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FORCED SINGULAR OSCILLATORS
AND THE METHOD OF LOWER AND UPPER SOLUTIONS

Denis Bonheure — Colette De Coster

Abstract. In this note, we study the existence of positive periodic solu-
tions of the second order differential equation

u′′ + g(u)u′ + f(t, u) = h(t)

where f(t, · ) has a singularity of repulsive type at the origin. We use the

method of lower and upper solutions.

1. Introduction

In this note, we are interested in proving existence of solutions of the problem

(1.1)
u′′ + g(u)u′ + f(t, u) = h(t),

u(a) = u(b), u′(a) = u′(b),

where f(t, · ) defined in R+ has a singularity at the origin.
The study of such singular second order boundary value problems goes back

at least to A. C. Lazer and S. Solimini. Keeping in mind the model equations

u′′ +
1
uν

= h(t),(1.2)

u′′ − 1
uν

= h(t),(1.3)
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with ν > 0, they proved in [11] the following result: Let f be a positive continuous
function defined on ]0,∞[ such that f(u) → 0 as u→∞, f(u) →∞ as u→ 0+

and h be continuous on [a, b]. Then the problem

u′′ + f(u) = h(t), u(a) = u(b), u′(a) = u′(b)

has a solution if and only if
∫ b

a
h(s) ds > 0. If moreover f satisfies

(1.4)
∫ 1

0

f(s) ds = ∞,

then the problem

(1.5) u′′(t)− f(u) = h(t), u(a) = u(b), u′(a) = u′(b)

has a solution if and only if
∫ b

a
h(s) ds < 0.

This result has been extended in order to deal with nonlinearities f which
are possibly unbounded at ∞. The result for the case of an attractive force at
the origin was extended by P. Habets and L. Sanchez in [10]. In the repulsive
case, the extension to equation (1.1) with an unbounded nonlinearity f(t, · )
at ∞ is not complete. M. A. del Pino and R. Manásevich in [5] study the
case of a nonlinearity superlinear at infinity while the case of an asymptotically
linear nonlinearity at infinity is considered among others by M. A. del Pino,
R. Manásevich and A. Montero ([6]), A. Fonda ([7]), P. Omari and W. Ye ([13])
and M. Zhang ([15], [16]). In all these papers, it is always assumed a certain
kind of nonresonance condition. For example, in [6], it is assumed that

k2π2

(b− a)2
< lim inf

u→+∞

f(t, u)
u

≤ lim sup
u→+∞

f(t, u)
u

<
(k + 1)2π2

(b− a)2
,

uniformly in t for some k ∈ N. In [7], considering only the case of a nonlinearity
independent of the t-variable, the author assumes

lim inf
u→+∞

2F (u)
u2

<
π2

(b− a)2
,

where F (u) =
∫ u

1
f(ξ) dξ. Hence the case f(u) = π2u/(b − a)2 is always ex-

cluded. A first result in case f is asymptotically like π2u/(b − a)2 is given
by I. Rachunková, M. Tvrdý and I. Vrkoč in [14] but a major step is made by
C. Fabry, D. Smets and D. Bonheure (see [1]). They prove for the model equation

(1.6)
u′′ − 1

uν
+

k2π2

(b− a)2
u = h(t),

u(a) = u(b), u′(a) = u′(b)
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with ν ≥ 1, that the existence of a solution of (1.6) is closely related to the
properties of the function

Φ(θ) =
∫ b

a

h(t)ψ(t+ θ) dt,

where ψ(t) = | cos(kπ((t − a)/(b− a)))|. In another direction, P. Habets and
L. Sanchez ([10]) replace the condition on f by a real damping |g(u)| ≥ A > 0.

In Section 3, we extend the result of [11] to (1.1) in the repulsive case for
a Carathéodory function f which can be asymptotically linear at ∞. We impose
a limitation on f(t, u)/u for large u (see condition (d) of Theorem 3.1) and a type
of strong force condition in a form which is very similar to the one introduced
by R. Martins in [12]. This section has to be compared with the results of [13].

In Section 4, we consider the undamped equation. We study the problem
(1.1) with g ≡ 0 and f such that f(t, u) ≤ (π/(b− a))2u. We show that (1.1)
has at least one periodic solution if

(1.7) min
t∈[a,b]

∫ t+b−a

t

h(s) sinπ
s− t

b− a
ds ≥ δ > 0.

This result improves Corollary 3.7 of [14]. Compared with the results of [1]
mentioned above for the problem (1.6), it corresponds to the case where Φ is
positive. However, it should be pointed out that our result applies for a larger
class of functions than in [1]. In particular, it also applies in case we have no
singularity or a “weak repulsive force” at the origin as for example f(t, u) =
−1/

√
u+ (π/(b− a))2u.

To conclude this introduction, let us recall the following definition.
A function f :D ⊂ [a, b]× R → R is said to be a Carathéodory function if

(a) for a.e. t ∈ [a, b], the function f(t, · ) with domain {u ∈ R | (t, u) ∈ D}
is continuous,

(b) for all u ∈ R, the function f( · , u) with domain {t ∈ [a, b] | (t, u) ∈ D}
is measurable.

If further, the Carathéodory function f satisfies

(c) for all r > 0, there exists h ∈ L1(a, b) such that for all (t, u) ∈ D with
|u| ≤ r, |f(t, u)| ≤ h(t),

we say that f is a L1-Carathéodory function.

2. Lower and upper solutions

Let us first prove the needed result concerning non well ordered lower and
upper solutions. Further results concerning the method of lower and upper
solutions can be found in [2] and [4].
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Consider the following Liénard equation

(2.1)
u′′ + g(u)u′ + f(t, u) = 0,

u(a) = u(b), u′(a) = u′(b).

