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REIDEMEISTER NUMBERS

Alexander Fel’shtyn

Abstract. In [5] we have conjectured that the Reidemeister number is

infinite as long as an endomorphism of a discrete group is injective and

the group has exponential growth. In the paper we prove this conjecture
for any automorphism of a non-elementary, Gromov hyperbolic group. We

also prove some generalisations of this result. The main results of the paper

have topological counterparts.

1. Introduction

Let G be a finitely generated group and φ:G → G an endomorphism. Two
elements α, α′ ∈ G are said to be φ-conjugate if and only if there exists γ ∈ G
with

α′ = γαφ(γ)−1.

We shall write {x}φ for the φ-conjugacy class of the element x ∈ G. The number
of φ-conjugacy classes is called the Reidemeister number of an endomorphism φ,
denoted by R(φ). If φ is the identity map then the φ-conjugacy classes are the
usual conjugacy classes in the group G.
We note that R(φ) is infinite if group G is free Abelian and the action of φ

on G has 1 as eigenvalue (see [3]).
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In [5] we have conjectured that the Reidemeister number is infinite as long
as an endomorphism φ is injective and the group G has exponential growth.
In this paper we prove our conjecture for any automorphism of any non-

elementary (i.e. not virtually cyclic), Gromov hyperbolic group. We also prove
some generalisations of this result. The work [8] of G. Levitt and M. Lustig plays
the key role in this new development of the subject.
Main results of this paper have their topological counterparts. Let X to

be a connected, compact polyhedron and f :X → X to be a continuous map.
Let p: X̃ → X be the universal cover of X and f̃ : X̃ → X̃ a lifting of f , i.e.
p ◦ f̃ = f ◦ p. Two liftings f̃ and f̃ ′ are called conjugate if there is a elementγ in
the deck transformation group Γ ∼= π1(X) such that f̃ ′ = γ ◦ f̃ ◦γ−1. The subset
p(Fix(f̃)) ⊂ Fix(f) is called the fixed point class of f determined by the lifting
class [f̃ ]. Two fixed points x0 and x1 of f belong to the same fixed point class if
and only if there is a path c from x0 to x1 such that c ∼= f ◦ c (homotopy relative
endpoints). This fact can be considered as an equivalent definition of a non-
empty fixed point class. Every map f has only finitely many non-empty fixed
point classes, each a compact subset of X. A fixed point class is called essential if
its index is nonzero. The number of lifting classes of f (and hence the number of
fixed point classes, empty or not) is called the Reidemeister number of f , denoted
R(f). This is a positive integer or infinity. The number of essential fixed point
classes is called the Nielsen number of f , denoted by N(f).The Nielsen number
is always finite.
It follows immediately from main results of the paper that the topological

Reidemeister number R(f) is infinite for any homeomorphism f of a compact
polyhedron X with a non-elementary, Gromov hyperbolic fundamental group.
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2. Twisted conjugacy classes and Reidemeister number
of group endomorphism

Lemma 1. If G is a group and φ is an endomorphism of G then an element
x ∈ G is always φ-conjugate to its image φ(x).

Proof. Put γ = x−1. Now x is φ-conjugate to x−1xφ(x) = φ(x). �

The mapping torus M(φ) of the group endomorphism φ:G→ G is obtained
from group G by adding a new generator z and adding the relations zgz−1 = φ(g)
for all g ∈ G. This means that M(φ) is a semi-direct product of G with Z.
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Lemma 2. Two elements x, y of G are φ-conjugate if and only if xz and
yz are conjugate in the usual sense in M(φ). Therefore R(φ) is the number of
usual conjugacy classes in the coset G · z of G in M(φ).

Proof. If x and y are φ-conjugate, then there is a γ ∈ G such that γx =
yφ(γ). This implies γx = yzγz−1 and therefore γ(xz) = (yz)γ. So xz and yz
are conjugate in the usual sense in M(φ). Conversely suppose xz and yz are
conjugate in M(φ). Then there is a γzn ∈M(φ) with γznxz = yzγzn.
From the relation zxz−1 = φ(x), we obtain γφn(x)zn+1 = yφ(γ)zn+1 and

therefore γφn(x) = yφ(γ). This shows that φn(x) and y are φ-conjugate.
However, by Lemma 1, x and φn(x) are φ-conjugate, so x and y must be φ-
conjugate. �

Lemma 3 (T. Delzant). Let J be a non-elementary Gromov hyperbolic group.
Let K be a normal subgroup with abelian quotient. Then every coset C of JmodK
contains infinitely many conjugacy classes.

