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A NOTE ON ADDITIONAL PROPERTIES
OF SIGN CHANGING SOLUTIONS

TO SUPERLINEAR ELLIPTIC EQUATIONS

Thomas Bartsch — Tobias Weth

Abstract. We obtain upper bounds for the number of nodal domains

of sign changing solutions of semilinear elliptic Dirichlet problems using
suitable min-max descriptions. These are consequences of a generalization

of Courant’s nodal domain theorem. The solutions need not to be isolated.

We also obtain information on the Morse index of solutions and the location
of sub- and supersolutions.

1. Introduction

In this paper we are concerned with sign changing solutions of the semilinear
Dirichlet problem

(1.1)

{
−∆u = f(x, u) for x ∈ Ω,

u = 0 for x ∈ ∂Ω,

on a smooth, bounded domain Ω ⊂ RN , N ≥ 2. We make the following assump-
tions:

(f1) f ∈ C1(Ω× R, R), f(x, 0) = 0 for all x ∈ Ω.
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(f2) There exists p ∈ (2, 2N/(N − 2)), resp. p ∈ (2,∞) in case N = 2, such
that

|f ′(x, t)| ≤ C(1 + |t|p−2) for all x ∈ Ω, t ∈ R,

where f ′ := ∂f/∂t.
(f3) f ′(x, t) > f(x, t)/t for all x ∈ Ω, t 6= 0.
(f4) There exist R > 0 and θ > 2 such that 0 < θF (x, t) ≤ tf(x, t) for all

x ∈ Ω, |t| ≥ R.

Here F (x, t) :=
∫ t

0
f(x, s) ds is a primitive of f . Clearly these assumptions hold

for

(1.2) f(x, t) =
d∑

i=1

ai(x)|t|pi−2t,

where 2 ≤ p1 < . . . < pd < 2N/(N − 2), a1, . . . , ad are bounded nonnegative C1-
functions and ad is bounded from below by a positive constant. In fact, ai ∈ L∞

is sufficient, since the differentiability of f with respect to x is not necessary in
(f1).

Problem (1.1) has been studied extensively, and much progress has been made
recently concerning the existence of sign changing solutions, see [1]–[4], [8], [10],
[11], [14], [15]. The aim of this paper is to gain further information on sign
changing solutions, in particular on the nodal structure, extremality properties
and the Morse index with respect to the energy functional

Φ: E := H1
0 (Ω) → R, Φ(u) =

1
2

∫
Ω

|∇u(x)|2 dx−
∫

Ω

F (x, u(x)) dx.

It is a well known consequence of (f1) and (f2) that Φ ∈ C2(E) and that critical
points of Φ are weak solutions of (1.1). Let λ1 < λ2 ≤ . . . be the Dirichlet eigen-
values of the operator −∆− f ′(x, 0) on Ω. Our main results are the following:

Theorem 1.1. Suppose (f1)–(f4) hold and λ2 > 0. Then (1.1) has a sign
changing solution u with the following properties:

(a) u has precisely two nodal domains.
(b) u has Morse index 2.
(c) If u < u is a subsolution of (1.1), then u ≤ 0.
(d) If u > u is a supersolution of (1.1), then u ≥ 0.

Here and in the following we write u < v if u ≤ v but u 6= v. Moreover,
u ∈ C2(Ω) ∩ E is called a subsolution if −∆u ≤ f(x, u), and a supersolution if
−∆u ≥ f(x, u).

Theorem 1.1 improves a result of the first author ([1], see also Bartsch
et al. [2]) as well as one of Castro, Cossio and Neuberger ([8]). In [8] no ex-
tremality properties of the form (c) and (d) are considered. Note also that the
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approach of [8] requires λ1 > 0 which we do not need. Moreover, the state-
ment on the Morse index of u has been proved in [8] only under the condition
that u is isolated. In [1] properties (c) and (d) are established for u, whereas
(a) and (b) could only be shown under the hypothesis that all sign changing
solutions of (1.1) are isolated – a hypothesis which is generic (see [7]) but can
almost never be checked. We do not need such a hypothesis here, not even for
the calculation of the Morse index of u.

