REIDEMEISTER NUMBERS

Alexander Fel'shtyn

Abstract

In [5] we have conjectured that the Reidemeister number is infinite as long as an endomorphism of a discrete group is injective and the group has exponential growth. In the paper we prove this conjecture for any automorphism of a non-elementary, Gromov hyperbolic group. We also prove some generalisations of this result. The main results of the paper have topological counterparts.

1. Introduction

Let G be a finitely generated group and $\phi: G \rightarrow G$ an endomorphism. Two elements $\alpha, \alpha^{\prime} \in G$ are said to be ϕ-conjugate if and only if there exists $\gamma \in G$ with

$$
\alpha^{\prime}=\gamma \alpha \phi(\gamma)^{-1}
$$

We shall write $\{x\}_{\phi}$ for the ϕ-conjugacy class of the element $x \in G$. The number of ϕ-conjugacy classes is called the Reidemeister number of an endomorphism ϕ, denoted by $R(\phi)$. If ϕ is the identity map then the ϕ-conjugacy classes are the usual conjugacy classes in the group G.

We note that $R(\phi)$ is infinite if group G is free Abelian and the action of ϕ on G has 1 as eigenvalue (see [3]).

2000 Mathematics Subject Classification. 20F34, 55M20.
Key words and phrases. Reidemeister number, twisted conjugacy classes, Gromov hyperbolic group, fundamental group.

Part of this work was conducted during author stay in Universite Paul Sabatier, Toulouse and Ohio State University, Columbus.

In [5] we have conjectured that the Reidemeister number is infinite as long as an endomorphism ϕ is injective and the group G has exponential growth.

In this paper we prove our conjecture for any automorphism of any nonelementary (i.e. not virtually cyclic), Gromov hyperbolic group. We also prove some generalisations of this result. The work [8] of G. Levitt and M. Lustig plays the key role in this new development of the subject.

Main results of this paper have their topological counterparts. Let X to be a connected, compact polyhedron and $f: X \rightarrow X$ to be a continuous map. Let $p: \widetilde{X} \rightarrow X$ be the universal cover of X and $\tilde{f}: \widetilde{X} \rightarrow \tilde{X}$ a lifting of f, i.e. $p \circ \widetilde{f}=f \circ p$. Two liftings \widetilde{f} and \widetilde{f}^{\prime} are called conjugate if there is a element γ in the deck transformation group $\Gamma \cong \pi_{1}(X)$ such that $\widetilde{f^{\prime}}=\gamma \circ \tilde{f} \circ \gamma^{-1}$. The subset $p(\operatorname{Fix}(\tilde{f})) \subset \operatorname{Fix}(f)$ is called the fixed point class of f determined by the lifting class $[\widetilde{f}]$. Two fixed points x_{0} and x_{1} of f belong to the same fixed point class if and only if there is a path c from x_{0} to x_{1} such that $c \cong f \circ c$ (homotopy relative endpoints). This fact can be considered as an equivalent definition of a nonempty fixed point class. Every map f has only finitely many non-empty fixed point classes, each a compact subset of X. A fixed point class is called essential if its index is nonzero. The number of lifting classes of f (and hence the number of fixed point classes, empty or not) is called the Reidemeister number of f, denoted $R(f)$. This is a positive integer or infinity. The number of essential fixed point classes is called the Nielsen number of f, denoted by $N(f)$.The Nielsen number is always finite.

It follows immediately from main results of the paper that the topological Reidemeister number $R(f)$ is infinite for any homeomorphism f of a compact polyhedron X with a non-elementary, Gromov hyperbolic fundamental group.

Acknowledgments. The author would like to thank M. Bridson, B. Bowditch, D. Burghelea, R. Grigorchuk, M. Gromov, G. Levitt, M. Lustig, R. Hill, L. Potyagailo, for stimulating discussions and comments.

The author would like to thank the Max-Planck-Institute für Mathematik, Bonn for kind hospitality and support.

