willem.

We should also mention that the first work, to our knowledge, to investigate
semilinear Neumann problems with critical Sobolev exponents in exterior do-
mains was [9], by Pan and Wang. Existence results in the subcritical case were
proved in [11], by Z. Q. Wang. We refer the reader to [6] for other relevant work.

Of course, all the works mentioned above build upon [1] and [10], by Adimur-
thi and Mancini and X. P. Wang, respectively, who studied the critical Neumann
problem on a bounded domain, in the spirit of the work [2], by Brezis and
Nirenberg.

The organization of this work is as follows. In Section 2 we give the setup
of problem (P), and the related eigenvalue problem. When this problem has its
first eigenvalue greater than one, solutions to (P) can be obtained by constrained
minimization. This is done in Section 3. Otherwise, solutions are obtained by
a linking argument in Section 4.

2. The setup

Let Ω ⊂ RN , with N ≥ 3, be a bounded domain with a smooth boundary
and ΩC = RN \ Ω. We consider the homogeneous Neumann problem

(2.1)

{ −∆u + au = Q|u|2∗−2u in ΩC ,

∂u

∂ν
= 0 on ∂Ω.

Here 2∗ = 2N/(N − 2) is the critical Sobolev exponent. The function Q is
positive, bounded and locally Hölder continuous on ΩC . The function a satisfies

(2.2) a ∈ LN/2(ΩC) ∩ L∞(ΩC) ∩ C1(ΩC).

Furthermore {x ∈ ΩC : a(x) < 0} 6= ∅.
We denote by D1,2(ΩC) = {u ∈ L2∗(ΩC) : Du ∈ L2(ΩC)} equipped with

the norm ‖∇u‖ := ‖∇u‖L2(ΩC). Proposition 2.1 of [9] implies that this is indeed
a norm on D1,2(ΩC).

We also denote by a+ = max{a, 0} and by a− = max{−a, 0}, so that a =
a+−a−. We fix a nonnegative function g ∈ LN/2(ΩC)∩L∞(ΩC)∩C1(ΩC) such
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that a− + g > 0 in ΩC . Hölder’s inequality implies that the norm

‖u‖a+,g :=
(
‖∇u‖2L2(ΩC) +

∫
ΩC

(a+ + g)u2

)1/2

is equivalent to the norm of D1,2(ΩC).
Similarly to Lemma 1 of [3], we can show that the problem

(2.3)

{ −∆u + (a+ + g)u = λ(a− + g)u in ΩC ,

∂u

∂ν
= 0 on ∂Ω,

has an increasing sequence of eigenvalues 0 < λ1 < λ2 ≤ . . . , with λn → ∞
as n → ∞. The fact that λ1 > 0 follows from

∫
ΩC (a− + g)u2 ≤ C‖u‖2, with

C > 0. We denote by {ei}i=1,2,... the corresponding orthonormal sequence of
eigenfunctions in the inner product given by ‖ · ‖a+,g. Consider a fixed positive
integer i. By Theorem 8.17 of [7], for any R such that the ball B2R(y), of radius
2R with center in y, is contained in ΩC ,

sup
BR(y)

|ei| ≤ CR−(N−2)/2‖ei‖L2∗ (B2R(y)),

where the constant C depends only on N and R. Therefore, lim|x|→∞ ei(x) = 0.

3. Constrained minimization

In this section we consider the situation where λ1 > 1. In this case,

‖u‖a :=
(
|∇u|L2(ΩC) +

∫
ΩC

au2

)1/2

is a norm in D1,2(ΩC), equivalent to ‖ · ‖. Therefore, we can show existence of
least energy solutions to (2.1) using constrained minimization, as in [4]. Indeed,
let

Sa = inf
{ ∫

ΩC

(|∇u|2 + au2) : u ∈ D1,2(ΩC),
∫

ΩC

Q|u|2
∗

= 1
}

,(3.1)

Qm = max
∂Ω

Q, QM = sup
ΩC

Q, Q(∞) = lim
|x|→∞

Q(x).

Throughout we assume that the last limit exists.
We denote by U the Talenti instanton

U(x) :=
(

N(N − 2)
N(N − 2) + |x|2

)(N−2)/2

,

by

Uε,P ( · ) := ε−(N−2)/2U

(
· − P

ε

)
and S :=

∫
RN |∇U |2

(
∫

RN U2∗)2/2∗
.
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Lemma 3.1. If

(3.2) Sa < Ŝ := min
{

S

22/NQ
(N−2)/N
m

,
S

Q
(N−2)/N
M

,
S

Q
(N−2)/N
∞

}
then (3.1) has a minimizer, i.e. (2.1) has a least energy solution.

