
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 22, 2003, 105–113

REMOVING COINCIDENCES OF MAPS
BETWEEN MANIFOLDS OF DIFFERENT DIMENSIONS

Peter Saveliev

Abstract. We consider sufficient conditions of local removability of coin-

cidences of maps f, g: N →M , where M , N are manifolds with dimensions

dim N ≥ dim M . The coincidence index is the only obstruction to the re-
movability for maps with fibers either acyclic or homeomorphic to spheres

of certain dimensions. We also address the normalization property of the

index and coincidence-producing maps.

1. Introduction

Let Nn+m and Mn be orientable compact smooth manifolds (possibly with
boundaries ∂N , ∂M), n ≥ 2, and suppose f, g:N →M are maps. We shall call
m the codimension. The coincidence set is a compact subset of N defined by
Coin(f, g) = {x ∈ N : f(x) = g(x)}.

The Coincidence Problem asks what can be said about the coincidence set.
When m = 0, the main tools for studying the problem is the Lefschetz num-
ber L(f, g) defined as the alternating sum of traces of certain endomorphism
on the (co)homology group of M . The famous Lefschetz coincidence theorem
provides a sufficient condition for the existence of coincidences: if L(f, g) 6= 0
then Coin(f, g) 6= ∅. Under some circumstances the converse is also true (up to
homotopy): L(f, g) = 0 → there are maps f ′, g′ homotopic to f, g respectively
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such that Coin(f ′, g′) = ∅. Now the problem reads as follows: “Can we remove
coincidences by a homotopy of f and g?”

Let K = Coin(f, g). By H∗ (H∗) we denote the integral singular (co)homolo-
gy. For any space Y we define the diagonal map d:Y → Y ×Y by d(x) = (x, x).
Let

Y × = (Y × Y, Y × Y \ d(Y )).

For codimension m = 0, the (cohomology) coincidence index Ifg of (f, g) is
defined as follows. Since all coincidences lie in K, the map (f, g): (N,N \K)→
M× is well defined. Let τ be the generator of Hn(M×) = Z and ON the
fundamental class of N around K, then let

Ifg = 〈(f, g)∗(τ), ON 〉 ∈ Z.

The coincidence index satisfies the following natural properties.

(1) Homotopy Invariance: the index is invariant under homotopies of f, g.
(2) Additivity: the index over a union of disjoint sets is equal to the sum

of the indices over these sets.
(3) Existence of Coincidences: if the index is nonzero then there is a coin-

cidence.
(4) Normalization: the index is equal to the Lefschetz number.
(5) Removability: if the index is zero then the coincidence set can be re-

moved by a homotopy.

While the coincidence theory for codimension m = 0 is well developed (see
[1, VI.14], [4], [13], [17, Chapter 7]), very little is known beyond this case. For
m > 0, the vanishing of the coincidence index does not always guarantee re-
movability. For codimension m = 1, the secondary obstruction to removability
was considered by Fuller ([7], [8]) for M simply connected. In the context of
Nielsen Theory the sufficient conditions of the local removability for m = 1
were studied by Dimovski and Geoghegan ([6]), Dimovski ([5]) for the projection
f :M × [0, 1]→M , and by Jezierski ([12]) for M , N subsets of Euclidean spaces
or M parallelizable. Necessary conditions of the global removability for arbitrary
codimension were considered by Gonçalves, Jezierski, and Wong ([9, Section 5])
with N a torus and M a nilmanifold (see also [10]).

The main purpose of this note is to provide sufficient conditions of remov-
ability of coincidences for some codimensions higher than 1. Under a certain
technical condition, the coincidence index defined below is the only obstruction
to removability. This condition holds when

(1) M is a surface,
(2) fibers f−1(y) of f are acyclic, or
(2) fibers of f are m-spheres for m = 4, 5, 12 and n large.
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The main theorem partially complements the results listed above. The proof
follows and extends the one of Brown and Schirmer ([4, Theorem 3.1]) for codi-
mension 0 (see also Vick [17, p. 194]).

An area of possible applications is discrete dynamical systems. A dynamical
system on a manifold M is determined by a map f :M → M . Then the next
position, or state, f(x) depends only on the current one, x ∈ M . Suppose
we have a fiber bundle F → N

g−→ M and a map f :N → M . Then this is a
parametrized dynamical system, where the next position f(x, s) depends not only
on the current one, x ∈ M , but also the “input”, s ∈ F . Then the Coincidence
Problem asks whether there are a position and an input such that the former
remains unchanged, f(x, s) = x. A parametrized dynamical system can also be
a model for a non-autonomous ordinary differential equation: M is the space,
F is the time, and N is the space-time.

