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OBSTRUCTION THEORY
AND MINIMAL NUMBER OF COINCIDENCES

FOR MAPS FROM A COMPLEX INTO A MANIFOLD

Lućılia D. Borsari — Daciberg L. Gonçalves

Abstract. The Nielsen coincidence theory is well understood for a pair of
maps between n-dimensional compact manifolds for n greater than or equal
to three. We consider coincidence theory of a pair (f, g):K → Nn, where

K is a finite simplicial complex of the same dimension as the manifold Nn.
We construct an algorithm to find the minimal number of coincidences in
the homotopy class of the pair based on the obstruction to deform the pair
to coincidence free. Some particular cases are analyzed including the one
where the target is simply connected.

1. Introduction

Let K be a finite simplicial complex of dimension n and let f, g: K → N
n

be maps, where N
n is an n-dimensional manifold. The purpose of this work

is to define a sharper invariant than the coincidence Nielsen number to study
the minimal number of coincidences in the homotopy class of the pair (f, g).
This invariant is based on algebraic and geometric features of the pair (f, g)
and of the complex K. The case where K is a manifold has been treated by H.
Shirmer, in [10], for K and N

n orientable, while the general case has been done
by R. Dobreńko and J. Jezierski, in [3], and by D. L. Gonçalves in [6]. In [1], we
study the case where K is the union of two subcomplexes K1, K2 each being a
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closed manifold and Ki −K1 ∩K2 being by-passing in Ki. On trying to drop the
by-passing condition in this particular case, it became clear that the geometry
of K was very relevant, and the difficulties to find a Nielsen type number to
describe MC[f, g], the minimal number of coincidences in the homotopy class of
the pair (f, g), were basically the same as if we consider a general complex K

of dimension n. So we treat in this work the general problem. The invariants
defined here are homotopy invariants with respect to the pair (f, g) but are not
invariants with respect to the homotopy type of K as one can see in examples
in [6, Section 4].

The article is divided into four sections, besides this one. In Section 2 we
show that it suffices to work with complexes that are homogeneous and with no
(n−1)-simplices facing only one n-simplex. Section 3 is devoted to the definition
of a homotopy invariant, in terms of the obstruction cocycles representing the
obstruction class to deform the pair (f, g) to coincidence free. In Section 4 we
show that this invariant coincides with the minimum number of coincidences,
under mild conditions. Finally, in Section 5 we analyze two special cases. One
of them is when the target N

n is simply connected. The other case is when K

is a finite union of manifolds without boundary. In these examples we estimate
the difference between the minimal number of coincidence points and the usual
coincidence Nielsen number.

We would like to thank Claudemir Aniz for his critical reading, and the referee
for his several important suggestions. Both helped to improve considerably this
work.

2. The geometry of the complex K

and the minimal number of coincidences

In this section we show that to solve the coincidence problem it suffices
to consider homogeneous simplicial complexes K with the property that every
(n−1)-simplex faces at least two n-simplices. Recall that an n-simplicial complex
K is homogeneous if every maximal simplex has dimension n. We denote by
MC[f, g] the minimum number of coincidences in the homotopy class of the pair
(f, g).

By [6, Proposition 2.7] we know that MC[f, g] = MC[f ′, g′], for given
f, g: K → N

n, where f ′, g′ are the restrictions of f , g to the subcomplex K〈n〉 ⊂
K, where K〈n〉 is the smallest subcomplex which contains all n-simplices of K.
So we assume that K is homogeneous and consider the n-simplices containing
a (n − 1)-face which is not contained in another n-simplex. Define K̂ ⊂ K the
subcomplex of K obtained from K by removing these n-simplices as well as its
(n − 1)-faces which are not contained in another n-simplex.
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Lemma 2.1. Given f, g: K → N
n then MC[f, g] = MC[f̂ , ĝ], where f̂ , ĝ are

the restrictions to K̂ of f , g, respectively.

Proof. Clearly MC[f, g] ≥ MC[f̂ , ĝ]. To show the converse let K ′ be
a subcomplex obtained from K by removing one n-simplex, ∆n, together with
one of its (n − 1) faces, ∆n−1

0 , which faces only this n-simplex. We will show
that MC[f ′, g′] ≥ MC[f, g] where f ′, g′ are the restrictions to K ′ of f and g,
respectively. Since MC[f ′, g′] is finite let us consider a pair of maps (f ′, g′)
such that coin (f ′, g′) is finite. We will construct a pair of maps (f1, g1) in the
homotopy class of the pair (f, g) such that its restriction to K ′ is homotopic to
(f ′, g′) and such that coin (f1, g1) = coin (f ′, g′). Observe that this implies the
result for K̂ because K̂ = K ′〈n〉.

