OBSTRUCTION THEORY AND MINIMAL NUMBER OF COINCIDENCES FOR MAPS FROM A COMPLEX INTO A MANIFOLD

Lucília D. Borsari - Daciberg L. Gonçalves

Abstract

The Nielsen coincidence theory is well understood for a pair of maps between n-dimensional compact manifolds for n greater than or equal to three. We consider coincidence theory of a pair $(f, g): K \rightarrow \mathbb{N}^{n}$, where K is a finite simplicial complex of the same dimension as the manifold \mathbb{N}^{n}. We construct an algorithm to find the minimal number of coincidences in the homotopy class of the pair based on the obstruction to deform the pair to coincidence free. Some particular cases are analyzed including the one where the target is simply connected.

1. Introduction

Let K be a finite simplicial complex of dimension n and let $f, g: K \rightarrow \mathbb{N}^{n}$ be maps, where \mathbb{N}^{n} is an n-dimensional manifold. The purpose of this work is to define a sharper invariant than the coincidence Nielsen number to study the minimal number of coincidences in the homotopy class of the pair (f, g). This invariant is based on algebraic and geometric features of the pair (f, g) and of the complex K. The case where K is a manifold has been treated by H . Shirmer, in [10], for K and \mathbb{N}^{n} orientable, while the general case has been done by R. Dobreńko and J. Jezierski, in [3], and by D. L. Gonçalves in [6]. In [1], we study the case where K is the union of two subcomplexes K_{1}, K_{2} each being a

[^0]closed manifold and $K_{i}-K_{1} \cap K_{2}$ being by-passing in K_{i}. On trying to drop the by-passing condition in this particular case, it became clear that the geometry of K was very relevant, and the difficulties to find a Nielsen type number to describe $M C[f, g]$, the minimal number of coincidences in the homotopy class of the pair (f, g), were basically the same as if we consider a general complex K of dimension n. So we treat in this work the general problem. The invariants defined here are homotopy invariants with respect to the pair (f, g) but are not invariants with respect to the homotopy type of K as one can see in examples in [6, Section 4].

The article is divided into four sections, besides this one. In Section 2 we show that it suffices to work with complexes that are homogeneous and with no ($n-1$)-simplices facing only one n-simplex. Section 3 is devoted to the definition of a homotopy invariant, in terms of the obstruction cocycles representing the obstruction class to deform the pair (f, g) to coincidence free. In Section 4 we show that this invariant coincides with the minimum number of coincidences, under mild conditions. Finally, in Section 5 we analyze two special cases. One of them is when the target \mathbb{N}^{n} is simply connected. The other case is when K is a finite union of manifolds without boundary. In these examples we estimate the difference between the minimal number of coincidence points and the usual coincidence Nielsen number.

We would like to thank Claudemir Aniz for his critical reading, and the referee for his several important suggestions. Both helped to improve considerably this work.

2. The geometry of the complex K and the minimal number of coincidences

In this section we show that to solve the coincidence problem it suffices to consider homogeneous simplicial complexes K with the property that every ($n-1$)-simplex faces at least two n-simplices. Recall that an n-simplicial complex K is homogeneous if every maximal simplex has dimension n. We denote by $M C[f, g]$ the minimum number of coincidences in the homotopy class of the pair (f, g).

By [6, Proposition 2.7] we know that $M C[f, g]=M C\left[f^{\prime}, g^{\prime}\right]$, for given $f, g: K \rightarrow \mathbb{N}^{n}$, where f^{\prime}, g^{\prime} are the restrictions of f, g to the subcomplex $K\langle n\rangle \subset$ K, where $K\langle n\rangle$ is the smallest subcomplex which contains all n-simplices of K. So we assume that K is homogeneous and consider the n-simplices containing a $(n-1)$-face which is not contained in another n-simplex. Define $\widehat{K} \subset K$ the subcomplex of K obtained from K by removing these n-simplices as well as its ($n-1$)-faces which are not contained in another n-simplex.

Lemma 2.1. Given $f, g: K \rightarrow \mathbb{N}^{n}$ then $M C[f, g]=M C[\widehat{f}, \widehat{g}]$, where \widehat{f}, \widehat{g} are the restrictions to \widehat{K} of f, g, respectively.