Theorem 1.2. Suppose (f1)–(f4) hold and f is odd in u. Then there exists
a sequence of distinct solutions ±uk, k ≥ min{l : λl > 0}, of (1.1) with the
properties:

(a) ‖uk‖E →∞ as k →∞.
(b) uk changes sign for k ≥ 2.
(c) uk has at most k nodal domains.
(d) If u < uk is a subsolution of (1.1), then u ≤ 0.
(e) If u > uk is a supersolution of (1.1), then u ≥ 0.

Theorem 1.2 is an improvement of [1, Theorem 7.3, see also Theorem 1.1];
again we do not require the sign changing solutions of (1.1) to be isolated. How-
ever, this condition is needed to calculate the Morse index of uk (cf. [1]).

The proofs of the above theorems are motivated by the approach used in [1].
In particular, we recover the extremality properties using the same idea. How-
ever, we construct the critical value Φ(u) of the solution u in Theorem 1.1 in
a somewhat different way compared to [1]. This new version is important in
order to obtain the additional properties (a) and (b) which will be deduced by
a closer investigation of the construction of Φ(u). To be more precise, consider
the set

M := {u ∈ E : u+ 6= 0, u− 6= 0,Φ′(u)u+ = Φ′(u)u− = 0}.
Here we set u+ = max{u, 0} and u− = min{u, 0}. The set M is not a manifold,
and we do not expect it to be a complete metric space if λ1 < 0. The condition
λ1 > 0 required in [8] implies that M is a closed subset of E, hence a complete
metric space. Obviously, it contains all sign changing solutions of (1.1). Now
put

(1.3) β := inf
u∈M

Φ(u).

We will show that Φ(u) = β, i.e. u is a least energy sign changing solution. Thus
we also obtain that the infimum of Φ on M is achieved by a critical point of Φ.
We then conclude by the following result.

Theorem 1.3. Suppose (f1)–(f4) hold. Then every weak solution u ∈ M

with Φ(u) = β has Morse index 2 and has precisely 2 nodal domains.
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In fact, the nodal property is not difficult to prove, and it has already been
used in [8] in a special case. The statement on the Morse index is new.

Property (c) in Theorem 1.2 also follows from an investigation of critical
levels. We need the following nodal estimate which is valid for odd nonlinearities.

Theorem 1.4. Suppose (f1)–(f4) hold, and that f is odd in u. For n ∈ N
put

(1.4) βn = inf
V≤E

dim V≥n

supΦ(V ).

Then every weak solution u ∈ E of (1.1) with Φ(u) ≤ βn has at most n nodal
domains.

This estimate holds under considerably weaker conditions than (f1)–(f4), see
Section 2 below. It seems to be more useful then the well-known nodal estimates
in terms of the Morse index, cf. [5], [2] and [1]. Note in particular that Theorem
1.4 immediately provides the nodal properties proven in [5]. Note also that (1.4)
bears a resemblance to the variational characterization of the n-th eigenvalue of
−∆ − g in case that f(x, u) = g(x)u, i.e. in case that f is linear in u. Due to
this similarity Theorem 1.4 may be viewed as a nonlinear version of Courant’s
nodal domain theorem; cf. [9].

The paper is organized as follows. In Section 2 we prove the nodal estimates
contained in Theorem 1.3 and Theorem 1.4. In Section 3 we calculate the Morse
index of least energy sign changing solutions. Section 4 contains the proofs of
Theorem 1.1 and Theorem 1.2.

2. Estimates for the number of nodal domains

In this section we replace the assumptions (f1)–(f4) by the following weaker
hypotheses.

(A1) f : Ω×R → R is a Caratheodory function and f(x, 0) = 0 for all x ∈ Ω.
(A2) There exist p ∈ (2, 2N/(N − 2)], resp. p ∈ (2,∞) in case N = 2, and

C > 0 such that |f(x, t)| ≤ C(|t|+ |t|p−1) for all t ∈ R and a.e. x ∈ Ω.
(A3) The function t 7→ f(x, t)/|t| is nondecreasing on R \ {0} for a.e. x ∈ Ω.