2. Twisted conjugacy classes and Reidemeister number of group endomorphism

Lemma 1. If G is a group and ϕ is an endomorphism of G then an element $x \in G$ is always ϕ-conjugate to its image $\phi(x)$.

Proof. Put $\gamma=x^{-1}$. Now x is ϕ-conjugate to $x^{-1} x \phi(x)=\phi(x)$.
The mapping torus $M(\phi)$ of the group endomorphism $\phi: G \rightarrow G$ is obtained from group G by adding a new generator z and adding the relations $z g z^{-1}=\phi(g)$ for all $g \in G$. This means that $M(\phi)$ is a semi-direct product of G with Z.

Lemma 2. Two elements x, y of G are ϕ-conjugate if and only if $x z$ and $y z$ are conjugate in the usual sense in $M(\phi)$. Therefore $R(\phi)$ is the number of usual conjugacy classes in the coset $G \cdot z$ of G in $M(\phi)$.

Proof. If x and y are ϕ-conjugate, then there is a $\gamma \in G$ such that $\gamma x=$ $y \phi(\gamma)$. This implies $\gamma x=y z \gamma z^{-1}$ and therefore $\gamma(x z)=(y z) \gamma$. So $x z$ and $y z$ are conjugate in the usual sense in $M(\phi)$. Conversely suppose $x z$ and $y z$ are conjugate in $M(\phi)$. Then there is a $\gamma z^{n} \in M(\phi)$ with $\gamma z^{n} x z=y z \gamma z^{n}$.

From the relation $z x z^{-1}=\phi(x)$, we obtain $\gamma \phi^{n}(x) z^{n+1}=y \phi(\gamma) z^{n+1}$ and therefore $\gamma \phi^{n}(x)=y \phi(\gamma)$. This shows that $\phi^{n}(x)$ and y are ϕ-conjugate. However, by Lemma $1, x$ and $\phi^{n}(x)$ are ϕ-conjugate, so x and y must be ϕ conjugate.

Lemma 3 (T. Delzant). Let J be a non-elementary Gromov hyperbolic group. Let K be a normal subgroup with abelian quotient. Then every coset C of $J \bmod K$ contains infinitely many conjugacy classes.

Proof (see [8]). Fix u in the coset C under consideration. Suppose for a moment that we can find $c, d \in K$, generating a free group of rank 2 , such that $u c^{\infty} \neq c^{-\infty}$ and $u d^{\infty} \neq d^{-\infty}$ (recall that we denote $g^{-\infty}=\lim _{n \rightarrow \infty} g^{-n}$ for g of infinite order).

Consider $x_{k}=c^{k} u c^{k}$ and $y_{k}=d^{k} u d^{k}$. For k large, the above inequalities imply that these two elements have infinite order, and do not generate a virtually cyclic group because $x_{k}{ }^{\infty}$ and $x_{k}{ }^{-\infty}$ (respectively y_{k}^{∞} and $y_{k}{ }^{-\infty}$) is close to c^{∞} and $c^{-\infty}$ (respectively d^{∞} and $d^{-\infty}$). Fix k, and consider the elements $z_{n}=x_{k}{ }^{n+1} y_{k}{ }^{-n}$. They belong to the coset C, because J / K is abelian, and their stable norm goes to infinity with n. Therefore C contains infinitely many conjugacy classes.

Let us now construct c, d as above. Choose $a, b \in K$ generating a free group of rank 2. We first explain how to get c. There is a problem only if $u a^{\infty}=a^{-\infty}$ and $u b^{\infty}=b^{-\infty}$. In that case there exists integers p, q with $u a^{p} u^{-1}=a^{-p}$ and $u b^{q} u^{-1}=b^{-q}$. We take $c=a^{p} b^{q}$, noting that $u c u^{-1}=a^{-p} b^{-q}$ is different from $c^{-1}=b^{-q} a^{-p}$.