In this work we will use the following notion of lower and upper solutions.

Definitions 2.1. A function α ∈ C([a, b]) such that α(a) = α(b) is a lower
solution of (2.1) if its periodic extension on R, defined by α(t) = α(t + b − a)
is such that for any t0 ∈ R either D−α(t0) < D+α(t0), or there exists an open
interval I0 such that t0 ∈ I0, α ∈W 2,1(I0) and, for a.e. t ∈ I0,

α′′(t) + g(α(t))α′(t) + f(t, α(t)) ≥ 0.

A function β ∈ C([a, b]) such that β(a) = β(b) is an upper solution of (2.1) if
its periodic extension on R, defined by β(t) = β(t + b − a) is such that for any
t0 ∈ R either D−β(t0) > D+β(t0), or there exists an open interval I0 such that
t0 ∈ I0, β ∈W 2,1(I0) and, for a.e. t ∈ I0,

β′′(t) + g(β(t))β′(t) + f(t, β(t)) ≤ 0.

Definition 2.2. A lower solution α of (2.1) (resp. an upper solution β

of (2.1)) is said strict if every solution u of (2.1) with u ≥ α (resp. u ≤ β) is such
that u(t) > α(t) (resp. u(t) < β(t)) on [a, b].

The idea of the following result is known. We give it here for completeness.

Theorem 2.3. Let α and β ∈ C([a, b]) be strict lower and upper solutions
of (2.1) such that α < β on [a, b]. Define

E = {(t, u) ∈ [a, b]× R | α(t) ≤ u ≤ β(t)}.

Assume g: R → R is continuous and f :E → R is a L1-Carathéodory function.
Then, for every C ∈ L1(a, b) such that, for a.e. t ∈ [a, b], |g(α(t))| < C(t),
|g(β(t))| < C(t) and for every (t, u) ∈ E, |f(t, u)| < C(t),

deg(I − T,Ω) = 1,

where T : C1([a, b]) → C1([a, b]) is the fixed point operator defined by

(Tu)(t) := −
∫ b

a

G(t, s)[g(u(s))u′(s) + f(s, u(s)) + C(s)u(s)] ds,

with G(t, s) the Green function corresponding to

(2.2) u′′ − C(t)u = f(t), u(a) = u(b), u′(a) = u′(b),

and

Ω = {u ∈ C1([a, b]) | for all t ∈ [a, b], α(t) < u(t) < β(t), |u′(t)| < R}
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(with R > 0 large enough). In particular, the problem (2.1) has at least one
solution u ∈W 2,1(a, b) such that

α(t) < u(t) < β(t) for all t ∈ [a, b].

Proof. Step 1. The modified problem. We consider the modified problem

(2.3)
u′′ − C(t)u+ g(γ(t, u))u′ + f(t, γ(t, u)) + C(t)γ(t, u) = 0,

u(a) = u(b), u′(a) = u′(b),

where γ(t, u) := max{α(t),min{u, β(t)}}.
Step 2. The solution u of (2.3) is such that α < u < β on [a, b]. This

step follows from the definition of C(t) and the arguments used in the proof of
Theorem 1.12 in [3].

Step 3. Degree estimations. Consider the homotopy

(2.4)
u′′ − C(t)u+ λg(γ(t, u))u′ + f(t, γ(t, u)) + C(t)γ(t, u) = 0,

u(a) = u(b), u′(a) = u′(b).

Observe first that arguing again as in Theorem 1.12 of [3], it is easily seen that
every solution u of (2.4) satisfies α = mint α(t)− 2 ≤ u ≤ β = maxt β(t) + 2.

Multiplying equation (2.4) by u and integrating we obtain

‖u′‖2
L2 ≤

∫ b

a

u′
2(t) + C(t)u2(t) dt

=λ

∫ b

a

g(γ(t, u(t)))u(t)u′(t) dt+
∫ b

a

f(t, γ(t, u(t)))u(t) dt

+
∫ b

a

C(t)γ(t, u(t))u(t) dt

≤C1‖u′‖L2 + C2,

for some constants C1, C2 > 0. It is now easy to obtain a bound for ‖u′′‖L1

and another for ‖u′‖∞. It follows that there exists R > 0 such that, for every
λ ∈ [0, 1], every solution u of (2.4) satisfies ‖u‖C1 < R.

The problem (2.4) is equivalent to the fixed point problem

u = Tλu,

where Tλ: C1([a, b]) → C1([a, b]) is defined by

(Tλu)(t) = −
∫ b

a

G(t, s)[λg(γ(t, u))u′ + f(t, γ(t, u)) + C(t)γ(t, u)] ds,

with G(t, s) the Green function corresponding to (2.2). Observe that Tλ is
completely continuous and, increasing R if necessary, we can assume that Ω ⊂
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B(0, R) and T 0(C1([a, b])) ⊂ B(0, R). Hence we have, by the properties of the
degree,

deg(I − T 0, B(0, R)) = 1.

By Step 2, every fixed point of T 1 is in Ω and by the properties of the degree
we obtain deg(I − T,Ω) = 1. The existence of a solution u such that for all
t ∈ [a, b], α(t) < u(t) < β(t) follows now from the properties of the degree. �

The main ingredient of this paper is the following result.