2. Normalization property

For nonzero codimension the homology coincidence index I ′fg = (f, g)∗(ON )
is replaced with the homology coincidence homomorphism (see [3])

I ′fg = (f, g)∗:H∗(N,N \ V )→ H∗(M×),

where V is a neighbourhood of Coin(f, g). Let π:M×M →M be the projection
on the first factor, then ζ = (M,π,M ×M,d) is the tangent microbundle of M

and the Thom isomorphism ϕ:H∗(M×)→ H∗(M) is given by ϕ(x) = π∗(τ _ x),
where τ ∈ Hn(M×) is the Thom class of ζ. The Lefschetz number is replaced
with the Lefschetz homomorphism Λfg:H∗(N,N \ V ; Q)→ H∗(M ; Q) of degree
(−n) (see [15]) defined as follows. Suppose f(N \ V ) ⊂ ∂M . For each z ∈
H∗(N,N \ V ), let

fz
! = (f∗D−1) _ z,

where D:H∗(M,∂M ; Q) → Hn−∗(M ; Q) is the Poincaré–Lefschetz duality iso-
morphism D(x) = x _ OM . Now let

Λfg(z) =
∑

k

(−1)k(k+m)
∑

j

xk
j _ g∗f

z
! (ak

j ),

where {ak
1 , . . . , ak

mk
} is a basis for Hk(M) and {xk

1 , . . . , xk
mk
} the corresponding

dual basis for Hk(M). Then the Lefschetz-type coincidence theorem ([15, The-
orem 6.1]) states that ϕI ′fg = Λfg. This is the Normalization Property, which
makes the coincidence homomorphism computable by algebraic means.

Since obstructions to removability of coincidences lie in certain cohomology
groups, we need a cohomological analogue of the theory outlined above. Just as
in the homology case, the cohomology coincidence index can be replaced with
the cohomology coincidence homomorphism.
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Definition 2.1. Let C be an isolated subset of Coin(f, g), W,V neighbour-
hoods of C, C ⊂ V ⊂ V ⊂W ⊂ N , and W ∩ Coin(f, g) = C. Then let

Ifg = (f, g)∗:H∗(M×)→ H∗(W,W \ V ).

However in this paper we consider only the restriction of Ifg to Hn(M×) = Z.
Therefore the only thing that matters is the class Ifg(τ) ∈ Hn(W,W \V ), where
τ is the generator of Hn(M×) = Z, which will still be called the (cohomology)
coincidence index. This index satisfies the properties of additivity, existence of
coincidences and homotopy invariance proven similarly to Lemmas 7.1, 7.2, 7.4
in [17, p. 190–191], respectively.

We will state the Normalization Property under assumptions similar to the
ones in [14, Section 2], [15, Section 5]. Assume that f(W \ V ) ⊂ ∂M .

Definition 2.2. For each z ∈ Hn(W,W \ V ; Q), define homomorphisms
Θq:Hq(M,∂M ; Q)→ Hq(M,∂M ; Q) by

Θq = D−1g∗(f∗ _ z).

Then
Lz(f, g) =

∑
q

(−1)qTrΘq

is called the (cohomology) Lefschetz number with respect to z of the pair (f, g).

Theorem 2.3 (Normalization). Suppose that f(W \ V ) ⊂ ∂M . Then for
each z ∈ Hn(W,W \ V ; Q),

〈Ifg(τ), z〉 = (−1)nLz(f, g).

Therefore, if Lz(f, g) 6= 0 then Coin(f, g) 6= ∅.

Proof. The proof repeats the computation in the proof of Theorem 7.12
in [17, p. 197] with Lemmas 7.10 and 7.11 replaced with their generalizations,
Lemmas 3.1 and 3.2 in [14]. �

The theorem is true even when N is not a manifold.