Once we have c, we choose $c^{*} \in K$ with $\left\langle c, c^{*}\right\rangle$ free of rank 2 , and we obtain d by applying the preceding argument using c^{*} and $c c^{*}$ instead of a and b. The group $\langle c, d\rangle$ is free of rank 2 because d is a positive word in c^{*} and $c c^{*}$.
2.1. Automorphisms of Gromov hyperbolic groups. Let now ϕ be an automorphism of the Gromov hyperbolic group G and let $\|\cdot\|$ denote the word metric with respect to some finite generating set for G. The automorphism ϕ is called hyperbolic if there is an integer m and a number $\lambda>1$ such that, for all $g \in G$ we have $\max \left(\left\|\phi^{m}(g)\right\|,\left\|\phi^{-m}(g)\right\|\right) \geq \lambda\|g\|$. For example a pseudo-Anosov homeomorphism of a closed surface of genus larger then one induces a hyperbolic
automorphism on the level of fundamental group. Also, an automorphism of finitely generated free group with no nontrivial periodic conjugacy classes is hyperbolic.

Lemma 4 ([1]). The mapping torus $M(\phi)$ of a hyperbolic automorphism ϕ is Gromov hyperbolic group.

Theorem 5. The Reidemeister number $R(\phi)$ is infinite if group G is Gromov hyperbolic, non-elementary, and ϕ is hyperbolic automorphism.

Proof. The proof immediately folows from Lemmas 2-4.
Corollary 6. For pseudo-Anosov homeomorphisms of closed surfaces of genus larger then one the Reidemeister number is infinite.

The following theorem, actually, was proved (implicitly) in the paper [2] of Cohen and Lustig in Proposition 5.4

Theorem 7. The Reidemeister number $R(\phi)$ is infinite if group G is a free group F_{n} and an automorphism ϕ fixes a nontrivial conjugacy class in F_{n}.

Proof. Let $D(\phi)$ be the graph with a vertex $V(v)$ for each $v \in F_{n}$ and an oriented edge x from $V(v)$ to $V(w)$ whenever $w=x^{-1} v \phi(x)$. The component of $D(\phi)$ containing vertex $V(v)$ is denoted $D_{v}(\phi)$. The graph $D(\phi)$ was introduced by Goldstein and Turner (see [6]). Since ϕ fixes a non-trivial conjugacy class in F_{n} we can choose a non-trivial word X such that $\phi(X)=v^{-1} X v$ for some $v \in F_{n}$. Notice that $X^{-1}\left(X^{n} v\right) \phi(X)=X^{n} v$. Thus there is, for each $n \in Z$, a loop based at $V\left(X^{n} v\right)$ which reads off the word X. Such a loop is carried by a graph containing a simple closed curve. If infinitely many of the vertices $V\left(X^{n} v\right)$ were contained in the same component $D_{w}(\phi)$ then, since the lenghts of these loops are bounded (in fact equal to $\|X\|$), there would be an infinite family of pairwise disjoint simple closed curves in $D_{w}(\phi)$. This is impossible since $\operatorname{rank}\left(\pi_{1}\left(D_{w}(\phi)\right)\right)$ is finite (see [2]). Hence there exist infinitely many components which contain non-trivial loops labelled X based at vertices of the form $V\left(X^{n} v\right)$. This means that the number of twisted conjugacy classes is also infinite.

Let us now consider an outer automorphism $\Phi \in$ Out G corresponding to automorphism of $\phi \in$ Aut G and viewed as a collection of ordinary automorphisms $\alpha \in$ Aut G. We define $\alpha, \beta \in \Phi$ to be isogredient if $\beta=i_{h} \cdot \alpha \cdot i_{h}{ }^{-1}$ for some $h \in G$, with $i_{h}(g)=h g h^{-1}$.

Lemma 8 ([8]). The set $S(\Phi)$ of isogredience classes is infinite if group G is Gromov hyperbolic, non-elementary, and Φ has finite order in the group Out G.

Proof. Let J be the subgroup of Aut G consisting of all automorphisms whose image in Out G is a power of Φ. The exact sequence $1 \rightarrow K \rightarrow J \rightarrow$
$\langle\Phi\rangle \rightarrow 1$, with $K=G /$ Center and $\langle\Phi\rangle$ finite, shows that J is hyperbolic, nonelementary. The set of automorphisms $\alpha \in \Phi$ is a coset of $J \bmod K$. If $\alpha, \beta \in \Phi$ are isogredient they are conjugate in J. The proof is therefore concluded by applying Lemma 3.