Theorem 2.4. Let α and β ∈ C([a, b]) be lower and upper solutions of (2.1)
such that α 6≤ β. Assume that g: R → R is continuous and f : [a, b] × R → R
is a L1-Carathéodory function such that, for some a−, b+ ∈ L1(a, b) such that
b+ ≥ 0,

lim sup
u→−∞

f(t, u) ≤ a−(t) and lim sup
u→∞

f(t, u)
u

≤ b+(t),

uniformly in t. Assume further that for any p ∈ L1(a, b) with p ≤ b+ a.e. on
[a, b] and any t ∈ [a, b[, the problem

(2.5)
u′′ + p(t)u = 0,

u(t) = 0, u(t+ b− a) = 0,

has only the trivial solution (where p(t) = p(t−b+a) for t ∈ ]b, t+b−a]). Then,
there exists a solution u ∈ S of (2.1), where

(2.6) S := {u ∈ C([a, b]) | ∃t1, t2 ∈ [a, b], u(t1) ≥ β(t1), u(t2) ≤ α(t2)}.

To prove this result, we need the following lemma

Lemma 2.5. Let γ ∈ L1(a, b) be such that, for any p ∈ L1(a, b) with p ≤ γ

a.e. on [a, b] and any t ∈ [a, b], the problem

u′′ + p(t)u = 0,

u(t) = 0, u(t+ b− a) = 0,

has only the trivial solution (where p is extended by periodicity on ]b, t+ b− a]).
Then there exists ε > 0 such that, for all t ∈ [a, b], all u ∈ H1

0 (t, t + b − a), we
have ∫ t+b−a

t

(u′2(t)− γ(t)u2(t)) dt ≥ ε‖u‖2
H1 .

Proof. First observe that arguing as in [8], we can associate to any t ∈ [a, b],
a positive constant ε(t) such that, for every u ∈ H1

0 (t, t+ b− a), we have∫ t+b−a

t

(u′2(t)− γ(t)u2(t)) dt ≥ ε(t)‖u‖2
H1 .
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Now, let us prove the claim. By contradiction, assume there exist sequences
(tn)n ⊂ [a, b] and (un)n ⊂ H1(tn, tn + b− a) with ‖un‖H1 = 1 and

(2.7)
∫ tn+b−a

tn

(u′2n(t)− γ(t)u2
n(t)) dt ≤ 1

n
.

Extending un by 0, we have, for all n, un ∈ H1
0 (a, 2b−a), ‖un‖H1(a,2b−a) = 1 and

hence, passing to a subsequence, tn → t ∈ [a, b], the sequence (un)n converges
weakly in H1

0 (a, 2b − a) and strongly in C([a, 2b − a]) to some function u with
u = 0 on [a, 2b− a] \ [t, t+ b− a] and∫ t+b−a

t

(u′2(t)− γ(t)u2(t)) dt ≤ 0.

By the first part of the proof, ‖u‖H1 = 0 i.e. u ≡ 0. We deduce now from (2.7)
that

∫ 2b−a

a
u′

2
n(t) dt→ 0 which contradicts ‖un‖H1 = 1. �

Proof of Theorem 2.4. For each r > 0, we define

fr(t, u) =


f(t, u) if |u| < r,

(1 + r − |u|)f(t, u)− (|u| − r)u/r if r ≤ |u| < r + 1,

−u/r if r + 1 ≤ |u|,

and consider the modified problem

(2.8)
u′′ + g(u)u′ + fr(t, u) = 0,

u(a) = u(b), u′(a) = u′(b).

Claim 1. There exists L+ > 0 such that for any r > 0, the solutions u of
(2.8), which are in S, are such that maxu ≤ L+.

Let u ∈ S be a solution of (2.8) such that

max
t
u(t) > R := max{‖α‖∞, ‖β‖∞}.

From the definition of S, there exists t2 ∈ [a, b] so that u(t2) ≤ α(t2) ≤ R. Hence,
extending u by periodicity if necessary, we can find a′ < b′ so that b′−a′ < b−a,
u(a′) = u(b′) = R, u(t) > R on ]a′, b′[ and maxa′≤t≤b′ u(t) = maxa≤t≤b u(t).

Let now ε > 0 be given by Lemma 2.5 and choose M > R such that for all
u ≥M and a.e. t ∈ [a, b]

f(t, u)
u

≤ b+(t) +
ε

2
.

Define then

pr(t, u) =

{
fr(t, u)/u for u ≥M,

fr(t,M)/M for u < M,

and
qr(t, u) = fr(t, u)− pr(t, u)u.
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For r > 0, these functions are such that for a.e. t ∈ [a, b] and all u ≥ R,

pr(t, u) ≤ b+(t) + ε/2 and qr(t, u) ≤ k(t)

for some k ∈ L1(a, b).
The function v = u−R is nonnegative on [a′, b′] and solves the problem

v′′(t) + g(v(t) +R)v′(t) + pr(t, u(t))(v(t) +R) + qr(t, u(t)) = 0,

v(a′) = 0, v(b′) = 0.

Hence, we compute∫ b′

a′
v′

2(t) dt −
∫ b′

a′
(b+(t) + ε/2)(v(t) +R)v(t) dt

≤ −
∫ b′

a′
v(t)(v′′(t) + g(v(t) +R)v′(t) + pr(t, u(t))(v(t) +R)) dt

=
∫ b′

a′
qr(t, u(t))v(t) dt

and using Lemma 2.5 we obtain
ε

2
‖v‖2

H1(a′,b′) ≤ ε‖v‖
2
H1(a′,b′) −

ε

2
‖v‖2

L2(a′,b′)

≤
∫ b′

a′

(
v′

2(t)−
(
b+(t) +

ε

2

)
v2(t)

)
dt

≤
∫ b′

a′

(
qr(t, u(t)) +

(
b+(t) +

ε

2

)
R

)
v(t) dt

≤
∫ b′

a′

(
k(t) +

(
b+(t) +

ε

2

)
R

)
v(t) dt,

i.e. ‖v‖2
H1(a′,b′) ≤ K‖v‖∞, for some K > 0 independent of r. It follows that, for

all t ∈ [a′, b′],

v(t) =
∫ t

a′
v′(s) ds ≤ K1/2‖v‖1/2

∞ (b− a)1/2

so that ‖v‖∞ ≤ K(b− a) and maxt u(t) ≤ R+K(b− a) =: L+.