Proof. Clearly $M C[f, g] \geq M C[\widehat{f}, \widehat{g}]$. To show the converse let K^{\prime} be a subcomplex obtained from K by removing one n-simplex, Δ^{n}, together with one of its $(n-1)$ faces, Δ_{0}^{n-1}, which faces only this n-simplex. We will show that $M C\left[f^{\prime}, g^{\prime}\right] \geq M C[f, g]$ where f^{\prime}, g^{\prime} are the restrictions to K^{\prime} of f and g, respectively. Since $M C\left[f^{\prime}, g^{\prime}\right]$ is finite let us consider a pair of maps $\left(f^{\prime}, g^{\prime}\right)$ such that $\operatorname{coin}\left(f^{\prime}, g^{\prime}\right)$ is finite. We will construct a pair of maps $\left(f_{1}, g_{1}\right)$ in the homotopy class of the pair (f, g) such that its restriction to K^{\prime} is homotopic to $\left(f^{\prime}, g^{\prime}\right)$ and such that $\operatorname{coin}\left(f_{1}, g_{1}\right)=\operatorname{coin}\left(f^{\prime}, g^{\prime}\right)$. Observe that this implies the result for \widehat{K} because $\widehat{K}=K^{\prime}\langle n\rangle$.

The finite set coin $\left(f^{\prime}, g^{\prime}\right) \cap \Delta^{n}$ is in the complement of the interior of the $(n-1)$-face Δ_{0}^{n-1} in the boundary of Δ^{n}. Each coincidence point x_{i} belongs to the interior of a k-simplex, $\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\}$, for $k \leq n-1$.

For each point x_{i} in coin $\left(f^{\prime}, g^{\prime}\right)$ we consider a small n-simplex Δ_{i}^{n}, with faces parallel to the faces of Δ^{n} and containing x_{i} as an interior point of the k-face which is parallel to $\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\}$. Assume this simplex is small enough, so that its image by f and g lie in a coordinate neighbourhood of $f^{\prime}\left(x_{i}\right)=g^{\prime}\left(x_{i}\right)=y_{i}$.

We divide the points of coin $\left(f^{\prime}, g^{\prime}\right) \cap \Delta^{n}$ in two types according to whether the simplex $\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\}$ is or is not contained in Δ_{0}^{n-1}.

Let x_{i} be of first type. Then necessarily x_{i} is a point in the interior of a k-simplex for $k<n-1$. Let a_{0}, \ldots, a_{n} be the vertices of Δ_{i}^{n} and suppose $\left\langle a_{0}, \ldots, a_{n-1}\right\rangle$ is the $(n-1)$-face of Δ_{i}^{n} parallel to Δ_{0}^{n-1} and that x_{i} belongs to the interior of $\left\langle a_{0}, \ldots, a_{k}\right\rangle$. In this case the functions f^{\prime}, g^{\prime} are defined in the star of $\left\langle a_{0}, \ldots, a_{k}, a_{n}\right\rangle$ as a subcomplex of the boundary of Δ_{i}^{n}. Now we construct a retraction $r: \Delta_{i}^{n} \rightarrow \Delta_{i}^{n}$ on the star of $\left\langle a_{0}, \ldots, a_{k}, a_{n}\right\rangle$ as a subcomplex of $\partial \Delta_{i}^{n}$. Introducing a new vertex b in the interior of the $(n-k-2)$-face $\left\langle a_{k+1}, \ldots, a_{n-1}\right\rangle$ we can define r as the simplicial map given by $r\left(a_{i}\right)=a_{i}$ for $i=0, \ldots, n$ and $r(b)=a_{n}$.