Proof (see [8]). Fix u in the coset C under consideration. Suppose for
a moment that we can find c, d ∈ K, generating a free group of rank 2, such that
uc∞ 6= c−∞ and ud∞ 6= d−∞ (recall that we denote g−∞ = limn→∞ g−n for g of
infinite order).
Consider xk = ckuck and yk = dkudk. For k large, the above inequalities

imply that these two elements have infinite order, and do not generate a virtually
cyclic group because xk∞ and xk−∞(respectively yk∞ and yk−∞ ) is close to
c∞ and c−∞ ( respectively d∞ and d−∞). Fix k, and consider the elements
zn = xk

n+1yk
−n. They belong to the coset C, because J/K is abelian, and

their stable norm goes to infinity with n. Therefore C contains infinitely many
conjugacy classes.
Let us now construct c, d as above. Choose a, b ∈ K generating a free group

of rank 2. We first explain how to get c. There is a problem only if ua∞ = a−∞

and ub∞ = b−∞. In that case there exists integers p, q with uapu−1 = a−p and
ubqu−1 = b−q. We take c = apbq, noting that ucu−1 = a−pb−q is different from
c−1 = b−qa−p.
Once we have c, we choose c∗ ∈ K with 〈c, c∗〉 free of rank 2, and we obtain

d by applying the preceding argument using c∗ and cc∗ instead of a and b. The
group 〈c, d〉 is free of rank 2 because d is a positive word in c∗ and cc∗. �

2.1. Automorphisms of Gromov hyperbolic groups. Let now φ be an
automorphism of the Gromov hyperbolic group G and let ‖ · ‖ denote the word
metric with respect to some finite generating set for G. The automorphism φ is
called hyperbolic if there is an integer m and a number λ > 1 such that, for all
g ∈ G we have max(‖φm(g)‖, ‖φ−m(g)‖) ≥ λ‖g‖. For example a pseudo-Anosov
homeomorphism of a closed surface of genus larger then one induces a hyperbolic
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automorphism on the level of fundamental group. Also, an automorphism of
finitely generated free group with no nontrivial periodic conjugacy classes is
hyperbolic.

Lemma 4 ([1]). The mapping torus M(φ) of a hyperbolic automorphism φ

is Gromov hyperbolic group.

Theorem 5. The Reidemeister number R(φ) is infinite if group G is Gromov
hyperbolic, non-elementary, and φ is hyperbolic automorphism.

Proof. The proof immediately folows from Lemmas 2–4. �

Corollary 6. For pseudo-Anosov homeomorphisms of closed surfaces of
genus larger then one the Reidemeister number is infinite.

The following theorem, actually, was proved (implicitly) in the paper [2] of
Cohen and Lustig in Proposition 5.4

Theorem 7. The Reidemeister number R(φ) is infinite if group G is a free
group Fn and an automorphism φ fixes a nontrivial conjugacy class in Fn.

Proof. Let D(φ) be the graph with a vertex V (v) for each v ∈ Fn and an
oriented edge x from V (v) to V (w) whenever w = x−1vφ(x). The component of
D(φ) containing vertex V (v) is denoted Dv(φ). The graph D(φ) was introduced
by Goldstein and Turner (see [6]). Since φ fixes a non-trivial conjugacy class
in Fn we can choose a non-trivial word X such that φ(X) = v−1Xv for some
v ∈ Fn. Notice that X−1(Xnv)φ(X) = Xnv. Thus there is, for each n ∈ Z,
a loop based at V (Xnv) which reads off the word X. Such a loop is carried
by a graph containing a simple closed curve. If infinitely many of the vertices
V (Xnv) were contained in the same component Dw(φ) then, since the lenghts
of these loops are bounded (in fact equal to ‖X‖), there would be an infinite
family of pairwise disjoint simple closed curves inDw(φ). This is impossible since
rank(π1(Dw(φ))) is finite (see [2]). Hence there exist infinitely many components
which contain non-trivial loops labelled X based at vertices of the form V (Xnv).
This means that the number of twisted conjugacy classes is also infinite. �

Let us now consider an outer automorphism Φ ∈ OutG corresponding to au-
tomorphism of φ ∈ AutG and viewed as a collection of ordinary automorphisms
α ∈ AutG. We define α, β ∈ Φ to be isogredient if β = ih · α · ih−1 for some
h ∈ G, with ih(g) = hgh−1.