Theorem 9 ([8]). For any $\Phi \in$ Out G, with G Gromov hyperbolic, nonelementary, the set $S(\Phi)$ of isogredience classes is infinite.

Proof. We describe here main steps of the proof in [8]. By Lemma 8, we may assume that Φ has infinite order. By Paulin's theorem (see [9]) Φ preserves some R-tree T with nontrivial minimal small action of G (recall that an action of G is small if all ars stabilisers are virtually cyclic; the action of G on T is always irreducible (no global fixed point, no invariant line, no invariant end)). This means that there is an R-tree T equipped with an isometric action of G whose length function satisfies $l \cdot \Phi=\lambda l$ for some $\lambda \geq 1$.

Step 1. Suppose $\lambda=1$. Then $S(\Phi)$ is infinite.
Step 2. Suppose $\lambda>1$. Assume that arc stabilisers are finite, and there exists $N_{0} \in N$ such that, for every $Q \in T$, the action of $\operatorname{Stab} Q$ on $\pi_{o}(T-Q)$ has at most N_{0} orbits. Then $S(\Phi)$ is infinite.

Step 3. If $\lambda>1$, then T has finite arc stabilisers. If $\lambda>1$ then from work of Bestwina-Feighn (see [1]) it follows that there exists $N_{0} \in N$ such that, for every $Q \in T$, the action of $\operatorname{Stab} Q$ on $\pi_{o}(T-(Q))$ has at most N_{0} orbits.

Theorem 10. The Reidemeister number $R(\phi)$ is infinite if group G is Gromov hyperbolic, non-elementary, and ϕ is any automorphism of G.

Proof. By definition, the automorphisms $\beta=i_{m} \cdot \alpha$ and $\gamma=i_{n} \cdot \alpha$ are isogredient if and only if there exists $g \in G$ with $\gamma=i_{g} \cdot \beta \cdot i_{g}{ }^{-1}$, or equivalently $n=\operatorname{gm\alpha }\left(g^{-1}\right) c$ with c in center of G. So, the set $S(\Phi)$ of isogredience classes of automorphisms representing Φ may be identified to the set of twisted conjugacy classes of $G \bmod$ its center.

If ϕ is automorphism of finite order in Aut G, then the theorem immediately follows from Lemma 8.

If an automorphism ϕ has infinite order in Aut G then theorem follows from Theorem 9.
2.2. Reduction to injective endomorphisms and the co-Hopf property. A group G is called co-Hopf if every monomorphism of G into itself is an isomorphism. It is fairly immediate to see that a freely decomposable group is not co-Hopf.

Lemma 11 ([10]). Let G be a non-elementary, torsion-free, Gromov hyperbolic group. Then G is co-Hopf if and only if G is freely indecomposable.

Theorem 12. The Reidemeister number $R(\phi)$ is infinite if group G is Gromov hyperbolic, non-elementary,torsion free, freely indecomposable and ϕ is any monomorphism of G into itself.

Proof. The proof follows from Lemma 11 and Theorem 10.
Reduction to injective endomorphisms. Let G be a group and $\phi: G \rightarrow G$ an endomorphism. We shall call an element $x \in G$ nilpotent if there is an $n \in \mathbb{N}$ such that $\phi^{n}(x)=$ id. Let N be the set of all nilpotent elements of G.

Lemma 13. The set N is a normal subgroup of G. We have $\phi(N) \subset N$ and $\phi^{-1}(N)=N$. Thus ϕ induces an endomorphism $[\phi / N](x N):=\phi(x) N$. The endomorphism $[\phi / N]: G / N \rightarrow G / N$ is injective, and we have $R(\phi)=R([\phi / N])$.