Let x_{i} be of the second type and consider x_{i} in Δ_{i}^{n}. Call Δ_{i}^{k} the k-face of Δ_{i}^{n} having x_{i} in its interior, and let Δ_{i}^{n-k-1} be the face determined by the vertices in Δ_{i}^{n} which are not in Δ_{i}^{k}. Observe that the star of Δ_{i}^{k} and of Δ_{i}^{n-k-1} as subcomplexes of $\partial \Delta_{i}^{n}$ are homeomorphic to ($n-1$)- discs, their union is the hole $\partial \Delta_{i}^{n}$, and their intersection is the boundary of each, which is homeomorphic to an $(n-2)$-sphere. We assumed Δ_{i}^{n} small enough, so that the images of the star of Δ_{i}^{k} as a subcomplex of Δ_{i}^{n} by f^{\prime} and g^{\prime} lie in a coordinate neighbourhood of $f^{\prime}\left(x_{i}\right)=g^{\prime}\left(x_{i}\right)=y_{i}$. After composing the maps with a chart, we take $f^{\prime}-g^{\prime}$ restrict to the boundary of the star of Δ_{i}^{k}, which can be viewed as a map from the $(n-2)$-sphere to $R^{n}-\{0\}$. Since this map is homotopic to a constant, we can extend it to the star of Δ_{i}^{n-k-1} as a subcomplex of $\partial \Delta_{i}^{n}$, without introducing
coincidences. We need now to extend it to the interior of Δ_{i}^{n}. For this take a homeomorphism of the n-disk to Δ_{i}^{n} that takes boundary to boundary, and the south pole of the boundary of the disc to x_{i}. Extend now, to the interior of the n-disk, the composition of $f^{\prime}-g^{\prime}$ with the homeomorphism above, linearly in each segment from the south pole to a point in the boundary.

We succeed extending the maps f^{\prime}, g^{\prime} to $K^{\prime} \cup \Delta_{1}^{n} \cup \ldots \cup \Delta_{s}^{n}$ without introducing new coincidence points. In order to extend it to the hole Δ^{n}, we observe first that there is a well known retraction from Δ^{n} onto its ($n-1$)-faces, except the interior of one. Denote by $s t_{L}\left(\Delta^{k}\right)\left(\operatorname{ost}_{L}\left(\Delta^{k}\right)\right)$ the star (the open star) of the simplex Δ^{k} as a subcomplex of the complex L. It suffices to define a homeomorphism of pairs from

$$
\begin{array}{r}
\left(\Delta^{n}-\bigcup_{i} \operatorname{ost}_{\Delta_{i}^{n}}\left(\Delta_{i}^{k}\right),\left(\partial \Delta^{n}-\left(\operatorname{int} \Delta_{0}^{n-1} \bigcup_{i} \operatorname{ost}_{\partial \Delta_{i}^{n}}\left(\Delta_{i}^{k}\right)\right) \bigcup_{i} \operatorname{stt}_{\partial \Delta_{i}^{n}}\left(\Delta_{i}^{n-k-1}\right)\right)\right. \\
\rightarrow\left(\Delta^{n}, \partial \Delta^{n}-\operatorname{int} \Delta_{0}^{n-1}\right)
\end{array}
$$

Figure 1
For this consider closed neighbourhoods $\Delta_{i}^{\prime}{ }^{n}$ of Δ_{i}^{n} respecting the parallelism with Δ^{n}, see Figure 1.

Define the homeomorphism to be the identity in $\Delta^{n}-\bigcup_{i}$ ost $_{\Delta_{i}^{\prime n}}\left(\Delta_{i}^{\prime k}\right)$ and sending the part of the face Δ_{0}^{n-1} in $\Delta^{n}-\bigcup_{i}$ ost $_{\Delta_{i}^{n}}\left(\Delta_{i}^{k}\right)$ homeomorphically onto Δ_{0}^{n-1}.

Given an n-dimensional simplicial complex K we can iterate the following two operations: the first is to consider the homogeneous subcomplex $K\langle n\rangle \subset K$ of dimension n (see [6]) and the second is the operation, defined in the beginning of the section, which consists of eliminating the n-simplices containing faces that do not face any other n-simplex, together with these faces. This process of iterating the two operations will stop after a finite number of steps, and we make the following

Definition 2.2. For an n-dimensional simplicial complex K, we define the soul of K, denoted by $s(K)$, to be the subcomplex obtained at the end of the process indicated above.