The finite set coin (f ′, g′) ∩ ∆n is in the complement of the interior of the
(n − 1)-face ∆n−1

0 in the boundary of ∆n. Each coincidence point xi belongs to
the interior of a k-simplex, {vi1 , . . . , vik

}, for k ≤ n − 1.
For each point xi in coin (f ′, g′) we consider a small n-simplex ∆n

i , with faces
parallel to the faces of ∆n and containing xi as an interior point of the k-face
which is parallel to {vi1 , . . . , vik

}. Assume this simplex is small enough, so that
its image by f and g lie in a coordinate neighbourhood of f ′(xi) = g′(xi) = yi.

We divide the points of coin (f ′, g′) ∩ ∆n in two types according to whether
the simplex {vi1 , . . . , vik

} is or is not contained in ∆n−1
0 .

Let xi be of first type. Then necessarily xi is a point in the interior of
a k-simplex for k < n − 1. Let a0, . . . , an be the vertices of ∆n

i and suppose
〈a0, . . . , an−1〉 is the (n − 1)-face of ∆n

i parallel to ∆n−1
0 and that xi belongs to

the interior of 〈a0, . . . , ak〉. In this case the functions f ′, g′ are defined in the star
of 〈a0, . . . , ak, an〉 as a subcomplex of the boundary of ∆n

i . Now we construct a
retraction r: ∆n

i → ∆n
i on the star of 〈a0, . . . , ak, an〉 as a subcomplex of ∂∆n

i .
Introducing a new vertex b in the interior of the (n−k−2)-face 〈ak+1, . . . , an−1〉
we can define r as the simplicial map given by r(ai) = ai for i = 0, . . . , n and
r(b) = an.

Let xi be of the second type and consider xi in ∆n
i . Call ∆k

i the k-face of ∆n
i

having xi in its interior, and let ∆n−k−1
i be the face determined by the vertices

in ∆n
i which are not in ∆k

i . Observe that the star of ∆k
i and of ∆n−k−1

i as
subcomplexes of ∂∆n

i are homeomorphic to (n−1)- discs, their union is the hole
∂∆n

i , and their intersection is the boundary of each, which is homeomorphic to
an (n − 2)-sphere. We assumed ∆n

i small enough, so that the images of the star
of ∆k

i as a subcomplex of ∆n
i by f ′ and g′ lie in a coordinate neighbourhood of

f ′(xi) = g′(xi) = yi. After composing the maps with a chart, we take f ′ − g′

restrict to the boundary of the star of ∆k
i , which can be viewed as a map from

the (n−2)-sphere to Rn−{0}. Since this map is homotopic to a constant, we can
extend it to the star of ∆n−k−1

i as a subcomplex of ∂∆n
i , without introducing
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coincidences. We need now to extend it to the interior of ∆n
i . For this take

a homeomorphism of the n-disk to ∆n
i that takes boundary to boundary, and

the south pole of the boundary of the disc to xi. Extend now, to the interior of
the n-disk, the composition of f ′ − g′ with the homeomorphism above, linearly
in each segment from the south pole to a point in the boundary.

We succeed extending the maps f ′, g′ to K ′∪∆n
1 ∪. . .∪∆n

s without introducing
new coincidence points. In order to extend it to the hole ∆n, we observe first that
there is a well known retraction from ∆n onto its (n−1)-faces, except the interior
of one. Denote by stL(∆k) (ostL(∆k)) the star (the open star) of the simplex
∆k as a subcomplex of the complex L. It suffices to define a homeomorphism of
pairs from(

∆n −
⋃

i

ost∆n
i
(∆k

i ),
(

∂∆n −
(

int ∆n−1
0

⋃
i

ost∂∆n
i
(∆k

i )
) ⋃

i

st∂∆n
i
(∆n−k−1

i )
)

→ (∆n, ∂∆n − int ∆n−1
0 ).

∆n
j

∆′
j

n

∆n
i

∆′
j

n

∆n−1
0

∆n

xj

xi

Figure 1

For this consider closed neighbourhoods ∆
′n
i of ∆n

i respecting the parallelism
with ∆n, see Figure 1.