Claim 2. There exists L− so that any solution u ∈ S of (2.8) with r ≥ 8(b−a)2

satisfies mint u(t) ≥ L−.

By assumption, there exists k ∈ L1(a, b) such that for a.e. t ∈ [a, b] and every
u ≤ L+, f(t, u) ≤ k(t).

Using Claim 1, we can write f(t, u(t)) ≤ k(t) for a.e. t ∈ [a, b], if u ∈ S is a
solution of (2.8). Next, integrating (2.8) or multiplying this equation by u and
integrating, we obtain∫ b

a

fr(t, u(t)) dt = 0 and
∫ b

a

u′
2(t) dt =

∫ b

a

fr(t, u(t))u(t) dt.



Forced Singular Oscillators 305

It follows then that

‖u′‖2
L2 =

∫ b

a

fr(t, u(t))(‖u‖∞ + u(t)) dt ≤ 2(‖k‖L1 +
‖u‖∞
r

(b− a))‖u‖∞

i.e.

‖u′‖L2 ≤ (2‖k‖L1‖u‖∞)1/2 +
‖u‖∞

2(b− a)1/2
.

Define now t1 ∈ [a, b] such that u(t1) ≥ β(t1) ≥ −R. Extending u by periodicity,
we can write for t ∈ [t1, t1 + b− a]

u(t) = u(t1) +
∫ t

t1

u′(s) ds ≥ −R− (2(b− a)‖k‖L1‖u‖∞)1/2 − ‖u‖∞
2

.

It is now easy to obtain L− so that u(t) ≥ L− on [a, b].
Conclusion. Consider the problem (2.8), with r > max{L+,−L−, 8(b−a)2}.

It is easy to see that α1(t) = −r− 2 and β2(t) = r+2 are strict lower and upper
solutions of (2.8).

Assume that β is not a strict upper solution. Then, there exists a solution u
of (2.8) such that u ≤ β and for some t1 ∈ [a, b], u(t1) = β(t1). As further α 6≤ β,
there exists t2 ∈ [a, b] such that α(t2) > β(t2). It follows that α(t2) > u(t2),
u ∈ S, and we deduce from the claim that ‖u‖∞ ≤ max{L+,−L−}. Hence, u
is a solution of (2.1) in S. We come to the same conclusion if α is not a strict
lower solution.

Suppose now that β1 = β and α2 = α are strict upper and lower solutions.
In that case, we apply Theorem 2.3 successively with

Ω1,1 = {u ∈ C1([a, b]) | for all t ∈ [a, b], α1(t) < u(t) < β1(t), ‖u′‖∞ < R},
Ω2,2 = {u ∈ C1([a, b]) | for all t ∈ [a, b], α2(t) < u(t) < β2(t), ‖u′‖∞ < R},
Ω1,2 = {u ∈ C1([a, b]) | for all t ∈ [a, b], α1(t) < u(t) < β2(t), ‖u′‖∞ < R}.

We have deg(I − T,Ω1,1) = 1 and deg(I − T,Ω2,2) = 1 and moreover,

1 = deg(I − T,Ω1,2)

= deg(I − T,Ω1,1) + deg(I − T,Ω2,2) + deg(I − T,Ω1,2 \ (Ω1,1 ∪ Ω2,2))

which implies deg(I − T,Ω1,2 \ (Ω1,1 ∪ Ω2,2)) = −1. The existence of a solution
u of (2.8) in Ω1,2 \ (Ω1,1 ∪Ω2,2) ⊂ S follows and hence, by the claims, ‖u‖∞ < r

and u ∈ S is a solution of (2.1). �

To conclude this section, we give concrete conditions on b+ in order to satisfy
the assumption of Theorem 2.4.
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Proposition 2.6. Let b+ ∈ L1(a, b). Assume that b+(t) ≤ π2/(b− a)2 a.e.
on [a, b] with strict inequality on a subset of positive measure. Then the problem

u′′ + pu = 0,

u(t) = 0, u(t+ b− a) = 0,

has only the trivial solution for any t ∈ [a, b].

Proof. This result can be deduced easily from the fact that π2/(b− a)2 is
the first eigenvalue of the Dirichlet problem

u′′ + λu = 0, u(a) = 0, u(b) = 0. �

3. Main result

In this section, we prove an existence result for the case of a repulsive force.
A model example is

(3.1)
u′′ + g(u)u′ − 1

u3
+ γ(t)u = h(t),

u(a) = u(b), u′(a) = u′(b).

Theorem 3.1. Let g ∈ C(R+), h ∈ L1(a, b) and assume f : [a, b] × R+
0 → R

satisfies a Carathéodory condition together with

(a) for any 0 < r < s, there exists a function k ∈ L1(a, b) such that, for
a.e. t ∈ [a, b] and all u ∈ [r, s], we have |f(t, u)| ≤ k(t).