We will sometimes also need the following stronger variant of (A3).

(Ã3) The function t 7→ f(x, t)/|t| is strictly increasing on R \ {0} for a.e.
x ∈ Ω.

Note that for nonlinearities of the form (1.2) condition (A3) is a consequence of
the sign condition

ai(x) ≥ 0 for x ∈ Ω, i = 1, . . . , d.
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In view of (A2) the nonlinearity f may have critical growth at infinity. Never-
theless (A2) ensures that every weak solution u of (1.1) is at least continuous
in Ω. Indeed, combining (A2) with Sobolev embeddings, we deduce that

f( · , u( · ))
u

∈ LN/2(Ω).

Hence the Brézis–Kato Theorem ([6]) yields u ∈ Lq
loc(Ω) for every 2 ≤ q < ∞.

In particular there is a number s > N/2 such that f( · , u( · )) ∈ Ls
loc(Ω), thus u

is continuous by elliptic regularity.
Our nodal estimates are based on the following lemma.

Lemma 2.1. Suppose (A1)–(A3) hold, and consider u ∈ E \ {0} with
Φ′(u)u = 0. Then

(2.1) 0 ≤ Φ(u) = sup
t≥0

Φ(tu).

If in addition (Ã3) is satisfied, then Φ(u) > 0.

Proof. For t ≥ 0 we define h(t) := Φ(tu). Then h(0) = 0, and

h′(t) = Φ′(tu)u = t

∫
Ω

(
|∇u|2 − f(x, tu)

tu
u2

)
for t > 0. Hence (A3) implies that t 7→ h′(t)/t is nonincreasing on (0,∞), and
thus the set S := {t > 0 : h′(t) = 0} is a subinterval of (0,∞) which contains
t = 1 by assumption. Let b ≤ ∞ be the right endpoint of S. Then h is strictly
decreasing on (b,∞), whereas

0 ≤ max
t∈[0,b]

h(t) ≤ max
t∈S

h(t) = h(1).

This yields (2.1). If in addition (Ã3) holds, then t 7→ h′(t)/t is strictly decreasing
on (0,∞). Hence S = {1}, and h′(t) > 0 for 0 < t < 1. We conclude that
Φ(u) = h(1) > h(0) = 0, as claimed. �

Now we consider the set M and the values β, βn, n ∈ N, as defined in the
introduction.

Theorem 2.2. If (A1)–(A3) hold and f is odd in u, then every weak solution
u ∈ E of (1.1) with 0 < Φ(u) ≤ βn has at most n nodal domains.

Theorem 2.3. Suppose (A1), (A2) and (Ã3) hold. Then every weak solution
u ∈ M of (1.1) with 0 < Φ(u) ≤ β has precisely 2 nodal domains.

It is easily seen that (f1)–(f3) imply (A1), (A2) and (Ã3), hence the nodal
property asserted in Theorem 1.3 immediately follows from Theorem 2.3. More-
over, Theorem 1.4 follows from Theorem 2.2.
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Proof of Theorem 2.2. Suppose in contradiction that u has more than
n nodal domains. Being given a choice Ω1, . . . ,Ωn of such domains, we define
functions vi ∈ E, vi 6= 0, i = 1, . . . , n, by

(2.2) vi(x) :=

{
u(x) for x ∈ Ωi,

0 for x ∈ Ω \ Ωi.

It has been shown in [13, Lemma 1] that this defines elements of E. For v :=
u−

∑n
i=1 vi we have

0 < Φ(u) = Φ(v) +
n∑

i=1

Φ(vi).

Fixing an appropriate choice of Ω1, . . . ,Ωn, we may assume that Φ(v) > 0. Note
also that

Φ′(vi)vi = Φ′(u)vi = 0,

and since Φ(−vi) = Φ(vi) we have

Φ(vi) = sup
t∈R

Φ(tvi)

by Lemma 2.1. Hence, with V denoting the span of v1, . . . , vn, we obtain

βn ≤ sup
w∈V

Φ(w) =
n∑

i=1

Φ(vi) = Φ(u)− Φ(v) < Φ(u).