Define the homeomorphism to be the identity in ∆n −
⋃

i ost∆′n
i

(∆
′k
i ) and

sending the part of the face ∆n−1
0 in ∆n −

⋃
i ost∆n

i
(∆k

i ) homeomorphically onto
∆n−1

0 . �

Given an n-dimensional simplicial complex K we can iterate the following
two operations: the first is to consider the homogeneous subcomplex K〈n〉 ⊂ K

of dimension n (see [6]) and the second is the operation, defined in the beginning
of the section, which consists of eliminating the n-simplices containing faces
that do not face any other n-simplex, together with these faces. This process
of iterating the two operations will stop after a finite number of steps, and we
make the following

Definition 2.2. For an n-dimensional simplicial complex K, we define the
soul of K, denoted by s(K), to be the subcomplex obtained at the end of the
process indicated above.
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Observe that it does not matter in which order we perform these operations
on a simplicial complex K. At some moment the process will become stable and
the resulting subcomplex will be the soul of K. To see this, denote by θ1(K)
(θ2(K)) the subcomplex obtained from K after applying the first (second) oper-
ation. It is not hard to see that these operations preserve inclusions, that is, if L

is a subcomplex of M , then θi(L) is a subcomplex of θi(M), i = 1, 2. Therefore,
θ1(θ2(K)) ⊂ θ1(K) and since (θ1(θ2(K)) ⊂ θ2(K), we have that any subcomplex
θk1

1 θl1
2 . . . θkr

1 θlr
2 (K) will contain a subcomplex of the form (θ1θ2)m(K).

Now consider an integer � so that (θ1θ2)�(K) = (θ1θ2)�+1(K) and any other
subcomplex, θk1

1 θl1
2 . . . θkr

1 θlr
2 (K), obtained from a process that has become sta-

ble. We have

(θ1θ2)m(K) ⊂ θk1
1 θl1

2 . . . θkr
1 θlr

2 (K) ⊂ K.

Applying (θ1θ2)� to these inclusions we obtain:

(θ1θ2)�+m(K) ⊂ θk1
1 θl1

2 . . . θkr
1 θlr

2 (K) ⊂ (θ1θ2)�(K).

Therefore we have θk1
1 θl1

2 . . . θkr
1 θlr

2 (K) = (θ1θ2)�(K).

Proposition 2.3. Given f, g: K → N
n then MC[f, g] = MC[f ′, g′] where

f ′ and g′ are the restriction of the f and g, respectively, to s(K).

Proof. The proof follows from Lemma 2.1 and [6, Proposition 2.7]. �

The figure below shows a complex and its soul.

K

s(K)

Figure 2

Remark 2.4. A typical example of an n-complex which coincides with its
soul is the union of n-manifolds without boundary. The converse is not true,
though. To see this consider three disjoint spheres joint to a 2-simplex so that
each of its faces belongs to one of the spheres.
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3. Local coincidence index and the number NO(f, g; K)

In this section we define a homotopy invariant which will coincide, under
mild conditions, with the minimal number of coincidences in the homotopy class
of the pair f, g: K → N

n. This invariant is constructed in terms of the primary
obstruction to deform a pair of maps to coincidence free as well as in terms of
the geometry of the complex K. We will start by reviewing the notion of local
index as formulated by E. Fadell and S. Husseini in [5] where we adapted the
terminology to the coincidence case.

Let U be an open set of K and (f, g): U → N
n be a pair of maps where the

set of coincidence points is compact.
As in [5], we consider the diagonal 	 in N

n × N
n and replace the inclusion

N
n × N

n − 	 ↪→ N
n × N

n by a fiber map p: E → N
n × N

n, where

E = {(α, β) | α, β : [0, 1] → N
n, α(0) 
= β(0)},

and p(α, β) = (α(1), β(1)). For b = (x, y) in N
n × N

n and Fb = p−1(b), πn−1(Fb)
is a local system of coefficients on N

n × N
n. There is an isomorphism of local

systems on N
n × N

n

ζ: πn−1(Fb, b) → Z[π],

where π = π1(Nn, x) and the action of π × π on Z[π] is given by

α · (σ, τ) = sgnσσ−1 · α · τ

Here, since σ is an element of the fundamental group of a manifold, sgnσ is ±1,
according to whether it preserves or reverses local orientation. We wil refer to
this system as B.