Observe that it does not matter in which order we perform these operations on a simplicial complex K. At some moment the process will become stable and the resulting subcomplex will be the soul of K. To see this, denote by $\theta_{1}(K)$ $\left(\theta_{2}(K)\right)$ the subcomplex obtained from K after applying the first (second) operation. It is not hard to see that these operations preserve inclusions, that is, if L is a subcomplex of M, then $\theta_{i}(L)$ is a subcomplex of $\theta_{i}(M), i=1,2$. Therefore, $\theta_{1}\left(\theta_{2}(K)\right) \subset \theta_{1}(K)$ and since $\left(\theta_{1}\left(\theta_{2}(K)\right) \subset \theta_{2}(K)\right.$, we have that any subcomplex $\theta_{1}^{k_{1}} \theta_{2}^{l_{1}} \ldots \theta_{1}^{k_{r}} \theta_{2}^{l_{r}}(K)$ will contain a subcomplex of the form $\left(\theta_{1} \theta_{2}\right)^{m}(K)$.

Now consider an integer ℓ so that $\left(\theta_{1} \theta_{2}\right)^{\ell}(K)=\left(\theta_{1} \theta_{2}\right)^{\ell+1}(K)$ and any other subcomplex, $\theta_{1}^{k_{1}} \theta_{2}^{l_{1}} \ldots \theta_{1}^{k_{r}} \theta_{2}^{l_{r}}(K)$, obtained from a process that has become stable. We have

$$
\left(\theta_{1} \theta_{2}\right)^{m}(K) \subset \theta_{1}^{k_{1}} \theta_{2}^{l_{1}} \ldots \theta_{1}^{k_{r}} \theta_{2}^{l_{r}}(K) \subset K
$$

Applying $\left(\theta_{1} \theta_{2}\right)^{\ell}$ to these inclusions we obtain:

$$
\left(\theta_{1} \theta_{2}\right)^{\ell+m}(K) \subset \theta_{1}^{k_{1}} \theta_{2}^{l_{1}} \ldots \theta_{1}^{k_{r}} \theta_{2}^{l_{r}}(K) \subset\left(\theta_{1} \theta_{2}\right)^{\ell}(K)
$$

Therefore we have $\theta_{1}^{k_{1}} \theta_{2}^{l_{1}} \ldots \theta_{1}^{k_{r}} \theta_{2}^{l_{r}}(K)=\left(\theta_{1} \theta_{2}\right)^{\ell}(K)$.
Proposition 2.3. Given $f, g: K \rightarrow \mathbb{N}^{n}$ then $M C[f, g]=M C\left[f^{\prime}, g^{\prime}\right]$ where f^{\prime} and g^{\prime} are the restriction of the f and g, respectively, to $s(K)$.

Proof. The proof follows from Lemma 2.1 and [6, Proposition 2.7].
The figure below shows a complex and its soul.

Figure 2
REmark 2.4. A typical example of an n-complex which coincides with its soul is the union of n-manifolds without boundary. The converse is not true, though. To see this consider three disjoint spheres joint to a 2 -simplex so that each of its faces belongs to one of the spheres.

3. Local coincidence index and the number $N O(f, g ; K)$

In this section we define a homotopy invariant which will coincide, under mild conditions, with the minimal number of coincidences in the homotopy class of the pair $f, g: K \rightarrow \mathbb{N}^{n}$. This invariant is constructed in terms of the primary obstruction to deform a pair of maps to coincidence free as well as in terms of the geometry of the complex K. We will start by reviewing the notion of local index as formulated by E. Fadell and S. Husseini in [5] where we adapted the terminology to the coincidence case.

Let U be an open set of K and $(f, g): U \rightarrow \mathbb{N}^{n}$ be a pair of maps where the set of coincidence points is compact.