3. Local removability

Let f : S3 → S2 be the Hopf map. Then f is onto, in other words, it has a co-
incidence with any constant map c. However the coincidence homomorphism
Ifc:H∗((S2)×) → H∗(S3) is zero. Therefore Theorem 2.3 fails to detect coin-
cidences. In fact, f has a coincidence with any map homotopic to c (see [2]),
therefore the converse of the Lefschetz coincidence theorem for spaces of different
dimensions fails in general. Our main result below is a partial converse.
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Theorem 3.1 (Local Removability). Suppose f(C) = g(C) = {u}, u ∈
M \ ∂M , and the following condition is satisfied:

(A) Hk+1(W,W \ V ;πk(Sn−1)) = 0 for k ≥ n + 1.

Then Ifg(τ) = 0 implies that C can be removed via a local homotopy of f ;
specifically, there exists a map f ′:N → M homotopic to f relative N \W such
that

W ∩ Coin(f ′, g) = ∅.

The proof uses the classical obstruction theory. Condition (A) guarantees
that only the primary obstruction to the local removability, i.e. the coincidence
index, may be nonzero.

Proof. We can assume that U = Dn is a neighbourhood of u in M such
that f(W ) = U and g(W ) ⊂ U . Define Q: Dn × Dn \ d(Dn) → Dn \ {0} by
Q(x, y) = 1/2(y − x). Consider the following commutative diagram

Hn−1(Sn−1)

'

yp∗

Hn−1(Dn \ {0}) δ∗−−−−→
'

Hn(Dn, Dn \ {0})yQ∗ '

yQ∗

Hn−1(Dn × Dn \ d(Dn)) δ∗−−−−→ Hn((Dn)×) k∗←−−−−
'

Hn(M×)y(f,g)∗

y(f,g)∗ �Ifg

Hn−1(W \ V ) −−−−→
δ∗

Hn(W,W \ V ).

Here δ∗ is the connecting homomorphism, k the inclusion, p the radial projection.
Let q = pQ(f, g):W \ V → Sn−1. Then q∗ is given in the first column of the
diagram.

Now we apply the Extension Theorem, Corollary VII.13.13 in [1, p. 509].
Suppose Ifg = 0. Then from the commutativity of the diagram, δ∗q∗ = 0.
Thus the primary obstruction to extending q to q′:W → Sn−1, cn+1(q) = δ∗q∗,
vanishes. By condition (A) the other obstructions ck+1(q), k ≥ n, also vanish.

Next, q has the form

q(x) =
g(x)− f(x)
||g(x)− f(x)||

.

Define a map f ′:W → Dn by f ′(x) = g(x) − a(x)q′(x), where a:W → (0,∞)
satisfies the following:

(1) a is small enough so that f ′(x) ∈ Dn for all x ∈W ,
(2) a(x) = ||g(x)− f(x)|| for all x ∈W \ V .
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Then Coin(f ′, g) = ∅ since q′(x) 6= 0.
To complete the proof observe that f ′ is homotopic to f |W relative W \ V

because Dn is convex. �

The implications of this result for Nielsen theory will be addressed in a forth-
coming paper.

4. Further results

Suppose C = f−1(y), where y ∈ M \ ∂M is a regular value for both f and
f |∂N . Then C is a neat submanifold of N and it has a tubular neighbourhood T .
Now T can be treated as a disk bundle (Dm, Sm−1) → (T, T ′) → C. Therefore
condition (A) takes the form

(A’) Hk+1(T, T ′;πk(Sn−1)) = 0 for k ≥ n + 1.

In case C is a boundaryless m-submanifold of N , we have Hn+m(T, T ′;G) =
Hn+m(T, ∂T ;G) = G⊕ . . .⊕G. Therefore if we let k = n+m−1, then condition
(A’) implies the following:

(A∗) πn+m−1(Sn−1) = 0.

This restriction cannot be relaxed, in the following sense. Suppose

[h] ∈ πn+m−1(Sn−1) \ {0}.

Then h can be extended to a map f : Dn+m → Dn ⊂ M by setting f(0) = 0
and f(x) = ||x||h(x/||x||) for x ∈ Dn+m \ {0}. Hence any map homotopic to f

relative Sn+m−1 is onto [1, Theorem VII.5.8, p. 448]. Therefore coincidences of
f and g, where g is constant, cannot be locally removed.

Below we treat condition (A) as a restriction on an arbitrary fiber C =
f−1(y), y ∈M \ ∂M of f .