Let the local system on U be the one induced from B by f × g: U → N
n × N

n

and denote it by B(f × g). Consider the fiber space E(f, g) obtained by pulling
back p: E → N

n × N
n over U by f × g.

The obstruction to deform the pair (f, g) to a coincidence free pair is related
to the obstruction to extend sections of the fiber map E(f, g) → U .

Following the steps in [5] and making the usual adaptations to the coincidence
case, we end up with:

Definition 3.1. For an open set U of K, the coincidence index of (f, g): U

→ N
n is the cohomology class i(f, g) in Hn

c (U ; B(f ×g)) given by the obstruction
to deform (f, g), by a compact homotopy, to a coincidence free pair. In case U

coincides with K, we denote this class by On(f, g) and, since K is compact, it
lies in Hn(K, Z[π]).

Consider now F an isolated set of coincidences of (f, g) and let V be an open
set of U such that F = V ∩ coin (f, g). Consider the composition

Hn(V, V − F ; B(f × g))
j∗−1

−→ Hn(U, U − F ; B(f × g)) k∗
−→ Hn

c (U ; B(f × g))
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where the first arrow is the inverse of the excision isomorphism and the second
is the composition of the homomorphism, induced by the inclusion,

Hn(U, U − F ; B(f × g)) i∗
−→ Hn(U, U − coin (f, g); B(f × g)),

with the natural homomorphism to Hn
c (U ; B(f × g)).

Recall that Hn
c (U ; B(f × g)) is the direct limit of Hn(U, U − C; B(f × g)),

taken over all compact subsets C of U .

Definition 3.2. The local coincidence index of F , denoted by i(f, g; F ), is
the element in Hn

c (U ; B(f × g)) given by k∗(j∗)−1(α), where α ∈ Hn(V, V − F ;
B(f × g)) corresponds to the coincidence index of (f, g): V → N

n.

Let us consider the group Hn(K, A), the n-th simplicial cohomology group
of K with local coefficients, where A is a free abelian group and identified with
the direct sum of Z ′s indexed by some set J . We call a cochain cn ∈ Cn(K, A)
elementary if cn is nonzero in only one n-simplex, called its support, and has value
in one summand Z of A indexed by j ∈ J . So we can associate to each elementary
cochain a pair (∆n, j), where ∆n is its support and j is the index of the summand
Z ⊂ A where the cochain assumes its value. Two elementary cochains are
disjoint if the pairs (∆n, j), (∆′n, j′) are not equal. Given an arbitrary cocycle
(or cochain) cn ∈ Cn(K, A) we define an integer, �(cn), as follows: The cocycle
cn can be uniquely written as a sum of disjoint elementary cocycles i.e. cn =
cn,1 + . . . + cn,r, where each cn,i is elementary.

Definition 3.3. A cocycle is essential if it represents a nonzero cohomology
class.

Definition 3.4. A partial sum cn,i1 + . . . + cn,is of the decomposition of cn

is said to be combinable if the intersection of the supports of all elementary
summands is nonempty and they have values in the same summand Z of A.
Define �(cn) to be the minimal number of combinable partial summands among
all decompositions of cn.

Now let f, g: K → N
n be maps.

Definition 3.5. The number NO(f, g; K) is defined as the minimum of
the numbers �(cn), where cn runs over the set of all cocycles representing the
obstruction On(f, g) ∈ Hn(K, Z[π]) to deform (f, g) to coincidence free.

Theorem 3.6. NO(f, g; K) is a homotopy invariant.

Proof. The result follows from the fact that On(f, g) = On(f1, g1), for
(f1, g1) homotopic to (f, g). �



122 L. D. Borsari — D. L. Gonçalves

4. The minimal number of coincidences
and the realization of the number NO(f, g; K)

We will now prove that the number NO(f, g; K) coincides with the minimal
number of coincidences in the homotopy class of the pair (f, g). The tecnicques
applied are based on works by H. Schirmer ([10]), X. Zhao ([12]), L. D. Borsari
and D. L. Gonçalves ([1]) and D. L. Gonçalves ([6]). From what we have seen
before, we may assume that K coincides with its soul.