Proof. Suppose that {um} ∈ D1,2(ΩC) is such that∫
ΩC

Q|um|2
∗

= 1 and
∫

ΩC

(|∇um|2 + au2
m) → Sa.

Then, up to a subsequence,

um ⇀ u on D1,2(ΩC),

um → u a.e. on ΩC ,

|∇(um − u)|2 ⇀ µ, |um − u|2
∗

⇀ ν in M(ΩC),

the space of finite measures on ΩC . Let

µ∞ = lim
R→∞

lim sup
m→∞

∫
ΩC\BR(0)

|∇um|2, ν∞ = lim
R→∞

lim sup
m→∞

∫
ΩC\BR(0)

|um|2
∗
.

There exists at most a countable set J such that

µ ≥
∑
j∈J

µjδxj
, ν =

∑
j∈J

νjδxj
,

with µj ≥ Sν
2/2∗

j /22/N if xj ∈ ∂Ω, µj ≥ Sν
2/2∗

j if xj ∈ ΩC , and µ∞ ≥ Sν
2/2∗

∞ .
Furthermore,

lim sup
m→∞

∫
ΩC

|∇um|2 =
∫

ΩC

|∇u|2 + ‖µ‖+ µ∞,

1 =
∫

ΩC

Q|u|2
∗

+
∑

xj∈∂Ω

Q(xj)νj +
∑

xj∈ΩC

Q(xj)νj + Q∞ν∞.

Note also (see Lemma 2.13 of [12]) that

lim
m→∞

∫
ΩC

au2
m =

∫
ΩC

au2,

because a ∈ LN/2(ΩC). Hence,

Sa ≥
∫

ΩC

(|∇u|2 + au2) +
∑

xj∈∂Ω

S

22/N
ν

2/2∗

j +
∑

xj∈ΩC

Sν
2/2∗

j + Sν2/2∗

∞

≥Sa

(∫
ΩC

Q|u|2
∗
)2/2∗

+
∑

xj∈∂Ω

S

22/NQ
2/2∗
m

(Q(xj)νj)2/2∗

+
∑

xj∈ΩC

S

Q
2/2∗

M

(Q(xj)νj)2/2∗ +
S

Q
2/2∗
∞

(Q∞ν∞)2/2∗ .
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Under the hypothesis all the ν’s must be zero. It follows that
∫
ΩC Q|u|2∗ = 1

and then
∫
ΩC (|∇u|2 + au2) = Sa. �

We now turn to conditions that insure (3.2). We denote by H(x) the mean
curvature of ∂Ω at x, with respect to the outward unit normal to Ω.

Case 1. Assume N ≥ 5, Ŝ = S/22/NQ
(N−2)/N
m , Qm = Q(x0) with H(x0) < 0,

and |Q(x) − Q(x0)| = o(|x − x0|) as x → x0. Then (3.2) is satisfied. For the
proof we refer to [5]. Hence, there exists a least energy solution.

Case 2. Assume N ≥ 7, Ŝ = S/Q
(N−2)/N
M , QM = Q(x0) with a(x0) < 0,

and |Q(x)−Q(x0)| = o(|x− x0|2) as x → x0. Then condition (3.2) is satisfied.
Indeed, ∫

ΩC (|∇Uε,x0 |2 + aU2
ε,x0

)
(
∫
ΩC QU2∗

ε,x0
)2/2∗

= Ŝ + Ca(x0)ε2 + o(ε2), as ε → 0,

where C is a positive constant. This follows from∫
ΩC

|a(x0)− a|U2
ε,x0

≤
∫

ΩC∩Bρ(x0)

C| · −x0|U2
ε,x0

+
∫

ΩC\Bρ(x0)

CU2
ε,x0

≤ Cε3

∫
Bρ/ε(0)

zU2(z) dz + Cε2

∫
BC

ρ/ε
(0)

U2

≤ Cε3 + CεN−2 ≤ Cε3

and

(3.3)
∫

ΩC

QU2∗

ε,x0
(x) =

∫
ΩC

Q(x0)U2∗

ε,x0
+ o(ε2) = Q(x0)

∫
RN

U2∗

ε,x0
+ o(ε2).