This however contradicts the assumption Φ(u) ≤ βn. �

Proof of Theorem 2.3. Suppose in contradiction that u has at least three
nodal domains. We choose nodal domains Ω1,Ω2 such that v1 ≥ 0, v2 ≤ 0 for
the associated functions v1, v2 ∈ H1

0 defined as in (2.2). Clearly v1 + v2 ∈ M ,
and the function v := u− v1 − v2 satisfies Φ′(v)v = 0. This implies Φ(v) > 0 by
Lemma 2.1, hence β ≤ Φ(v1 + v2) < Φ(u), contrary to the assumption. �

3. The Morse index of sign changing solutions with least energy

We assume that (f1)–(f4) are in force throughout this section. Consider the
Hilbert space H := E ∩ H2(Ω), endowed with the scalar product from H2(Ω).
Moreover, denote by ‖ · ‖H the induced norm. We need the following technical
lemma concerning the functionals

Q±:E → R, Q±(u) =
∫

Ω

|∇u±|2 dx =
∫

Ω

∇u · ∇u± dx,

Ψ±:E → R, Ψ±(u) =
∫

Ω

f(x, u)u± dx.
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Lemma 3.1.

(a) Q± is differentiable at u ∈ H with derivative Q′
±(u) ∈ E′ given by

Q′
±(u)v =

∫
±u>0

((−∆u)v +∇u∇v) dx.

(b) Q±|H ∈ C1(H).
(c) Ψ± ∈ C1(E) with derivative given by

Ψ′±(u)v =
∫

Ω

f ′(x, u±)u±v dx +
∫

Ω

f(x, u±)v dx.

Proof. (a) Let u, v ∈ H, and consider for t 6= 0 the characteristic functions
χt

j , j = 1, 2, 3, resp. χ4 associated with the sets

Ct
1 := {x ∈ Ω | u(x) + tv(x) ≥ 0, u(x) > 0},

Ct
2 := {x ∈ Ω | u(x) + tv(x) ≥ 0, u(x) < 0},

Ct
3 := {x ∈ Ω | u(x) + tv(x) < 0, u(x) > 0},

C4 := {x ∈ Ω | u(x) = 0},

respectively. Since ∇u = 0 and −∆u = 0 a.e. on C4 (see [12, Lemma 7.7], for
instance), we have

1
t
(Q+(u + tv)−Q+(u))

=
1
t

∫
Ω

(
∇(u + tv) · ∇(u + tv)+ −∇u∇u+

)
=

1
t

(∫
Ω

(
(−∆u)(u + tv)+ + (∆u)u+

)
+ t

∫
Ω

∇v · ∇(u + tv)+
)

=
1
t

∫
Ω

χt
1

(
(−∆u)(u + tv) + (∆u)u

)
+

∫
Ω

χt
1∇v · ∇(u + tv)

+
1
t

∫
Ω

χt
2(−∆u)(u + tv) +

∫
Ω

χt
2∇v · ∇(u + tv)

+
1
t

∫
Ω

χt
3(∆u)u + t

∫
Ω

χ4∇v · ∇v+

=
∫

Ω

χt
1(−∆u)v +

∫
Ω

χt
1∇u · ∇v + o(1)

as t → 0. The last equality is a consequence of the fact that χt
2, χ

t
3 → 0 pointwise

a.e. on Ω for t → 0, hence Lebesgue’s theorem yields∫
Ω

χt
2((−∆u)v +∇v · ∇u) → 0

and, using the definition of χt
2, χ

t
3,∣∣∣∣ ∫

Ω

(χt
3 − χt

2)(∆u)
u

t

∣∣∣∣ ≤ ∫
Ω

(χt
2 + χt

3)|∆u| · |v| → 0 for t → 0.
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We conclude that