We will define a decomposition of K in terms of a simplicial structure of K,
although it can be shown that this decomposition does not depend on the par-
ticular simplicial structure. For each maximal simplex ∆n let C(∆n) be the
smallest subcomplex which contains all n-simplices ∆′n such that there is a se-
quence of n-simplices starting at ∆n and ending at ∆′n so that the intersection of
two consecutive ones is a (n − 1)-simplex which faces only these two n-simplices.
This defines a covering of K by homogeneous simplicial subcomplexes of dimen-
sion n which we denote by {K1, . . . , Kr}. These subcomplexes happen to be,
in many situations, manifolds but not necessarily. Take for example, K to be
the n-sphere with its poles identified. Associated to this covering we have the
subcomplex K0 =

⋃
i�=j Ki ∩Kj . Observe that the points of K0 are characterized

by the property that they are not locally Euclidean in K.

Theorem 4.1. Let (f, g): K → N
n be a pair of maps where K and N

n have
dimension bigger than or equal to three. Assume every component of K0 and
of all intersections of any number of Ki are of non-zero dimension. Then the
minimum number of coincidences in the homotopy class of the pair (f, g) is given
by NO(f, g; K).

Proof. The process of deforming the pair (f, g) to (f1, g1) having all co-
incidences lying in the interior of n-simplices is based on [10] and it guar-
antees that the cocycle associated to this new pair, cn = cn(f1, g1), satisfies
�(cn) ≤ coin (f, g). Therefore NO(f, g; K) ≤ coin (f, g), and being a homotopy
invariant, it becomes a lower bound for the minimum number of coincidences in
the homotopy class of the pair (f, g). It remains to prove that NO(f, g; K) can
be realized and this is done in what follows.

Let cn be a n-cocycle representing the obstruction to deform (f, g) to coinci-
dence free and such that �(cn) = NO(f, g; K). Consider (f ′, g′) a pair homotopic
to (f, g) so that cn(f ′, g′) = cn. This means that (f ′, g′) has coincidences ap-
pearing in the simplices that are support for each elementary cocycle in the
decomposition of cn. Each combinable partial sum of cn will correspond to a set
of n-simplices having non-empty intersection.

In fact, we may also assume that there will be only one coincidence in each of
those n-simplices. To see this, consider the group πn(M ×M, M ×M −∆) which
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is isomorphic to Z[π] as in [4, p. 62]. Take α ∈ πn(M × M, M × M − ∆) of the
form l.1β where β ∈ π1(M) and 1β is a generator of the copy of Z indexed by β.
We will show that α can be represented by a pair of maps (f, g): (∆n, ∂∆n) →
(M ×M, M ×M −∆) with only one coincidence point. To see this, we perform the
definition of the action of β in one element. Namely, regard ∆n as the unit ball
and consider its boundary, an (n−1)- sphere, as the quotient of the disk Dn−1 by
its boundary. We define the map in Dn−1 as a composition of a map into M̃ , the
universal covering of M , with the projection M̃ → M . Let g̃: Dn−1 → M̃ be the
map sending the sphere of radius r into the point β̃(2−2r) as r runs from 1 to 1/2,
where β̃ is a lifting of the loop β. The ball of radius 1/2 is mapped into the
(n − 1)- sphere of radius ε around the point ỹ1 in the pre-image of y, as a
map of degree l. Now, extend the map g̃ to the interior of Dn by sending the
origin to ỹ1, and each segment from the origin to a point x in the sphere will
perform either a radial segment from ỹ1 to g(x), or a radial segment from ỹ1 to
β̃(1) followed by the part of the path β̃−1 ending at g(x). Now given the pair
(f |∆n , g|∆n): (∆n, ∂∆n) → (M × M, M × M − ∆) it represents, by hypothesis,
an element of the form l.1β. By the homotopy sequence of the pair, there is
a homotopy H between the pairs (f |∂∆n , g|∂∆n): (∂∆n) → M × M − ∆ and
(f |∂∆n , g|∂∆n): (∂∆N ) → M × M − ∆. We are ready to extend (f ′, g′) to the
interior of ∆n with only one coincidence. First, we identify the simplex ∆n with
the unit ball of dimension n. In the annulus with radius varying from 1 to 1/2
we define the map as the homotopy H. In the ball of radius 1/2 we make use of
the model constructed above, having only one coincidence.