Assume moreover that

(b) there exists lower and upper solutions α and β ∈ C([a, b]) of (1.1) such
that 0 < α, 0 < β on [a, b] and α � β,

(c) (strong force) there exist ρ > 0, ` ∈ L1(a, b) and f̂ ∈ C(]0, ρ]) with∫ ρ

0

f̂−(u) du = +∞ and f̂−(u) = max{−f̂(u), 0},

such that for all u ∈ ]0, ρ] and a.e. t ∈ [a, b]

f(t, u) ≤ f̂(u) and f(t, u) ≤ `(t),

(d) there exists a function γ ∈ L1(a, b) such that γ(t) ≤ (π/(b− a))2 a.e.
on [a, b] with strict inequality on a subset of positive measure and

lim sup
u→+∞

f(t, u)
u

≤ γ(t),

uniformly in t ∈ [a, b].
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Then the problem (1.1) has at least one positive solution.

Remark. We can of course generalize the condition (d) in the same spirit
as in Theorem 2.4.

The main role of the strong force condition (c) is to ensure the existence of
a lower a-priori bound on the solutions. It is important to notice that here we
do not impose that f(t, u) goes to −∞ as u goes to zero as it is the case in [6],
[10], [13] and [16], but that the bound f̂ has a negative part whose primitive
is unbounded as u goes to zero. As oscillating singularities that enter into the
framework of our result, we can consider for example the function

f(t, u) = min
(

−1
u2
√
t− a

sin
1
u
,

1√
t− a

)
+

π2

(b− a)2
u sin

π(t− a)
b− a

.

Notice that some control on the singularity such as assumption (c) is necessary.
This is clear from [11] where it is proved in particular that the problem

u′′ − 1√
u

= h(t),

u(a) = u(b), u′(a) = u′(b),

has no solution for some negative h ∈ C([a, b]).
At last, assumption (d) forces the nonlinearity to be, for large values of

u, “under” the asymptote of the first nontrivial Fuč́ık curve for the periodic
problem, which is also the first eigenvalue of the Dirichlet problem

u′′ + λu = 0, u(a) = 0, u(b) = 0.

Such a condition is somewhat natural if we realize that large solutions of the
periodic problem (3.1) look like solutions of a Dirichlet problem. We also refer
to [16] for a discussion about the relationship between the periodic and the
Dirichlet problem. Also, such a condition cannot be avoided. Indeed, it is
proved in [1] that for some h ∈ C([0, 2π]) the problem

u′′ − 1
u3

+
1
4
u = h(t),

u(0) = u(2π), u′(0) = u′(2π),

has no solution.

Proof of Theorem 3.1. Without loss of generality, we can assume that
ρ ∈ ]0,min{mint β(t),mint α(t)}[.

Let δ ∈ ]0, ρ], define the truncated function

fδ(t, u) =

{
f(t, u) if u ≥ δ,

f(t, δ) if u < δ,
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and consider the modified problem

(3.2)
u′′ + g(|u|)u′ + fδ(t, u) = h(t),

u(a) = u(b), u′(a) = u′(b).

We deduce from Theorem 2.4 that there exists a solution u of (3.2) in

S = {u ∈ C([a, b]) | ∃t1, t2 ∈ [a, b], u(t1) ≥ β(t1), u(t2) ≤ α(t2)}.

Claim 1. There exists R > 0 so that any solution u ∈ S of (3.2) with
0 < δ ≤ ρ satisfies ‖u‖C1 ≤ R.

Repeating the arguments used to prove Claims 1 and 2 of Theorem 2.4, we
obtain R > 0 so that, any solution u ∈ S of (3.2) with 0 < δ ≤ ρ satisfies
‖u‖∞ ≤ R. Hence, there exists C ∈ L1(a, b) such that,

fδ(t, u(t)) ≤ C(t) a.e. on [a, b].

Multiplying (3.2) by u and integrating, we obtain

‖u′‖2
L2 =

∫ b

a

(fδ(t, u(t))− h(t))u(t) dt

=
∫ b

a

(fδ(t, u(t))− h(t))(‖u‖∞ + u(t)) dt

≤
∫ b

a

(C(t)− h(t))(‖u‖∞ + u(t)) dt ≤ 2R(‖C‖L1 + ‖h‖L1).

It is now easy to deduce a bound for ‖u′′‖L1 and another for ‖u′‖∞.

Claim 2. There exists ξ ∈ ]0, ρ] so that any solution u ∈ S of (3.2) with
0 < δ ≤ ξ satisfies u(t) ≥ ξ on [a, b].

Define ξ > 0 such that∫ ρ

ξ

f̂−(u) du > (‖h‖L1 + ‖`‖L1)R+
(

1
2

+ (b− a) max
−R≤u≤R

|g(|u|)|
)
R2

with R given by Claim 1. Let u ∈ S be a solution of (3.2). It follows from
the definition of S that maxt u > ρ. Define the set A = {t ∈ [a, b] | u′(t) ≥ 0}
and suppose by contradiction that there exist t1, t2 ∈ A so that u(t1) = ξ,
u(t2) = ρ and ξ ≤ u(t) ≤ ρ on [t1, t2]. Multiplying (3.2) by u′ and integrating
on B = [t1, t2] ∩A, we get

u′
2(t2)
2

−u
′2(t1)
2

+
∫

B

g(|u(s)|)u′2(s) ds+
∫

B

fδ(s, u(s))u′(s) ds =
∫

B

h(s)u′(s) ds.

From the a priori bounds on ‖u‖∞ and ‖u′‖∞, we obtain then∫
B

g(|u(s)|)u′2(s) ds ≤ (b− a)R2 max
−R≤u≤R

|g(|u|)|
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and it follows that

−
∫

B

fδ(s, u(s))u′(s) ds ≤ R‖h‖L1 +
R2

2
+ (b− a)R2 max

−R≤u≤R
|g(|u|)|.