Q′
+(u)v = lim

t→0

(∫
Ω

χt
1(−∆u)v +

∫
Ω

χt
1∇u · ∇v

)
=

∫
u>0

((−∆u)v +∇u · ∇v),

as claimed. The proof for Q− proceeds analogously.
(b) For a sequence un → u ∈ H we have

|(Q′
+(un)−Q′

+(u))v|

=
∣∣∣∣∫

un>0

((−∆un)v +∇un · ∇v)−
∫

u>0

((−∆u)v +∇u · ∇v)
∣∣∣∣

≤ 2 ‖un − u‖H‖v‖H

+
∣∣∣∣∫

u≤0<un

((−∆u)v +∇u · ∇v) +
∫

un≤0<u

((−∆u)v +∇u · ∇v)
∣∣∣∣

≤ 2 ‖un − u‖H · ‖v‖H

+
(∫

u≤0<un

(|∆u|2 + |∇u|2) +
∫

un≤0<u

(|∆u|2 + |∇u|2)
)1/2

‖v‖H

= o(1)‖v‖H ,

using again that ∇u = 0 and ∆u = 0 a.e. on the zero set of u. Thus (Q+|H)′

is continuous, and the proof is complete for Q+. The proof for Q− proceeds
analogously.

(c) This can be proved similarly as part (a). �

Lemma 3.2. The set M ∩H is a C1-manifold of codimension two in H.

Note that we do not claim that M ∩H is complete in H. In fact, we do not
expect this to be true in case that λ1 < 0.

Proof of Lemma 2.3. Define

g±:E → R, g±(u) = Φ′(u)u±,

so that M ∩H = {u ∈ H : u+ 6= 0, u− 6= 0, g+(u) = 0 = g−(u)}.
Lemma 3.1 implies that g±|H ∈ C1(H). For u ∈ M ∩H we obtain

g′+(u)u+ =
∫

Ω

(
|∇u+|2 − f ′(x, u)(u+)2

)
, g′+(u)u− = 0,

g′−(u)u− =
∫

Ω

(|∇u−|2 − f ′(x, u)(u−)2), g′−(u)u+ = 0.

Hence (f3) yields g′+(u)u+ < 0 and g′−(u)u− < 0 for u ∈ M ∩H. Approximating
u+ and u− by functions in H, we conclude that (g′+(u), g′−(u)) ∈ L(H, R2) is
onto for every u ∈ M ∩H. From this the assertion follows. �

In the following, if u ∈ E is a critical point of Φ, we denote by m(u) the
Morse index of u.
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Proposition 3.3. Let u ∈ M be a critical point of Φ with Φ(u) = β. Then
m(u) = 2.

Proof. By (f3) there holds

Φ′′(u)(u±, u±) =
∫

Ω

(
|∇u±|2 − f ′(x, u)(u±)2

)
< 0,

hence m(u) ≥ 2. To show m(u) ≤ 2, note first that u ∈ H by elliptic regularity.
Denote by T ⊂ H the tangent space of the manifold M ∩H at u. We show that

Φ′′(u)(v, v) ≥ 0 for all v ∈ T.

Indeed, by Lemma 3.2 there exists for every v ∈ T a C1-curve γ: [−1, 1] →
M ∩ H such that γ(0) = u and γ̇(0) = v. Since Φ′(u)v = 0, we calculate that
Φ ◦ γ: [−1, 1] → R is even twice differentiable at t = 0 with derivative

∂2

∂t2
Φ ◦ γ|t=0 = Φ′′(u)(v, v).

Recalling that Φ(u) = minv∈M∩H Φ(v), we infer that ∂2(Φ ◦ γ)/∂t2|t=0 ≥ 0,
and hence (3.1) follows. Since T ⊂ H has codimension two and H is dense in E,
we conclude m(u) ≤ 2, as required. �

4. Proofs of Theorems 1.1 and 1.2

As in the last section we assume that (f1)–(f4) are in force. We first recall
that

(4.1) lim
t→∞

Φ(tu) = −∞

for every u ∈ E \ {0}. Indeed this is a well known consequence of (f4).
Next we recall some notation from [1]. We set X := {u ∈ C1(Ω) : u|∂Ω = 0}

and
Φc := {u ∈ E : Φ(u) ≤ c}, Φc

X := X ∩ Φc

and
Sc := {u ∈ E : Φ(u) = c, Φ′(u) = 0}.