Consider the subspace given by the union of the n-simplices appearing in
a combinable partial sum of cn. It is contractible and therefore the local system
induced over it is trivial. For each coincidence point ai, lying in the interior of one
of the i-th maximal simplices consider the segment, denoted by αi, from ai to a.
Take two points, namely a1 and ai. The local index at the point ai represents
an element which is an integer multiplied by the generator of Z at the local
group indexed by the element 1. The assumption that the index lies in the same
summand (with respect to the trivialization of the bundle over the subspace) is
the same as saying that if we transport the local index at (f(a1), g(a1)) to the
point (f(ai), g(ai)) along the path (f(α1α−1

i ), g(α1α−1
i )), we get an element of

the summand Z indexed by the neutral element. Now, by Proposition 3.6 in [4] it
follows that f(α1α−1

i ) ∼= g(α1α−1
i ), for all i. These conditions, together with the

tecnicques developed in [1], allow us to deform the pair (f ′, g′) so that all these
coincidences coalesce to a. Repeating this procedure to all others combinable
sets we end up with �(cn) = NO(f, g; K) coincidence points. �

Remark 4.2. In the case where some, if not all, components of K0 or some
components of the intersections of a certain number of K ′

is have zero dimension,
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it could happen that two or more combinable partial sums have the intersection
of their supports being only one point. In this case, only one set of coincidences,
arising from the combinable partial sums, would be joint to this point. Therefore,
we would have to add to the number �(cn) the number of elements of all, except
the biggest, combinable partial sums for which the intersection of supports is the
same single point. Then, the minimum of these numbers, as cn runs through all
possible cocycles representing the obstruction class, will give us the minimum
number of coincidences in the homotopy class of the pair (f, g).

As an application of the above result, let K ′ ⊂ K be any subcomplex such
that the homomorphism i∗: Hn(K, Z[π]) → Hn(K ′, Z[π]), induced by the inclu-
sion map, is a cohomology isomorphism with local coefficients where π = π1(Nn).
Observe that if two subcomplexes have this property then their intersection does
too. Hence, we may always consider the minimal one, namely, the intersection
of all subcomplexes satisfying the above condition.

Theorem 4.3. Given f, g: K → N
n then MC[f, g] = MC[f ′, g′], where f ′, g′

are the restrictions of f, g, respectively, to K ′.

Proof. Given (f, g) consider its restriction (f ′, g′) to K ′, and let (f ′′, g′′)
a pair of maps in K ′ homotopic to (f ′, g′). Take any cocycle cn representing the
obstruction On(f ′, g′). Since K ′ reflects all cohomology of K, this cocycle also
represents the obstruction On(f, g). Therefore there exists (f1, g1) homotopic
to (f, g) such that cn(f1, g1) is the cocycle cn . Observe that any combinable
partial sum of cn in K ′, is also combinable in K. Therefore, from Theorem 4.1, it
follows that MC[f, g] ≤ MC[f ′, g′]. The other inequality is clear and the result
follows. �

5. Some special cases

Before analyzing the special cases, let us observe that in the context we are
working, we do not expect the minimum number of coincidences to coincide with
the Nielsen number. This can be seen in [1] even in the case where the target
is simply connected. The coincidence Nielsen number can be defined as in [2] or
in [6], since, in our context, the given definitions are equivalent.

In the fixed point case, in dimension two, it is well known that the Wecken
property does not hold, i.e. the minimal number of fixed points does not coincide
with the Nielsen number. It was observed in [8] that for maps f : P → P , where
P is the pantalon, the disk with two holes, the difference MC[f ] − N(f) can
become arbitrarily large as we vary over the homotopy classes of self-maps on P .
Inspired on these facts we set

Definition 5.1. Let W{K, Nn} be the maximum of all MC[f, g] − N(f, g),
where [f, g] runs over all homotopy classes of pairs of maps from K to N

n.
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It is well known that this number is zero in the fixed point case when the
complex K has no local cut points, it is not a surface, and it has dimension
greater than or equal to two, see [2] . This is also the case in the coincidence
context, where the spaces are orientable manifolds of dimension greater than or
equal to three, see [10]. In our context, we will be seeing that W{K, Nn} can be
either finite or infinity.

5.1. The case where N
n is simply connected. Let f, g: K → N

n be
a pair of maps. Since N

n is simply connected we have only one Nielsen class.
We will show that in general the number MC[f, g] is bounded for a fixed K

but it goes to infinity as we vary K. Many examples can be construct having
MC[f, g] > 1, and a upper bound for the maximum of MC[f, g], among all pairs
(f, g), is given.