Proof. (i) Let $x \in N, g \in G$. Then for some $n \in \mathbb{N}$ we have $\phi^{n}(x)=\mathrm{id}$. Therefore $\phi^{n}\left(g x g^{-1}\right)=\phi^{n}\left(g g^{-1}\right)=$ id. This shows that $g x g^{-1} \in N$ so N is a normal subgroup of G.
(ii) Let $x \in N$ and choose n such that $\phi^{n}(x)=\mathrm{id}$. Then $\phi^{n-1}(\phi(x))=i d$ so $\phi(x) \in N$. Therefore $\phi(N) \subset N$.
(iii) If $\phi(x) \in N$ then there is an n such that $\phi^{n}(\phi(x))=$ id. Therefore $\phi^{n+1}(x)=$ id so $x \in N$. This shows that $\phi^{-1}(N) \subset N$. The converse inclusion follows from (ii).
(iv) We shall write $\mathcal{R}(\phi)$ for the set of ϕ-conjugacy classes of elements of G. We shall now show that the map $x \rightarrow x N$ induces a bijection $\mathcal{R}(\phi) \rightarrow \mathcal{R}([\phi / N])$. Suppose $x, y \in G$ are ϕ-conjugate. Then there is a $g \in G$ with $g x=y \phi(g)$. Projecting to the quotient group G / N we have $g N x N=y N \phi(g) N$, so $g N x N=$ $y N[\phi / N](g N)$. This means that $x N$ and $y N$ are $[\phi / N]$-conjugate in G / N.

Conversely suppose that $x N$ and $y N$ are $[\phi / N]$-conjugate in G / N. Then there is a $g N \in G / N$ such that $g N x N=y N[\phi / N](g N)$. In other words $\left(g x \phi(g)^{-1} y^{-1}\right)^{n}=\mathrm{id}$. Therefore $\phi^{n}(g) \phi^{n}(x)=\phi^{n}(y) \phi^{n}(\phi(g))$.

This shows that $\phi^{n}(x)$ and $\phi^{n}(y)$ are ϕ-conjugate. However, by Lemma 1, x and $\phi^{n}(x)$ are ϕ-conjugate as are y and $\phi^{n}(y)$. Therefore x and y are ϕ conjugate.
(v) We have shown that x and y are ϕ-conjugate if and only if $x N$ and $y N$ are ϕ / N-conjugate. From this it follows that $x \rightarrow x N$ induces a bijection from $\mathcal{R}(\phi)$ to $\mathcal{R}([\phi / N])$. Therefore $R(\phi)=R([\phi / N])$.

Theorem 14. The Reidemeister number $R(\phi)$ is infinite if group G / N is Gromov hyperbolic, non-elementary,torsion free, freely indecomposable and ϕ is any endomorphism of G into itself.

Proof. The proof follows from Lemma 13 and Theorems 10 and 12.

Corollary 15. Let X to be a connected, compact polyhedron and $f: X \rightarrow X$ to be a continuous map. It is well known that the topological Reidemeister number $R(f)=R\left(f_{*}\right)$, where f_{*} is an induced endomorphism of the fundamental group of X. From Theorem 4 immediately follows that the topological Reidemeister number $R(f)$ is infinite for any homeomorphism f of a compact polyhedron X with a non-elementary, Gromov hyperbolic fundamental group.
2.3. Reidemeister coincidence number. Let G be a finitely generated group and $\phi, \psi: G \rightarrow G$ two endomorphisms. Two elements $\alpha, \alpha^{\prime} \in G$ are said to be (ϕ, ψ)-conjugate if and only if there exists $\gamma \in G$ with

$$
\alpha^{\prime}=\psi(\gamma) \alpha \phi(\gamma)^{-1}
$$

The number of (ϕ, ψ)-conjugacy classes is called the Reidemeister coincidence number of endomorphisms ϕ and ψ, denoted by $R(\phi, \psi)$. If ψ is the identity map then the ($\phi, i d$)-conjugacy classes are the ϕ-conjugacy classes in the group G. The Reidemeister coincidence number $R(\phi, \psi)$ has useful applications in Nielsen coincidence theory.