Lemma 8 ([8]). The set S(Φ) of isogredience classes is infinite if group G is
Gromov hyperbolic, non-elementary, and Φ has finite order in the group OutG.

Proof. Let J be the subgroup of AutG consisting of all automorphisms
whose image in OutG is a power of Φ. The exact sequence 1 → K → J →
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〈Φ〉 → 1, with K = G/Center and 〈Φ〉 finite, shows that J is hyperbolic, non-
elementary. The set of automorphisms α ∈ Φ is a coset of JmodK. If α, β ∈ Φ
are isogredient they are conjugate in J . The proof is therefore concluded by
applying Lemma 3. �

Theorem 9 ([8]). For any Φ ∈ OutG, with G Gromov hyperbolic, non-
elementary, the set S(Φ) of isogredience classes is infinite.

Proof. We describe here main steps of the proof in [8]. By Lemma 8, we
may assume that Φ has infinite order. By Paulin’s theorem (see [9]) Φ preserves
some R-tree T with nontrivial minimal small action of G (recall that an action
of G is small if all ars stabilisers are virtually cyclic; the action of G on T is
always irreducible (no global fixed point, no invariant line, no invariant end)).
This means that there is an R-tree T equipped with an isometric action of G
whose length function satisfies l · Φ = λl for some λ ≥ 1.
Step 1. Suppose λ = 1. Then S(Φ) is infinite.
Step 2. Suppose λ > 1. Assume that arc stabilisers are finite, and there

exists N0 ∈ N such that, for every Q ∈ T , the action of StabQ on πo(T − Q)
has at most N0 orbits. Then S(Φ) is infinite.
Step 3. If λ > 1, then T has finite arc stabilisers. If λ > 1 then from work

of Bestwina–Feighn (see [1]) it follows that there exists N0 ∈ N such that, for
every Q ∈ T , the action of StabQ on πo(T − (Q)) has at most N0 orbits. �

Theorem 10. The Reidemeister number R(φ) is infinite if group G is Gro-
mov hyperbolic, non-elementary, and φ is any automorphism of G.

Proof. By definition, the automorphisms β = im · α and γ = in · α are
isogredient if and only if there exists g ∈ G with γ = ig · β · ig−1, or equivalently
n = gmα(g−1)c with c in center of G. So, the set S(Φ) of isogredience classes of
automorphisms representing Φ may be identified to the set of twisted conjugacy
classes of G mod its center.
If φ is automorphism of finite order in AutG, then the theorem immediately

follows from Lemma 8.
If an automorphism φ has infinite order in AutG then theorem follows from

Theorem 9. �

2.2. Reduction to injective endomorphisms and the co-Hopf prop-
erty. A group G is called co-Hopf if every monomorphism of G into itself is an
isomorphism. It is fairly immediate to see that a freely decomposable group is
not co-Hopf.

Lemma 11 ([10]). Let G be a non-elementary, torsion-free, Gromov hyper-
bolic group. Then G is co-Hopf if and only if G is freely indecomposable.
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Theorem 12. The Reidemeister number R(φ) is infinite if group G is Gro-
mov hyperbolic, non-elementary,torsion free, freely indecomposable and φ is any
monomorphism of G into itself.

Proof. The proof follows from Lemma 11 and Theorem 10. �

Reduction to injective endomorphisms. Let G be a group and φ:G → G an
endomorphism. We shall call an element x ∈ G nilpotent if there is an n ∈ N
such that φn(x) = id. Let N be the set of all nilpotent elements of G.

Lemma 13. The set N is a normal subgroup of G. We have φ(N) ⊂ N and
φ−1(N) = N . Thus φ induces an endomorphism [φ/N ](xN) := φ(x)N . The
endomorphism [φ/N ]:G/N → G/N is injective, and we have R(φ) = R([φ/N ]).

Proof. (i) Let x ∈ N , g ∈ G. Then for some n ∈ N we have φn(x) = id.
Therefore φn(gxg−1) = φn(gg−1) = id. This shows that gxg−1 ∈ N so N is
a normal subgroup of G.

(ii) Let x ∈ N and choose n such that φn(x) = id. Then φn−1(φ(x)) = id so
φ(x) ∈ N . Therefore φ(N) ⊂ N .
(iii) If φ(x) ∈ N then there is an n such that φn(φ(x)) = id. Therefore

φn+1(x) = id so x ∈ N . This shows that φ−1(N) ⊂ N . The converse inclusion
follows from (ii).