Let C = {Ki1 , . . . , Kir } be the covering of K defined in the previous section,
and assume that all components of K0 have nonzero dimension.

Definition 5.2. A subset {Ki1 , . . . , Kis} of the covering C = {K1, . . . , Kr}
is called admissible if the intersection Ki1 ∩. . .∩Kir 
= ∅. Let �(C) be the minimal
number of admissible subsets which cover C. For the purpose of computing �(C)
we can assume, without loss of generality, that the admissible sets are maximal
in the sense that for any Kj 
= Kit , t = 1, . . . , r, we have Kj ∩Ki1 ∩. . .∩Kir = ∅.

Proposition 5.3. Given f, g: K → N
n then MC[f, g] ≤ �(C). In particular

W{K, Nn} is finite.

Proof. Let cn be any cocycle representing the obstruction to deform the
pair (f, g) to coincidence free. For each admissible covering of K we obtain a
decomposition of cn into combinable partial sums. The number of elements in
this decomposition is less than or equal to the number of elements of the covering.
So it follows that MC[f, g] ≤ �(C). �

Remark 5.4. Observe that in this context, where the target is simply con-
nected, we may replace the complex K by any subcomplex K ′ of K so that
the inclusion i: K ′ → K induces an isomorphism of the n-th cohomology group
with coefficients in Z, not twisted. The minimal of these complexes has been
considered in [6]. Therefore W{K, Nn} can be computed as W{K ′, Nn}, where
K ′ varies over a larger family of subcomplexes of K, than the family considered
in Section 4.

5.2. Examples. Consider the simplicial complex K obtained from a col-
lection of six tori joint by tubes. Observe that K = K1 ∪ . . . ∪ K21, the tori
are K1 ∪ K2, K3 ∪ K4, . . . , K11 ∪ K12, and the tubes K13, . . . , K21 either have
empty intersection or intercept in a boundary circle, see Figure 3 for an immersed
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Figure 3

model of K. Notice also that the decomposition of K as the union of the Ki,
i = 1, . . . , 21, is the one defined in the preceeding section.

It is not hard to see that for C = {K1, . . . K21}, the minimal number of
admissible subsets that cover C, �(C), is 7 and this covering is realized by the
subsets:

{K1, K2, K14}, {K3, K4, K20}, {K5, K6, K21}, {K7, K8, K18},

{K9, K10, K17}, {K11, K12, K13}, {K15, K16, K19}.

Consider now a pair of maps (f, g): K → S2. Since S2 is simply connected, we
know that the obstruction to deform (f, g) to coincidence free can be represented
by a sum of elementary cocycles so that no two of them have supports in the
same Ki. It is not hard to see that with techniques developed by H. Schirmer
in [10] and in [1] we may, by adding suitable coboundaries to this cocycle, assume
that the cocycle is composed by elementary ones with supports lying in some, if
not all, of the complexes K1, . . . , K12. Therefore (f, g) can be made homotopic
to a pair with at most 12 coincidences lying in different K ′

is, i = 1, . . . 12. Since
any two coincidences lying in the tori Ki ∪ Ki+1, i = 1, 3, 5, 7, 9, 11 can be joint
to one, we end up with MC[f, g] ≤ 6. It is also clear that we can construct a
pair (f, g) such that MC[f, g] is, in fact, 6.

We have therefore an example where

MC[f, g] ≤ 6 < 7 = �(C) and W{K, Nn} = 6.

Let us represent the complex K by the graph in Figure 4. So each tube is
represented by a segment and each torus by a circle.
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�
Figure 4

With this in mind, we can produce more examples as represented in Figure 5.

n=0

#C=9

l(C)=3

MC[f,g]≤3� n=1

#C=21

l(C)=7

MC[f,g]≤6�
n=2

#C=45

l(C)=15

MC[f,g]≤12�
Figure 5

In general we have, for the n-th step, the following: cardinality of C is
3.20 + . . . + 3.2n,

�(C) =

{
3.2n + 3.2n−2 + . . . + 3.22 + 3.20 for n even,

3.2n + 3.2n−2 + . . . + 3.21 + 1 for n odd.

MC[f, g] ≤ 3.2n, for all (f, g): K → S2, and we have examples of pairs of maps
for which MC[f, g] = 3.2n.