On the other hand, let B− = {t ∈ B | f̂(u(t)) ≤ 0} and B+ = B \ B−. We
then have the following inequalities∫

B+
fδ(s, u(s))u′(s) ds ≤ R‖`‖L1

and

−
∫

B−
fδ(s, u(s))u′(s) ds ≥ −

∫
B−

f̂(u(s))u′(s) ds =
∫

B

f̂−(u(s))u′(s) ds

≥
∫ t2

t1

f̂−(u(s))u′(s) ds =
∫ ρ

ξ

f̂−(u) du.

We now deduce that∫ ρ

ξ

f̂−(u) du ≤ R‖`‖L1 +R

(
‖h‖L1 +

R

2

)
+ (b− a)R2 max

−R≤u≤R
|g(|u|)|,

which contradicts the definition of ξ.
Conclusion. From the first part of the proof, we know that problem (3.2)

with δ = ξ has a solution. According to Claim 2, this solution solves (1.1). �

Next we give conditions that ensure the existence of the required lower and
upper solutions.

Corollary 3.2. Let g ∈ C(R+), h ∈ L1(a, b) and assume f : [a, b]×R+
0 → R

satisfies a Carathéodory condition together with

(a) any 0 < r < s, there exists a function k ∈ L1(a, b) such that, for a.e.
t ∈ [a, b] and all u ∈ [r, s], we have |f(t, u)| ≤ k(t).

Assume moreover that

(b) for some β > 0 and a.e. t ∈ [a, b], f(t, β)− h(t) ≤ 0,
(c) (Strong force) there exist ρ ∈ ]0, β[, ` ∈ L1(a, b) and f̂ ∈ C(]0, ρ]) with∫ ρ

0

f̂−(u) du = +∞ and f̂−(u) = max{−f̂(u), 0},

such that f(t, u) ≤ f̂(u) and f(t, u) ≤ `(t) for all u ∈ ]0, ρ] and a.e.
t ∈ [a, b],

(d) there exist R > β and f0 ∈ L1(a, b) such that, for a.e. t ∈ [a, b], if
u ≥ R,

f(t, u) ≥ f0(t) and
∫ b

a

f0(t) dt ≥
∫ b

a

h(t) dt,
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(e) there exists a function γ ∈ L1(a, b) such that γ(t) ≤ (π/(b− a))2 a.e.
on [a, b] with strict inequality on a subset of positive measure and

lim sup
u→+∞

f(t, u)
u

≤ γ(t), uniformly in t ∈ [a, b].

Then the problem (1.1) has at least one positive solution.

Proof. We apply Theorem 3.1. We only have to prove the existence of the
lower and upper solutions. We first deduce from (b) that the constant function
β(t) = β is an upper solution for (1.1).

Next, we deduce a lower solution from condition (d) using the following
argument. Let us introduce the function

φ(t) = f0(t)− h(t)− 1
b− a

∫ b

a

(f0(t)− h(t)) dt ∈ L1(a, b)

and prove that, for all c ∈ R, the problem

(3.3)
u′′(t) + g(|u(t) + c|)u′(t) + φ(t) = 0,

u(a) = u(b), u′(a) = u′(b)

has a solution α0 ∈ W 2,1(a, b) such that α0 = (1/(b− a))
∫ b

a
α0(t) dt = 0. To

this aim consider the homotopy

(3.4)
u′′(t) + λ[g(|u(t) + c|)u′(t) + φ(t)] = 0,

u(a) = u(b), u′(a) = u′(b).

Solutions of this problem with mean value zero are fixed points of the operator

Tλ: C̃1([a, b]) → C̃1([a, b]), u 7→ Tλu,

where C̃1([a, b]) = {u ∈ C1([a, b]) |
∫ b

a
u(s) ds = 0},

Tλu = λ

∫ b

a

G(t, s)[g(|u(s) + c|)u′(s) + φ(s)] ds

and G(t, s) is the corresponding Green function.
Let us prove that the fixed points of Tλ are a priori bounded in C([a, b]).

Multiply (3.4) by u and integrate, we obtain, using [9],

‖u′‖2
L2 = λ

∫ b

a

φ(t)u(t) dt ≤ ‖φ‖L1‖u‖∞ ≤
√
b− a

12
‖φ‖L1‖u′‖L2 .

This implies ‖u′‖L2 ≤
√

(b− a)/12 ‖φ‖L1 and ‖u‖∞ ≤ ((b− a)/12)‖φ‖L1 . It is
now easy to bound ‖u′′‖L1 and next ‖u′‖∞. Hence, by the invariance of the
degree along the homotopy, for every c ∈ R, the problem (3.3) has a solution α0

such that α0 = 0 and ‖α0‖∞ ≤ ((b− a)/12)‖φ‖L1 .
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It remains to observe that, if we choose c = ‖φ‖L1(b− a)/12 +R and α0 the
corresponding solution of (3.3),

α(t) = α0(t) + c ≥ R

is the desired lower solution. �

Example 3.3. It is easy to see from Corollary 3.2 that the model example
(3.1) has a solution if γ ∈ L1(a, b) is such that

0 ≤ γ(t) �
(

π

b− a

)2

,

∫ b

a

γ(t) dt > 0,

and h ∈ L1(a, b) is lower bounded.

In the following situation, we do not impose a lower bound on f near +∞.
We use in the sequel the notations h = (1/(b− a))

∫ b

a
h(t) dt and h̃(t) = h(t)−h.

Corollary 3.4. Let g ∈ C(R+), h ∈ L1(a, b) and assume f : [a, b]×R+
0 → R

satisfies a Carathéodory condition together with

(a) for any 0 < r < s, there exists a function k ∈ L1(a, b) such that, for
a.e. t ∈ [a, b] and all u ∈ [r, s], we have |f(t, u)| ≤ k(t).