As in [5], we consider the diagonal \triangle in $\mathbb{N}^{n} \times \mathbb{N}^{n}$ and replace the inclusion $\mathbb{N}^{n} \times \mathbb{N}^{n}-\triangle \hookrightarrow \mathbb{N}^{n} \times \mathbb{N}^{n}$ by a fiber map $p: E \rightarrow \mathbb{N}^{n} \times \mathbb{N}^{n}$, where

$$
E=\left\{(\alpha, \beta) \mid \alpha, \beta:[0,1] \rightarrow \mathbb{N}^{n}, \alpha(0) \neq \beta(0)\right\}
$$

and $p(\alpha, \beta)=(\alpha(1), \beta(1))$. For $b=(x, y)$ in $\mathbb{N}^{n} \times \mathbb{N}^{n}$ and $F_{b}=p^{-1}(b), \pi_{n-1}\left(F_{b}\right)$ is a local system of coefficients on $\mathbb{N}^{n} \times \mathbb{N}^{n}$. There is an isomorphism of local systems on $\mathbb{N}^{n} \times \mathbb{N}^{n}$

$$
\zeta: \pi_{n-1}\left(F_{b}, b\right) \rightarrow \mathcal{Z}[\pi],
$$

where $\pi=\pi_{1}\left(\mathbb{N}^{n}, x\right)$ and the action of $\pi \times \pi$ on $\mathcal{Z}[\pi]$ is given by

$$
\alpha \cdot(\sigma, \tau)=\operatorname{sgn} \sigma \sigma^{-1} \cdot \alpha \cdot \tau
$$

Here, since σ is an element of the fundamental group of a manifold, $\operatorname{sgn} \sigma$ is ± 1, according to whether it preserves or reverses local orientation. We wil refer to this system as \mathcal{B}.

Let the local system on U be the one induced from \mathcal{B} by $f \times g: U \rightarrow \mathbb{N}^{n} \times \mathbb{N}^{n}$ and denote it by $\mathcal{B}(f \times g)$. Consider the fiber space $E(f, g)$ obtained by pulling back $p: E \rightarrow \mathbb{N}^{n} \times \mathbb{N}^{n}$ over U by $f \times g$.

The obstruction to deform the pair (f, g) to a coincidence free pair is related to the obstruction to extend sections of the fiber map $E(f, g) \rightarrow U$.

Following the steps in [5] and making the usual adaptations to the coincidence case, we end up with:

Definition 3.1. For an open set U of K, the coincidence index of $(f, g): U$ $\rightarrow \mathbb{N}^{n}$ is the cohomology class $i(f, g)$ in $H_{c}^{n}(U ; \mathcal{B}(f \times g))$ given by the obstruction to deform (f, g), by a compact homotopy, to a coincidence free pair. In case U coincides with K, we denote this class by $O^{n}(f, g)$ and, since K is compact, it lies in $H^{n}(K, Z[\pi])$.

Consider now F an isolated set of coincidences of (f, g) and let V be an open set of U such that $F=V \cap \operatorname{coin}(f, g)$. Consider the composition

$$
H^{n}(V, V-F ; \mathcal{B}(f \times g)) \xrightarrow{j^{*-1}} H^{n}(U, U-F ; \mathcal{B}(f \times g)) \xrightarrow{k^{*}} H_{c}^{n}(U ; \mathcal{B}(f \times g))
$$

where the first arrow is the inverse of the excision isomorphism and the second is the composition of the homomorphism, induced by the inclusion,

$$
H^{n}(U, U-F ; \mathcal{B}(f \times g)) \xrightarrow{i^{*}} H^{n}(U, U-\operatorname{coin}(f, g) ; \mathcal{B}(f \times g)),
$$

with the natural homomorphism to $H_{c}^{n}(U ; \mathcal{B}(f \times g))$.
Recall that $H_{c}^{n}(U ; \mathcal{B}(f \times g))$ is the direct limit of $H^{n}(U, U-C ; \mathcal{B}(f \times g))$, taken over all compact subsets C of U.

Definition 3.2. The local coincidence index of F, denoted by $i(f, g ; F)$, is the element in $H_{c}^{n}(U ; \mathcal{B}(f \times g))$ given by $k^{*}\left(j^{*}\right)^{-1}(\alpha)$, where $\alpha \in H^{n}(V, V-F$; $\mathcal{B}(f \times g))$ corresponds to the coincidence index of $(f, g): V \rightarrow \mathbb{N}^{n}$.