Let P denote the closed cone of nonnegative functions in X. As in [1] we consider
the sets

SC− :={u ∈ X : u is a sign changing subsolution of (1.1)},
SC+ :={u ∈ X : u is a sign changing supersolution of (1.1)},

as well as

I := {(0, 0)} ∪ {(u, v) ∈ SC− × SC+ : u < v} ⊂ X ×X
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and
A :=

⋃
(u,v)∈I

((u + P ) ∪ (v − P )) ⊂ X.

Note that any critical point u 6∈ A of Φ is a minimal element of SC− and
a maximal element of SC+, i.e. it has the properties (c) and (d) of Theorem 1.1.

It is well known that the gradient of Φ has the form ∇Φ = Id − K with
K:E → E being compact and strongly order preserving. Due to (f3) we may
use the usual scalar product 〈u, v〉E = 〈∇u,∇v〉L2 + 〈u, v〉L2 in E = H1

0 (Ω) for
the definition of the gradient vector field. Integrating −∇Φ we obtain a flow
φ:O → E defined on an open subset O ⊂ R× E and satisfying{ ∂

∂t
φ(t, u) = −∇Φ(φ(t, u)),

φ(0, u) = u,

for all (t, u) ∈ O. We shall sometimes write φt instead of φ(t, · ). With the help
of this flow the following deformation type lemma can be shown (see [1, p. 136]):

Lemma 4.1. Suppose that Sc ⊂ A for some c > 0. Then there is an ε > 0
and a homotopy h:

(
Φc+ε

X ∪A
)
× [0, 1] → Φc+ε

X ∪A such that

(a) ht(Φd
X ∪A) ⊂ Φd

X ∪A for all d ≤ c + ε, t ∈ [0, 1].
(b) h1(Φc+ε

X ∪A) ⊂ Φc−ε
X ∪A.

Now we have the necessary tools for the

Proof of Theorem 1.1. Let e1 ∈ P be the (up to normalization unique)
first Dirichlet eigenfunction of −∆u−f ′(x, 0) on Ω. First note that, since λ2 > 0,
there exists r > 0 and a C1-map gst: 〈e1〉⊥ ∩ Br(0) → 〈e1〉 such that for every
u = w + gst(w) ∈ Graph(gst) we have

φt(u) → 0 as t →∞.

In fact, if λ1 > 0 we may take gst ≡ 0, whereas, in case λ1 ≤ 0. Graph(gst) is
the E-local stable manifold of 0 (which might be contained in a larger stable set
if λ1 = 0). Set

Sst := {u = w + gst(w) : w ∈ 〈e1〉⊥, ‖w‖E = r} ⊂ E.

Observe that α := inf Φ(Sst) > 0 and that

(4.2) Sst ∩A = ∅,

the last fact being proved in [1, Lemma 4.5]. Put γ := α/2 and consider the
inclusion

jc: (Φc
X ∪A,Φγ

X ∪A) ↪→ (E,E \ Sst) for any c ≥ γ,

which is well defined by (4.2). It induces a homomorphism

j∗c :H2(E,E \ Sst) → H2(Φc
X ∪A,Φγ

X ∪A).
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Here and in the following H∗(C,D) stands for the Alexander–Spanier cohomol-
ogy of the pair D ⊂ C with integer coefficients. Next we prove that

(4.3) H2(E,E \ Sst) ∼= Z.

Setting E1 := Re1 and SrE
⊥
1 := {u ∈ E⊥

1 : ‖u‖E = r}, it is easy to see that the
pair (E,E \ Sst) is homeomorphic to the pair (E,E \ SrE

⊥
1 ), hence

H2(E,E \ Sst) ∼= H2(E,E \ SrE
⊥
1 ).