Assume moreover that

(b) for some β > 0 and a.e. t ∈ [a, b], f(t, β)− h(t) ≤ 0,
(c) (Strong force) there exist ρ ∈ ]0, β[, ` ∈ L1(a, b) and f̂ ∈ C(]0, ρ]) with∫ ρ

0

f̂−(u) du = +∞ and f̂−(u) = max{−f̂(u), 0},

such that for all u ∈ ]0, ρ] and a.e. t ∈ [a, b]

f(t, u) ≤ f̂(u) and f(t, u) ≤ `(t),

(d) there exist R > β and f0 ∈ L1(a, b) such that, for a.e. t ∈ [a, b] and all
u ∈ [R,R+ ((b− a)/6)‖h̃‖L1 ],

f(t, u) ≥ h,

(e) there exists a function γ ∈ L1(a, b) such that γ(t) ≤ (π/(b− a))2 a.e.
on [a, b] with strict inequality on a subset of positive measure and

lim sup
u→+∞

f(t, u)
u

≤ γ(t),

uniformly in t ∈ [a, b].
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Then the problem (1.1) has at least one positive solution.

Proof. We apply again Theorem 3.1. We only have to prove the existence
of the lower and upper solutions. We first deduce from (b) that the constant
function β(t) = β is an upper solution for (1.1).

Next, we deduce a lower solution from condition (d) using the following
argument. As in the proof of Corollary 3.2, we know that, for all c ∈ R, the
problem

(3.5)
u′′(t) + g(|u(t) + c|)u′(t) = h̃(t),

u(a) = u(b), u′(a) = u′(b),

has a solution α0 ∈W 2,1(a, b) such that α0 = 0 and ‖α0‖∞ ≤ ((b− a)/12)‖h̃‖L1 .
Hence α(t) = R+ ((b− a)/12)‖h̃‖L1 + α0(t) is the required lower solution. �

The following model equation

u′′ − 1
u

=
−1√
t− a

, u(a) = u(b), u′(a) = u′(b)

is neither covered by Corollary 3.2 nor by Corollary 3.5 while Theorem 3.12
in [11] ensures the existence of at least one solution. The problem is that, as
h(t) = −1/

√
t− a is not bounded below, condition (b) of Corollaries 3.2 and

3.4 is not satisfied and we do not have, as above, a constant upper solution.
The following result is the counterpart of Corollary 3.2 in case h is not bounded
below.

Theorem 3.5. Let g ∈ C(R+), h ∈ L1(a, b) and assume f : [a, b] × R+
0 → R

satisfies a Carathéodory condition together with

(a) for any 0 < r < s, there exists a function k ∈ L1(a, b) such that, for
a.e. t ∈ [a, b] and all u ∈ [r, s], we have |f(t, u)| ≤ k(t).

Assume moreover that

(b) (Strong force) there exist ρ > 0, ` ∈ L1(a, b) and f̂ ∈ C(]0, ρ]) with∫ ρ

0

f̂−(u) du = +∞ and f̂−(u) = max(−f̂(u), 0),

such that for all u ∈ ]0, ρ] and a.e. t ∈ [a, b]

f(t, u) ≤ f̂(u) and f(t, u) ≤ `(t),

(c)
∫ b

a
`(t) dt <

∫ b

a
h(t) dt,

(d) there exist R > ρ and f0 ∈ L1(a, b) such that, for a.e. t ∈ [a, b], if u ≥ R

f(t, u) ≥ f0(t) and
∫ b

a

f0(t) dt ≥
∫ b

a

h(t) dt,
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(e) there exists a function γ ∈ L1(a, b) such that γ(t) ≤ (π/(b− a))2 a.e.
on [a, b] with strict inequality on a subset of positive measure and

lim sup
u→+∞

f(t, u)
u

≤ γ(t),

uniformly in t ∈ [a, b].

Then the problem (1.1) has at least one positive solution.

Proof. For any 0 < δ ≤ ρ, consider the modified problem

(3.6)
u′′ + g(|u|)u′ + fδ(t, u) = h(t),

u(a) = u(b), u′(a) = u′(b),

where

fδ(t, u) =

{
f(t, δ) + u− δ if u ≤ δ,

f(t, u) if u > δ.

Step 1. Existence of a solution of (3.6). As in the proof of Corollary 3.2, we
deduce from (d) the existence of a lower solution α ≥ R and we know that, for
all c ∈ R, the problem

w′′ + g(|w + c|)w′ = h̃(t)− ˜̀(t),
w(a) = w(b), w′(a) = w′(b),

has a solution w with w = 0 and ‖w‖∞ ≤ ((b− a)/12)‖h̃ − ˜̀‖L1 . Hence, for
every 0 < δ ≤ ρ, β(t) = w(t)− ((b− a)/12)‖h̃− ˜̀‖L1 is an upper solution of (3.6)
and we can apply Theorem 2.4 to prove the existence of a solution of (3.6) in S.

Step 2. A priori bounds. Repeating the arguments used to prove Claims 1
and 2 of Theorem 2.4 and Claim 1 of Theorem 3.1, we obtain R > 0 such
that every solution u ∈ S of (3.6) with 0 < δ ≤ ρ satisfies ‖u‖C1 ≤ R. Now,
integrating (3.6) on [a, b], we deduce from (c) that maxu ≥ ρ. Hence, as in
Claim 1 of Theorem 3.1, we have ξ ∈ ]0, ρ] such that, any solution u ∈ S of (3.6)
with 0 < δ ≤ ρ satisfies u(t) ≥ ξ on [a, b].