Let us consider the group $H^{n}(K, A)$, the n-th simplicial cohomology group of K with local coefficients, where A is a free abelian group and identified with the direct sum of $Z^{\prime} s$ indexed by some set J. We call a cochain $c_{n} \in C^{n}(K, A)$ elementary if c_{n} is nonzero in only one n-simplex, called its support, and has value in one summand Z of A indexed by $j \in J$. So we can associate to each elementary cochain a pair $\left(\Delta^{n}, j\right)$, where Δ^{n} is its support and j is the index of the summand $Z \subset A$ where the cochain assumes its value. Two elementary cochains are disjoint if the pairs $\left(\Delta^{n}, j\right),\left(\Delta^{\prime n}, j^{\prime}\right)$ are not equal. Given an arbitrary cocycle (or cochain) $c_{n} \in C^{n}(K, A)$ we define an integer, $\ell\left(c_{n}\right)$, as follows: The cocycle c_{n} can be uniquely written as a sum of disjoint elementary cocycles i.e. $c_{n}=$ $c_{n, 1}+\ldots+c_{n, r}$, where each $c_{n, i}$ is elementary.

Definition 3.3. A cocycle is essential if it represents a nonzero cohomology class.

Definition 3.4. A partial sum $c_{n, i_{1}}+\ldots+c_{n, i_{s}}$ of the decomposition of c_{n} is said to be combinable if the intersection of the supports of all elementary summands is nonempty and they have values in the same summand Z of A. Define $\ell\left(c_{n}\right)$ to be the minimal number of combinable partial summands among all decompositions of c_{n}.

Now let $f, g: K \rightarrow \mathbb{N}^{n}$ be maps.
Definition 3.5. The number $N O(f, g ; K)$ is defined as the minimum of the numbers $\ell\left(c_{n}\right)$, where c_{n} runs over the set of all cocycles representing the obstruction $O^{n}(f, g) \in H^{n}(K, Z[\pi])$ to deform (f, g) to coincidence free.

Theorem 3.6. $N O(f, g ; K)$ is a homotopy invariant.
Proof. The result follows from the fact that $O^{n}(f, g)=O^{n}\left(f_{1}, g_{1}\right)$, for $\left(f_{1}, g_{1}\right)$ homotopic to (f, g).
4. The minimal number of coincidences and the realization of the number $N O(f, g ; K)$

We will now prove that the number $N O(f, g ; K)$ coincides with the minimal number of coincidences in the homotopy class of the pair (f, g). The tecnicques applied are based on works by H. Schirmer ([10]), X. Zhao ([12]), L. D. Borsari and D. L. Gonçalves ([1]) and D. L. Gonçalves ([6]). From what we have seen before, we may assume that K coincides with its soul.

We will define a decomposition of K in terms of a simplicial structure of K, although it can be shown that this decomposition does not depend on the particular simplicial structure. For each maximal simplex Δ^{n} let $C\left(\Delta^{n}\right)$ be the smallest subcomplex which contains all n-simplices $\Delta^{\prime n}$ such that there is a sequence of n-simplices starting at Δ^{n} and ending at $\Delta^{\prime n}$ so that the intersection of two consecutive ones is a $(n-1)$-simplex which faces only these two n-simplices. This defines a covering of K by homogeneous simplicial subcomplexes of dimension n which we denote by $\left\{K_{1}, \ldots, K_{r}\right\}$. These subcomplexes happen to be, in many situations, manifolds but not necessarily. Take for example, K to be the n-sphere with its poles identified. Associated to this covering we have the subcomplex $K_{0}=\bigcup_{i \neq j} K_{i} \cap K_{j}$. Observe that the points of K_{0} are characterized by the property that they are not locally Euclidean in K.

Theorem 4.1. Let $(f, g): K \rightarrow \mathbb{N}^{n}$ be a pair of maps where K and \mathbb{N}^{n} have dimension bigger than or equal to three. Assume every component of K_{0} and of all intersections of any number of K_{i} are of non-zero dimension. Then the minimum number of coincidences in the homotopy class of the pair (f, g) is given by $N O(f, g ; K)$.