In fact, let δ > 0. Fixing ρ such that |Q(x)−Q(x0)| < δ|x−x0|2 for |x−x0| < ρ,∫
ΩC

|Q−Q(x0)|U2∗

ε,x0

≤
∫

ΩC∩Bρ(x0)

δ| · −x0|2U2∗

ε,x0
+

∫
ΩC\Bρ(x0)

|Q−Q(x0)|U2∗

ε,x0

≤ δε2

∫
Bρ/ε(0)

z2U2∗(z) dz + O(εN ) ≤ Cδε2 + O(εN ) ≤ Cδε2,

if ε is sufficiently small.

Case 3. Finally, assume N ≥ 7 and Ŝ = S/Q
(N−2)/N
∞ . Suppose also, in

addition to (2.2), there exist constants α > 2, C1 > 0 and ρ1 > 0 such that

a(x) ≤ − C1

|x|α
for |x| > ρ1,

and there exist constants C2 > 0 and ρ2 > 0 such that

(3.4) 0 < Q∞ −Q(x) <
C2

|x|p
for |x| > ρ2,
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where p > α(N − 2)/(N − 6). Then condition (3.2) is satisfied. The proof is
similar to that of Theorem 4.2 ahead.

4. Linking

In this section we consider the situation where 0 < λ1 ≤ . . . ≤ λn−1 ≤ 1 <

λn ≤ . . . , for some n ≥ 2. To prove existence of solutions to (2.1) we use the
linking theorem, instead of constrained minimization.

Consider ϕ:D1,2(ΩC) → R, defined by

ϕ(u) :=
∫

ΩC

(
|∇u|2

2
+

a|u|2

2
− Q|u|2∗

2∗

)
.

Lemma 4.1. If {um} is a sequence in D1,2(ΩC) such that ϕ(um) → c <

ŜN/2/N and ϕ′(um) → 0 in D−1,2(ΩC), then {um} is relatively compact in
D1,2(ΩC).

Proof. The first step in the proof is to show that {um} is bounded in
D1,2(ΩC). We argue by contradiction and suppose that ‖um‖ → ∞. We set
vm := um/‖um‖ and may assume that vm ⇀ v in D1,2(ΩC). For every ϕ ∈
D1,2(ΩC),

1
‖um‖2∗−2

∫
ΩC

(∇vm · ∇ϕ + avmϕ) =
∫

ΩC

Q|vm|2
∗−2vmϕ + o(1),

and so
∫
ΩC Q|v|2∗−2vϕ = 0. Hence v = 0 a.e. and vm ⇀ 0 in D1,2(ΩC),∫

ΩC av2
m → 0. It follows that

1
2

∫
ΩC

|∇vm|2 + o(1) =
‖um‖2

∗−2

2∗

∫
ΩC

Q|vm|2
∗

and ∫
ΩC

|∇vm|2 + o(1) = ‖um‖2
∗−2

∫
ΩC

Q|vm|2
∗
.

Together, ‖vm‖ → 0, which is impossible. We conclude that ‖um‖ is bounded.
The second and last step of the proof is to show that {um} converges in

D1,2(ΩC). This step is similar to the argument in the proof of Lemma 3.1.
The key point is the following. With similar notations as above, µj = Q(xj)νj

and µ∞ = Q∞ν∞. This implies νj ≥ SN/2/2Q(xj)N/2 if xj ∈ ∂Ω, νj ≥
SN/2/Q(xj)N/2 if xj ∈ ΩC and ν∞ ≥ SN/2/Q

N/2
∞ . Also,

c = lim
n→∞

[
ϕ(um)− 1

2
ϕ′(um)um

]
= lim

n→∞

1
N

∫
ΩC

Q|um|2
∗
. �
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We set Y = span {e1, . . . , en−1} and Z = (Y )⊥ in the inner product given by
‖ · ‖a+,g. Let R > r > 0 and z ∈ Z with ‖z‖ = r, to be chosen below. Consider

M := {u = y + λz; ‖u‖ ≤ R, λ ≥ 0, y ∈ Y },
M0 := {u = y + λz; y ∈ Y, ‖u‖ = R and λ ≥ 0, or ‖u‖ ≤ R and λ = 0},
N := {u ∈ Z; ‖u‖ = r},
Γ := {γ ∈ C(M,D1,2(ΩC)); γ|M0 = id},

and
c := inf

γ∈Γ
max
u∈M

ϕ(γ(u)).