Now the pair (E,E \ SrE
⊥
1 ) is the same as the product pair (E1, E1 \ {0}) ×

(E⊥
1 , E⊥

1 \ SrE
⊥
1 ). The Künneth theorem shows that

H2(E,E \ SrE
⊥
1 ) ∼= H1(E⊥

1 , E⊥
1 \ SrE

⊥
1 ) ∼= H̃0(E⊥

1 \ SrE
⊥
1 ) ∼= Z

which proves (4.3).
Now we can define c := inf{c ≥ γ : j∗c is injective}. Then c ≥ α, since

Φc
X ∪A ⊂ E \ Sst, hence j∗c = 0 for c < α. Next we show

(4.4) c ≤ β

with β given by (1.3). For this let ε > 0, and choose u ∈ M such that Φ(u) <

β + ε/2. By Lemma 2.1 we have

Φ(λu+ + µu−) ≤ Φ(u) for every λ, µ ≥ 0.

By (4.1) there exists some number R > 0 such that

Φ(λu+ + µu−) ≤ 0 whenever max{λ, µ} ≥ R.

Approximating u+ and −u− with suitable functions v1, v2 ∈ P , we can achieve
that

Φ(λv1 − µv2) ≤ β + ε for 0 ≤ λ, µ ≤ R,

Φ(λv1 − µv2) ≤ γ if max{λ, µ} ≥ R.

Now we consider the sets

C := {λv1 − µv2 : 0 ≤ λ, µ ≤ R} ⊂ span{v1, v2} ⊂ X,

∂C := {λv1 − µv2 ∈ C : min{λ, µ} = 0 or max{λ, µ} = R}.

We have the following inclusions:

(C, ∂C)
i

↪→ (Φβ+ε
X ∪A,Φγ

X ∪A)
jβ+ε

↪→ (E,E \ Sst)

We claim that the induced map i∗ ◦ j∗β+ε:H
2(E,E \ Sst) → H2(C, ∂C) is an

isomorphism. Using the notation E1 = Re1 from above it is easy to construct
a homeomorphism

h: (E,E \ Sst) → (E,E \ SrE
⊥
1 ),
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so that the map h ◦ jβ+ε ◦ i is homotopic to the inclusion

i0: (C, ∂C) ↪→ (E,E \ SrE
⊥
1 ).

Next we choose e2 ∈ E⊥
1 with ‖e2‖E = 1 and consider the sets

C1 := {λe1 + µe2 : |λ| ≤ R, 0 ≤ µ ≤ R} = BRE1 × [0, R] · e2,

∂C1 = {λe1 + µe2 : |λ| = R or µ ∈ {0, R}}.

Clearly (C, ∂C) may be deformed to (C1, ∂C1) within (E,E \SrE
⊥
1 ). This shows

that i∗ ◦ j∗β+ε is an isomorphism if, and only if, the inclusion

i1: (C1, ∂C1) ↪→ (E,E \ SrE
⊥
1 )

induces an isomorphism. Now

(C1, ∂C1) ∼= (BRE1, SRE1)× ([0, R] · e2, {0, R · e2}),
(E,E \ SrE

⊥
1 ) ∼= (E1, E1 \ {0})× (E⊥

1 , E⊥
1 \ SrE

⊥
1 ).

Since the inclusions

(BRE1, SRE1) ↪→ (E1, E1 \ {0}),
([0, R] · e2, {0, R · e2}) ↪→ (E⊥

1 , E⊥
1 \ SrE

⊥
1 )

induce isomorphisms on cohomology levels, the claim follows by the naturality
of the Künneth maps.

Now since i∗ ◦ j∗β+ε is an isomorphism, j∗β+ε is injective, and thus c ≤ β + ε.
Since ε > 0 was arbitrary, (4.4) holds true.

Next we assert that

(4.5) Sc 6⊂ A.