(iv) We shall write R(φ) for the set of φ-conjugacy classes of elements of G.
We shall now show that the map x→ xN induces a bijection R(φ)→ R([φ/N ]).
Suppose x, y ∈ G are φ-conjugate. Then there is a g ∈ G with gx = yφ(g).
Projecting to the quotient group G/N we have gNxN = yNφ(g)N , so gNxN =
yN [φ/N ](gN). This means that xN and yN are [φ/N ]-conjugate in G/N .

Conversely suppose that xN and yN are [φ/N ]-conjugate in G/N . Then
there is a gN ∈ G/N such that gNxN = yN [φ/N ](gN). In other words
(gxφ(g)−1y−1)n = id. Therefore φn(g)φn(x) = φn(y)φn(φ(g)).

This shows that φn(x) and φn(y) are φ-conjugate. However, by Lemma 1,
x and φn(x) are φ-conjugate as are y and φn(y). Therefore x and y are φ-
conjugate.

(v) We have shown that x and y are φ-conjugate if and only if xN and yN
are φ/N -conjugate. From this it follows that x → xN induces a bijection from
R(φ) to R([φ/N ]). Therefore R(φ) = R([φ/N ]). �

Theorem 14. The Reidemeister number R(φ) is infinite if group G/N is
Gromov hyperbolic, non-elementary,torsion free, freely indecomposable and φ is
any endomorphism of G into itself.

Proof. The proof follows from Lemma 13 and Theorems 10 and 12. �
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Corollary 15. Let X to be a connected, compact polyhedron and f :X → X

to be a continuous map. It is well known that the topological Reidemeister number
R(f) = R(f∗), where f∗ is an induced endomorphism of the fundamental group
of X. From Theorem 4 immediately follows that the topological Reidemeister
number R(f) is infinite for any homeomorphism f of a compact polyhedron X
with a non-elementary, Gromov hyperbolic fundamental group.

2.3. Reidemeister coincidence number. Let G be a finitely generated
group and φ, ψ:G→ G two endomorphisms. Two elements α, α′ ∈ G are said to
be (φ, ψ)-conjugate if and only if there exists γ ∈ G with

α′ = ψ(γ)αφ(γ)−1.

The number of (φ, ψ)-conjugacy classes is called the Reidemeister coincidence
number of endomorphisms φ and ψ, denoted by R(φ, ψ). If ψ is the identity
map then the (φ, id)-conjugacy classes are the φ-conjugacy classes in the groupG.
The Reidemeister coincidence number R(φ, ψ) has useful applications in Nielsen
coincidence theory.

Lemma 16. Let φ, ψ:G → G are two automorphisms. Two elements x,
y of G are ψ−1φ-conjugate if and only if elements ψ(x) and ψ(y) are (ψ, φ)-
conjugate. Therefore the Reidemeister number R(ψ−1φ) is equal to R(φ, ψ).

Proof. If x and y are ψ−1φ-conjugate, then there is a γ ∈ G such that
x = γyψ−1φ(γ−1). This implies ψ(x) = ψ(γ)ψ(y)φ(γ−1). So ψ(x) and ψ(y) are
(φ, ψ)-conjugate. The converse statement follows if we move in opposite direction
in previous implications. �

Theorem 17. The Reidemeister number R(φ, ψ) is infinite if group G is
Gromov hyperbolic, non-elementary, and φ, ψ are any automorphisms of G.

Proof. From Theorem 10 it follows that the Reidemeister number R(ψ−1φ)
of an automorphism ψ−1φ is infinite. The proof is therefore concluded by ap-
plying Lemma 16. �

Theorem 18. The Reidemeister number R(φ, ψ) is infinite if group G is
Gromov hyperbolic, non-elementary, torsion free, freely indecomposable and φ,
ψ are any monomorphisms of G into itself.

Proof. The proof follows from Lemma 11 and Theorems 12 and 13. �

Corollary 19. Let f, g:X → X two homeomorphisms of compact, con-
nected polyhedron X. The Reidemeister coincidence number of f and g, denoted
by R(f, g) is simply defined to be the Reidemeister number R(φ, ψ), where φ and
ψ are induced fundamental groups automorphisms of f and g (see [11]). From
Theorem 17 immediately follows that the Reidemeister number R(f, g) is infinite
if X has a non-elementary, Gromov hyperbolic fundamental group.
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