We will choose r and R such that

(4.1) max
M0

J < inf
N

J,

and z such that

(4.2) c <
1
N

ŜN/2.

By the previous lemma, the functional ϕ satisfies the Palais–Smale condition at
level c. By the linking theorem, c is a critical value of ϕ.

We start by choosing r and R. First we note that on Z

ϕ(u) ≥ 1
2
(1− λ−1

n )
∫

ΩC

(|∇u|2 + (a+ + g)u2)− 1
2∗

∫
ΩC

Q|u|2
∗
.

Using the Sobolev inequality and the fact that Q is bounded, we take r > 0
sufficiently small so that

inf
‖u‖=r
u∈Z

ϕ(u) > 0.

On Y , we have

(4.3) ϕ(u) ≤ 1
2
(1− λ−1

n−1)
∫

ΩC

(|∇u|2 + (a+ + g)u2)− 1
2∗

∫
ΩC

Q|u|2
∗
≤ 0,

and on the finite dimensional space Y ⊕ Rz,

ϕ(u) ≤ C‖u‖2 − 1
2∗

∫
ΩC

Q|u|2
∗
→ −∞ as ‖u‖ → ∞.

We take R sufficiently big so that maxM0 ϕ = 0. With these choices of r and R,
inequality (4.1) is satisfied.

To insure (4.2) it is enough to choose z so that maxY⊕Rz ϕ < ŜN/2/N . For
u ∈ D1,2(ΩC) such that

∫
ΩC (|∇u|2 + au2) > 0,

max
t≥0

ϕ(tu) =
1
N

(∫
ΩC (|∇u|2 + au2)
(
∫
ΩC Q|u|2∗)2/2∗

)N/2
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(for other u ∈ D1,2(ΩC) this maximum is zero). Hence, it is enough to prove
there exist a small positive ε and a point Pε ∈ ΩC for which

(4.4) max
u∈Y⊕RUε,Pε

∫
ΩC (|∇u|2 + au2)(∫

ΩC Q|u|2∗
)2/2∗

< Ŝ.

Notice that Uε,Pε 6∈ Y for small ε, independently of the choice of Pε. So suppose
u = y + tUε,Pε

with y ∈ Y and t ≥ 0, chosen so that

(4.5)
∫

ΩC

Q|u|2
∗

= 1.

Let us prove that t and
∫
ΩC Q|y|2∗ (like any norm of y) are uniformly bounded

for small ε. Since there exists a constant η > 0 such that

|a + b|2
∗
≥ |a|2

∗
+ |b|2

∗
− η(|a|2

∗−1|b|+ |a||b|2
∗−1),

for all a, b ∈ R, it follows that

1 ≥
∫

ΩC

Q|y|2
∗

+
∫

ΩC

Q|tUε,Pε
|2
∗

− η

( ∫
ΩC

Q|y|2
∗−1|tUε,Pε

|+
∫

ΩC

Q|y||tUε,Pε
|2
∗−1

)
≥

∫
ΩC

Q|y|2
∗

+
∫

ΩC

Q|tUε,Pε |2
∗

− η

(
|Q|∞|y|2

∗−1
∞ |t|Cε(N−2)/2 + |Q|∞|y|∞|t|2

∗−1Cε(N−2)/2

)
≥

∫
ΩC

Q|y|2
∗

+
∫

ΩC

Q|tUε,Pε |2
∗
− η|Q|∞(|y|2

∗
+ |t|2

∗
)Cε(N−2)/2

≥
( ∫

ΩC

Q|y|2
∗

+ C|t|2
∗
)

(1− Cε(N−2)/2).

This shows that
∫
ΩC Q|y|2∗ and t are uniformly bounded for small ε.

For u = y + tUε,Pε
satisfying (4.5) we have the following estimates.∫

ΩC

(|∇u|2 + au2) =
∫

ΩC

(|∇y|2 + ay2) +
∫

ΩC

[|∇(tUε,Pε
)|2 + a(tUε,Pε

)2]

+ 2
∫

ΩC

[∇y · ∇(tUε,Pε
) + ay(tUε,Pε

)].