Lemma 4.1. Suppose for 1 ≤ p ≤ m, the submanifold C satisfies

(a) Hp(C)⊗ πn+p−1(Sn−1) = 0, and
(b) Tor(Hp+1(C), πn+p−1(Sn−1)) = 0.

Then C satisfies condition (A).

Proof. By the Thom Isomorphism Theorem (see [1, Section VI.11]), we
have

Hk+1(T, T ′;πk(Sn−1)) = Hk+1−n(C;πk(Sn−1)).

By condition (b) and the Universal Coefficient Theorem, Corollary 25.14 in [11,
p. 263], we have also

Hp(C;πk(Sn−1)) = Hp(C)⊗ πk(Sn−1). �
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It is known (see [16]) that πn+m−1(Sn−1) = 0, for the following values of m

and n:

(1) m = 4 and n ≥ 6,
(2) m = 5 and n ≥ 7,
(3) m = 12 and n = 7, 8, 9, 14, 15, 16, . . .

Corollary 4.2. The conclusion of Theorem 3.1 holds when

(a) M is a surface,
(b) fibers of f are acyclic, or
(c) fibers of f are unions of homology m-spheres for the above values of m

and n.

Proof. (a) n = 2 and πn+p−1(Sn−1) = 0 for all p > 0.
(b) Hp(C) = 0 for all p > 0.
(c) Either πn+p−1(Sn−1) = 0 or Hp(C) = Hp+1(C) = 0 for all p > 0. Thus

the two conditions of Lemma 4.1 are satisfied. Now the conclusion follows from
Theorem 3.1. �

Corollary 4.3. Let F → Nn+m g−→ Mn be an m-sphere bundle with the
above values of m and n, or an m-disk bundle. Then the set C of stationary
points of the parametrized dynamical system F → Nn+m f,g−→Mn can be removed
via a local homotopy of f provided Ifg = 0.

5. Coincidence-producing maps

A boundary preserving map f : (N, ∂N) → (M,∂M) is called coincidence-
producing if every map g:N →M has a coincidence with f . Brown and Schirmer
in [4, Theorem 7.1] showed that if M is acyclic, dim N = dim M = n ≥ 2,
then f is coincidence-producing if and only if f∗:Hn(N, ∂N) → Hn(M,∂M) is
nonzero. Based on the Normalization and Removability Properties we prove a
generalization of this theorem. We call a map f : (N, ∂N) → (M,∂M) weakly
coincidence-producing ([14, Section 5]) if every map g:N → M with g∗ = 0
(in reduced homology) has a coincidence with f . In particular every weakly
coincidence-producing map is onto.

A corollary to the Lefschetz type coincidence theorem ([14, Corollary 5.1])
states that if f∗:Hn(N, ∂N) → Hn(M,∂M) is nonzero then the appropriate
Lefschetz homomorphism is nontrivial and, therefore, f is weakly coincidence-
producing. For the converse we need condition (A) as an additional assumption.

Theorem 5.1. Suppose f is boundary preserving and suppose that each fiber
C of f satisfies condition (A). Then the following are equivalent:

(a) f is weakly coincidence-producing,
(b) f∗:Hn(N, ∂N)→ Hn(M,∂M) is nonzero.
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Proof. Suppose f∗:Hn(N, ∂N) → Hn(M,∂M) is zero. Choose g to be
identically equal to y ∈ M \ ∂M . Then C = Coin(f, g) = f−1(y) ⊂ N \ ∂N .
Recall Ifg = (f, g)∗:H∗(M×) → H∗(N, ∂N). Then for all z ∈ Hn(N, ∂N), we
have the following.

〈IN
fg(τ), z〉 = (−1)nLz(f, g) by Theorem 2.3

= (−1)nTrΘn because g∗ = 0

= (−1)n〈f∗(OM ), z〉 where OM is the dual of OM

= (−1)n〈OM , f∗(z)〉 = 0.

Hence Ifg(τ) = 0. Therefore by Theorem 3.1 the coincidence set can be removed.
Thus f is not weakly coincidence-producing �

Condition (A) is clearly satisfied for m = 0. Therefore Brown and Schirmer’s
Theorem ([4, Theorem 7.1]) follows. Our theorem also includes the well-known
fact that a map has degree 0 if and only if it can be deformed into a map which
is not onto.

Examples of maps satisfying condition (a) of the theorem can be found in [4,
Section 7], see also [15, Section 6].

I would like to thank the referee for a number helpful suggestions.
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