Indeed, if on the contrary Sc ⊂ A, then Lemma 4.1 yields ε > 0 and a ho-
motopy h:

(
Φc+ε

X ∪A
)
× [0, 1] → Φc+ε

X ∪A such that h∗1 ◦ j∗c−ε = j∗c+ε, where

h∗1:H
2(Φc−ε

X ∪A,Φγ
X ∪A) → H2(Φc+ε

X ∪A,Φγ
X ∪A)

is induced by h1: (Φc+ε
X ∪A,Φγ

X ∪A) → (Φc−ε
X ∪A,Φγ

X ∪A). Hence, since j∗c+ε is
injective, j∗c−ε has to be injective as well. This however contradicts the definition
of c, and thus (4.5) is proved.

Now let u ∈ Sc \ A. Then u is a sign changing solution of (1.1) having the
properties (c) and (d) of Theorem 1.1. In particular u ∈ M , and therefore c =
Φ(u) ≥ β. In fact, equality holds by (4.4), and hence the remaining properties
(a) resp. (b) are established by Theorem 1.3. �

Proof of Theorem 1.2. The proof is strongly based on [1, Section 6], and
we need to recall the definition of the critical values from [1]. First we set

k0 := min{l : λl > 0} − 1.
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If k0 > 0, then put W := V ⊥, where V is the generalized Dirichlet eigen-
space of −∆ + f ′(x, 0) associated with the eigenvalues λ1, . . . , λk0 . If k0 = 0
set W := 〈e1〉⊥, where e1 is the eigenvector associated with λ1. Then d0 :=
codimW = max{1, k0}. By the stable manifold theorem there exists a (Lipschitz)
continuous map gst:BrW = W ∩Br(0) → W⊥ for r > 0 small such that

(4.6) Sst := {u = w + gst(w) : w ∈ W, ‖w‖E = r}

is contained in the local stable manifold of 0. As in (4.2) we have

(4.7) Sst ∩A = ∅;

cf. [1, Lemma 4.5]. Observe furthermore that Sst = −Sst because Φ is even,
hence gst is odd.

Let h∗ denote the Borel cohomology for the group G = Z/2 with coefficient
ring h∗(pt) ∼= F2[ω]. If B ⊂ A are G-spaces, A′ ⊂ A, B′ ⊂ B are invariant
subspaces and ξ ∈ h∗(A,B) then we write ξ|(A′,B′) for the image of ξ under
the homomorphism h∗(A,B) → h∗(A′, B′) induced from the inclusion. Setting
α := (1/2) inf Φ(Sst) > 0 and using (4.7), we have an inclusion

(4.8) jc: (Φc
X ∪A,Φα

X ∪A) ↪→ (X, X \ Sst)
'
↪→ (E,E \ Sst)

for c ≥ α. According to [1, Lemma 6.1] there exists an element η ∈ hd0+1(E,E \
Sst) with the following property. If R > 0 satisfies Sst ⊂ intEBR(0) and if
Y ⊂ E is a finite-dimensional subspace with d = dim Y > codimW = d0 then

(4.9) 0 6= ωd−d0−1 · η|(BRY,{0}∪SRY ) ∈ hd(BRY, {0} ∪ SRY ).

Using this cohomology class we may consider the values

(4.10) ck := inf
{
c ≥ α : j∗c (ωk−d0−1 · η) 6= 0 ∈ hk(Φc

X ∪A,Φα
X ∪A)

}
for k ≥ d0 + 1. In [1] it is shown that there is a sequence of critical points
(uk)k≥d0+1 of Φ satisfying properties (a), (b), (d) and (e) of Theorem 1.2 and
such that Φ(uk) = ck for k ≥ d0 +1. In view of Theorem 1.4 it therefore remains
to prove

(4.11) ck ≤ βk for k ≥ d0 + 1.

We fix k and recall that, as a consequence of (4.1), we find for any given k-
dimensional subspace Y ⊂ X a positive number R > 0 such that

Φ(u) ≤ 0 for u ∈ Y, ‖u‖ ≥ R.

Hence for β := maxΦ(Y ) we have (BRY, {0} ∪ SRY ) ⊂ (Φβ
X ∪ A,Φα

X ∪ A) ⊂
(X, X \ Sst), and this implies ck ≤ β by (4.9) and (4.10). Since X ⊂ E is dense
we conclude (4.11), as required. �
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