Writing y as y =
∑n−1

i=1 cε,iei, we have∫
ΩC

[∇u · ∇(tUε,Pε
) + ay(tUε,Pε

)]

≤
n−1∑
i=1

∫
ΩC

t(1− λi)(a− + g)|cε,i||ei|Uε,Pε
≤ Cε(N−2)/2.
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From the calculus inequality |1 + x|2∗ ≥ 1 + 2∗x, for x ∈ R, we get

1 =
∫

ΩC

Q|u|2
∗
≥

∫
ΩC

Q|tUε,Pε |2
∗

+ 2∗
∫

ΩC

Qy(tUε,Pε)
2∗−1

≥
∫

ΩC

Q|tUε,Pε |2
∗
− Cε(N−2)/2.

As observed above in (4.3), ∫
ΩC

(|∇y|2 + ay2) ≤ 0.

Combining the previous estimates,

(4.6)
∫

ΩC

(|∇u|2 + au2)

≤
∫

ΩC

[|∇(tUε,Pε
)|2 + a(tUε,Pε

)2] + Cε(N−2)/2

≤
(

1 + Cε(N−2)/2∫
ΩC Q|tUε,Pε |2

∗

)2/2∗ ∫
ΩC

[|∇(tUε,Pε
)|2 + a(tUε,Pε

)2] + Cε(N−2)/2

≤
∫
ΩC [|∇Uε,Pε

|2 + a(Uε,Pε
)2]

(
∫
ΩC Q|Uε,Pε

|2∗)2/2∗
+ Cε(N−2)/2.

We are now in position to prove

Theorem 4.2. Under the assumptions of Cases 1, 2 or 3 above, problem
(2.1) has a solution.

Proof. As observed above, it is enough to establish (4.4) to guarantee (4.2).
In Case 1 we use estimate (4.6), N ≥ 5 and refer to [5]. In Case 2 we use estimates
(3.3), (4.6) and N ≥ 7.

Suppose the hypotheses of Case 3 hold. Let ω ∈ RN with |ω| = 1. We denote
by A, B and C various positive constants and assume ρ > 0 is big enough that
Ω ⊂ Bρ/2(0). Then,∫

ΩC

|∇Uε,ρω|2 =
∫

RN

|∇Uε,ρω|2

− εN−2(N − 2)2
∫

Ω

[N(N − 2)]N−2|x− ρω|2

(ε2N(N − 2) + |x− ρω|2)N
dx

≤K1 −
CεN−2

ρ2N−2
,∫

ΩC

aU2
ε,ρω =

∫
ΩC∩Bρ/2(ρω)

aU2
ε,ρω +

∫
ΩC\Bρ/2(ρω)

aU2
ε,ρω

≤ − Cε2

ρα
+

CεN−2

ρN−4
,∫

ΩC

Q|Uε,ρω|2
∗

=
∫

RN

Q∞|Uε,ρω|2
∗
−

∫
Ω

Q∞|Uε,ρω|2
∗
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+
∫

ΩC\Bρ/2(ρω)

(Q−Q∞)|Uε,ρω|2
∗

+
∫

ΩC∩Bρ/2(ρω)

(Q−Q∞)|Uε,ρω|2
∗

≥K2Q∞ −Q∞

∫
RN\Bρ/2(ρω)

|Uε,ρω|2
∗

− C

∫
RN\Bρ/(2ε)(0)

|U |2
∗
− C2

(ρ/2)p

∫
RN

|Uε,ρω|2
∗

≥K2Q∞ − CεN

ρN
− CK2

ρp
.

Combining (4.6) with the last three estimates,∫
ΩC

(|∇u|2 + au2) ≤ S

Q
(N−2)/N
∞

− Aε2

ρα
+ Bε(N−2)/2 +

C

ρp
.

We choose ρ satisfying

−Aε2

2ρα
+ Bε(N−2)/2 = 0 ⇔ 1

ρ
=

(
2B

A

)1/α

ε(N−6)/(2α).

It follows that∫
ΩC

(|∇u|2 + au2) ≤ S

Q
(N−2)/N
∞

−Bε(N−2)/2 + C

(
2B

A

)p/α

ε(N−6)p/(2α).

The assumption p > α(N − 2)/(N − 6) implies that (4.4) is satisfied for small ε.
This finishes the proof. �

Remark 4.3. The proof above goes through if we just assume (3.4) in a cone.
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