Conclusion. By Step 1, we know that problem (3.6) with δ = ξ has a solution
in S and by Step 2, this solution solves (1.1). �

4. A problem without damping

In this section, we treat the case of a nonlinearity f(t, u) which can be of the
form f(t, u) = g(t, u) + (π/(b− a))2u with g bounded from above in L1. Hence
the first resonant case is included. Moreover, the strong force condition becomes
unnecessary. Here we consider the problem

(4.1)
u′′ + f(t, u) = h(t),

u(a) = u(b), u′(a) = u′(b).
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The following result which present an explicit existence condition on h, is an
alternative to Corollary 3.2.

Theorem 4.1. Let h ∈ L1(a, b) and assume f : [a, b] × R+
0 → R satisfies a

Carathéodory condition together with

(a) for any 0 < r < s, there exists a function k ∈ L1(a, b) such that, for
a.e. t ∈ [a, b], and all u ∈ [r, s], we have |f(t, u)| ≤ k(t).

Assume moreover that

(b) for all u > 0 and a.e. t ∈ [a, b],

f(t, u) ≤
(

π

b− a

)2

u,

(c) there exist R > 0 and f0 ∈ L1(a, b) such that, for a.e. t ∈ [a, b], if u ≥ R

f(t, u) ≥ f0(t) and
∫ b

a

f0(t) dt ≥
∫ b

a

h(t) dt,

(d) there exists δ > 0 so that

min
t∈[a,b]

∫ t+b−a

t

h(s) sinπ
s− t

b− a
ds ≥ δ.

Then the problem (4.1) has at least one positive solution.

Proof. The modified problem: For r > β0 := δ(b− a)/2π, we define the
truncated function

fr(t, u) =


f(t, β0) +

(
π

b− a

)2

(u− β0) if u ≤ β0,

f(t, u) if β0 < u ≤ r,

f(t, r) if r < u,

and consider the modified problem

(4.2)
u′′ + fr(t, u) = h(t),

u(a) = u(b), u′(a) = u′(b).

The function β(t) = w(t) − B is an upper solution of (4.2) if B > 0 is large
enough and w solves the problem

w′′ = h(t)− f(t, β0)−
1

b− a

∫ b

a

(h(s)− f(s, β0)) ds,

w(a) = w(b), w′(a) = w′(b).

Next, we deduce a lower solution as in the proof of Corollary 3.2. At last, we
notice that for some k ∈ L1(a, b), all u ∈ R and a.e. t ∈ [a, b],

fr(t, u) ≤ sup
β0≤u≤r

f(t, u) ≤ k(t).
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We deduce now from Theorem 2.4 the existence of a solution u of (4.2).

Claim 1. Solutions u of the modified problem (4.2) are such that u(t) ≥
δ(b− a)/2π = β0 on [a, b].

Let t0 be such that u(t0) = mint∈[a,b] u(t). Multiplying equations (4.2) by
sinπ((t− t0)/(b− a)) and integrating on [t0, t0 + b− a], we obtain

δ ≤
∫ t0+b−a

t0

h(t) sinπ
t− t0
b− a

dt =
∫ t0+b−a

t0

[u′′(t) + fr(t, u(t))] sinπ
t− t0
b− a

dt

≤
∫ t0+b−a

t0

[
u′′(t) +

(
π

b− a

)2

u(t)
]

sinπ
t− t0
b− a

dt =
2π
b− a

u(t0).

Claim 2. There exists M > 0 so that for any r > R, solutions u ∈ S of (4.2)
are such that u ≤M .

Let k ∈ L1(a, b) be so that for all r > R, u ≥ β0 and a.e. t ∈ [a, b]

h(t)− fr(t, u) ≤ h(t)−min{ min
β0≤u≤R

f(t, u), f0(t)} ≤ k(t).

By periodicity, there exists t0 ∈ [a, b] such that u′(t0) = 0 and, extending u by
periodicity,

u′(t) =
∫ t

t0

u′′(s) ds ≤
∫ t

t0

k(s) ds ≤ ‖k‖L1 for all t ∈ [t0, t0 + b− a],

u′(t) = −
∫ t0

t

u′′(s) ds ≥ −‖k‖L1 for all t ∈ [t0 − b+ a, t0],

i.e. ‖u′‖∞ ≤ ‖k‖L1 .
Next, as u ∈ S, there exists some t ∈ [a, b] so that u(t) ≤ ‖α‖∞. Hence, we

can write

u(t) = u(t) +
∫ t

t

u′(s) ds ≤ ‖α‖∞ + ‖k‖L1(b− a) =: M.

Conclusion. It follows now from Claims 1 and 2 that problem (4.2) with
r ≥ max(M,R) has a solution u ∈ [β0,M ]. This solution solves the problem
(4.1). �

Remark 4.2. We only need condition (b) satisfied for all u ≥ δ(b− a)/2π.

Example 4.3. Let h ∈ L1(a, b) and ν > 0. It is then easy to see from
Theorem 4.1 that the problem

u′′ − 1
uν

+
(

π

b− a

)2

u = h(t),

u(a) = u(b), u′(a) = u′(b)
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has at least one positive solution if h is bounded below by a positive constant as
well as for

h(t) = −1 if t ∈ [a, a+ ε], h(t) = 1 if t ∈ [a+ ε, b],

if ε is small enough.
Notice also that, for k > 0, the existence of at least one solution of

u′′ − k√
u

= −h(t),

u(a) = u(b), u′(a) = u′(b),

can be deduced from Theorem 4.1 for h with ‖h+‖L1 small enough.
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