Lemma 16. Let $\phi, \psi: G \rightarrow G$ are two automorphisms. Two elements x, y of G are $\psi^{-1} \phi$-conjugate if and only if elements $\psi(x)$ and $\psi(y)$ are (ψ, ϕ) conjugate. Therefore the Reidemeister number $R\left(\psi^{-1} \phi\right)$ is equal to $R(\phi, \psi)$.

Proof. If x and y are $\psi^{-1} \phi$-conjugate, then there is a $\gamma \in G$ such that $x=\gamma y \psi^{-1} \phi\left(\gamma^{-1}\right)$. This implies $\psi(x)=\psi(\gamma) \psi(y) \phi\left(\gamma^{-1}\right)$. So $\psi(x)$ and $\psi(y)$ are (ϕ, ψ)-conjugate. The converse statement follows if we move in opposite direction in previous implications.

Theorem 17. The Reidemeister number $R(\phi, \psi)$ is infinite if group G is Gromov hyperbolic, non-elementary, and ϕ, ψ are any automorphisms of G.

Proof. From Theorem 10 it follows that the Reidemeister number $R\left(\psi^{-1} \phi\right)$ of an automorphism $\psi^{-1} \phi$ is infinite. The proof is therefore concluded by applying Lemma 16.

Theorem 18. The Reidemeister number $R(\phi, \psi)$ is infinite if group G is Gromov hyperbolic, non-elementary, torsion free, freely indecomposable and ϕ, ψ are any monomorphisms of G into itself.

Proof. The proof follows from Lemma 11 and Theorems 12 and 13.
Corollary 19. Let $f, g: X \rightarrow X$ two homeomorphisms of compact, connected polyhedron X. The Reidemeister coincidence number of f and g, denoted by $R(f, g)$ is simply defined to be the Reidemeister number $R(\phi, \psi)$, where ϕ and ψ are induced fundamental groups automorphisms of f and g (see [11]). From Theorem 17 immediately follows that the Reidemeister number $R(f, g)$ is infinite if X has a non-elementary, Gromov hyperbolic fundamental group.

References

[1] M. Bestvina and M. Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992), 85-101.
[2] M. Cohen and M. Lustig, On the dynamics and the fixed subgroup of a free group automorphism, Invent. Math. 196 (1989), 613-638.
[3] A. L. Fel'styn, Dynamical zeta functions, Nielsen theory and Reidemeister torsion, Mem. Amer. Math. Soc. 147 (2000), 146 pages.
[4] , Zeta functions, 3-manifolds and asymptotics in Nielsen theory, Topology Appl. (to appear).
[5] A. L. Fel'shtyn and R. Hill, The Reidemeister zeta function with applications to Nielsen theory and connection with Reidemeister torsion, K-Theory 8 (1994), 367-393.
[6] R. Z. Goldstein and E. C. Turner, Fixed subgroups of homomorphisms of free groups, Bull. London Math. Soc. 18 (1986), 468-470.
[7] M. Gromov, Hyperbolic groups, Essays in Group Theory, MSRI Public. (S. M. Gersten, ed.), vol. 8, Springer, 1987, pp. 75-263.
[8] G. Levitt and M. Lustig, Most automorphisms of a hyperbolic group have very simple dynamics, Ann. of Sci. 33 (2000), 507-517.
[9] F. Paulin, Sur les automorphismes exterieurs des groupes hyperboliques, Ann. of Sci. 30 (1997), 147-167.
[10] Z. Sela, Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups II, GAFA 7 (1997), 561-593.
[11] P. Wong, Reidemeister number, Hirsch rank, coincidences on polycyclic groups and solvmanifolds, J. Reine Angew. Math. 524 (2000), 185-204.

Alexander Fel'shtyn

Fachbereich Mathematik
Universität Siegen
Walter-Flex-Str. 3
57068 Siegen, GERMANY
and
Instytut Matematyki
Uniwersytet Szczeciński
ul. Wielkopolska 15
70-451 Szczecin, POLAND
E-mail address: felshtyn@math.uni-siegen.de