Hence, we have that W{K, Nn} = 3.2n − 1 which is strictly less than �(C).
Also, as K varies with n, both �(C) and �(C) − W{K, Nn} go to infinity.
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5.4. The case where K is a union of closed manifolds. Let us consider
the minimizing problem for (f, g): K → N

n, where K is a union of n-dimensional
manifolds M1, . . . , Mr with no boundary. We can always assume that this cover-
ing has no proper subcovering. We make the assumption that M0 =

⋃
i�=j Mi∩Mj

is by-passing in each Mi. This notion of by-passing does not depend on the de-
composition of K as a union of closed manifolds. The results obtained here are
a generalization of what we have done in [1].

For a pair of maps (f, g): K → N
n, consider (fi, gi): Mi → N

n be the re-
striction of (f, g) to Mi. For each (fi, gi) we consider the usual essential Nielsen
classes.

Let F1, . . . , Fr be a set of essential Nielsen classes so that each Fi belongs
to a different manifold Mj . We say that this set is combinable if the following
hold:

(a) The intersection of the manifolds Mj, to where the classes Fi belong to,
is non-empty.

(b) There is a point a in the intersection mentioned above, and paths αi

in Mi from any point in Fi to a so that f(α1 ∗ α−1
i ) ∼= g(α1 ∗ α−1

i ), see
Figure 6.

a

M1

α1

M2

α2

M3α3

M4

α4

Figure 6

This relation enable us to divide the set of Nielsen classes of
(fi, gi): Mi → N

n, for i = 1, . . . , r into combinable subsets. These can be done in
various manners. We are interested in doing it in a way that we end up with the
least number of combinable subsets. Therefore we consider all possible coverings
of the set of Nielsen classes by combinable subsets and we set

Definition 5.5. The number N(f, g; K) corresponds to the smallest cardi-
nality of combinable subsets among all possible coverings.

Theorem 5.6. Let (f, g): K → N
n be a pair of maps, where K is a union of

n-dimensional closed manifolds M1, . . . , Mr. Let K0 be the union of Mi∩Mj , i 
=
j,and assume all of its components, as well as all components of the intersections
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of any number of M ′
is, are of positive dimension. Suppose Mi ∩ Mj is properly

contained in both Mi and Mj and K0 ∩ Mi is by-passing in Mi, for all i. Then
N(f, g; K) is the minimum number of coincidences in the homotopy class of the
pair (f, g) and therefore N(f, g; K) = NO(f, g; K).

Proof. Observe that the subcomplexes in the decomposition of K, defined
in the beginning of Section 4, are exactly the manifolds Mi. Let cn be an
n-cocycle representing the obstruction to deform (f, g) to coincidence free and
such that �(cn) = NO(f, g; K). Consider (f ′, g′) a pair homotopic to (f, g)
so that cn(f ′, g′) = cn. As before, this means that (f ′, g′) has coincidences
appearing in the simplices that are support for each elementary cocycle in the
decomposition of cn. Each combinable partial sum of cn will correspond to
a set of n-simplices having non-empty intersection, each of them belonging to
some Mi and containing only one coincidence. It follows from the proof of
Theorem 4.1 that this set of coincidence points lying in these n-simplices will be
combinable. Hence N(f, g; K) ≤ NO(f, g; K) and therefore it suffices to prove
that the number N(f, g; K) can be realized. The same tecnicques developed
in [1] to join coincidence points in two different manifolds can be applied step
by step in case more manifolds are involved, provided the by-passing condition
is imposed. �

Remark 5.7. If some of the above mentioned components have zero di-
mension, to obtain the minimum we should add to N(f, g; K) the number of
coincidences lying in each combinable subset of Nielsen classes, except for the
biggest, having the intersection of the manifolds to where their Nielsen classes
belong to, being the same one point.

Finally, we exhibit an example where W{K, Nn} is infinity. Let K be the
union of two tori T n = (S1)n−1 × S1 glued by the subcomplex (S1)n−1 × {1},
and N

n = T n. Consider the sequence of pairs of maps (fm, gm), where gm is the
constant map for all m, and fm is defined by its restrictions, fm1 and fm2 , to
each torus, where fm1 is given by fm1(z1, . . . , zn) = (zm

1 , . . . , zn), and fm2 is the
identity map for all m. By Theorem 4.1 in [1] we have that MC[fm, gm] = m

and N(fm, gm) = 1. Therefore W{K, Nn} = ∞
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