Proof. The process of deforming the pair (f, g) to $\left(f_{1}, g_{1}\right)$ having all coincidences lying in the interior of n-simplices is based on [10] and it guarantees that the cocycle associated to this new pair, $c_{n}=c_{n}\left(f_{1}, g_{1}\right)$, satisfies $\ell\left(c_{n}\right) \leq \operatorname{coin}(f, g)$. Therefore $N O(f, g ; K) \leq \operatorname{coin}(f, g)$, and being a homotopy invariant, it becomes a lower bound for the minimum number of coincidences in the homotopy class of the pair (f, g). It remains to prove that $N O(f, g ; K)$ can be realized and this is done in what follows.

Let c_{n} be a n-cocycle representing the obstruction to deform (f, g) to coincidence free and such that $\ell\left(c_{n}\right)=N O(f, g ; K)$. Consider $\left(f^{\prime}, g^{\prime}\right)$ a pair homotopic to (f, g) so that $c_{n}\left(f^{\prime}, g^{\prime}\right)=c_{n}$. This means that $\left(f^{\prime}, g^{\prime}\right)$ has coincidences appearing in the simplices that are support for each elementary cocycle in the decomposition of c_{n}. Each combinable partial sum of c_{n} will correspond to a set of n-simplices having non-empty intersection.

In fact, we may also assume that there will be only one coincidence in each of those n-simplices. To see this, consider the group $\pi_{n}(M \times M, M \times M-\Delta)$ which
is isomorphic to $Z[\pi]$ as in [4, p. 62]. Take $\alpha \in \pi_{n}(M \times M, M \times M-\Delta)$ of the form $l .1_{\beta}$ where $\beta \in \pi_{1}(M)$ and 1_{β} is a generator of the copy of Z indexed by β. We will show that α can be represented by a pair of maps $(\bar{f}, \bar{g}):\left(\Delta^{n}, \partial \Delta^{n}\right) \rightarrow$ $(M \times M, M \times M-\Delta)$ with only one coincidence point. To see this, we perform the definition of the action of β in one element. Namely, regard Δ^{n} as the unit ball and consider its boundary, an $(n-1)$ - sphere, as the quotient of the disk D^{n-1} by its boundary. We define the map in D^{n-1} as a composition of a map into \widetilde{M}, the universal covering of M, with the projection $\widetilde{M} \rightarrow M$. Let $\widetilde{g}: D^{n-1} \rightarrow \widetilde{M}$ be the map sending the sphere of radius r into the point $\widetilde{\beta}(2-2 r)$ as r runs from 1 to $1 / 2$, where $\widetilde{\beta}$ is a lifting of the loop β. The ball of radius $1 / 2$ is mapped into the $(n-1)$ - sphere of radius ε around the point \widetilde{y}_{1} in the pre-image of y, as a map of degree l. Now, extend the map \widetilde{g} to the interior of D^{n} by sending the origin to \widetilde{y}_{1}, and each segment from the origin to a point x in the sphere will perform either a radial segment from \widetilde{y}_{1} to $g(x)$, or a radial segment from \widetilde{y}_{1} to $\widetilde{\beta}(1)$ followed by the part of the path $\widetilde{\beta}^{-1}$ ending at $g(x)$. Now given the pair $\left(\left.f\right|_{\Delta^{n}},\left.g\right|_{\Delta^{n}}\right):\left(\Delta^{n}, \partial \Delta^{n}\right) \rightarrow(M \times M, M \times M-\Delta)$ it represents, by hypothesis, an element of the form $l \cdot 1_{\beta}$. By the homotopy sequence of the pair, there is a homotopy H between the pairs $\left(\left.f\right|_{\partial \Delta^{n}},\left.g\right|_{\partial \Delta^{n}}\right):\left(\partial \Delta^{n}\right) \rightarrow M \times M-\Delta$ and $\left(\left.\bar{f}\right|_{\partial \Delta^{n}},\left.\bar{g}\right|_{\partial \Delta^{n}}\right):\left(\partial \Delta^{N}\right) \rightarrow M \times M-\Delta$. We are ready to extend $\left(f^{\prime}, g^{\prime}\right)$ to the interior of Δ^{n} with only one coincidence. First, we identify the simplex Δ^{n} with the unit ball of dimension n. In the annulus with radius varying from 1 to $1 / 2$ we define the map as the homotopy H. In the ball of radius $1 / 2$ we make use of the model constructed above, having only one coincidence.

Consider the subspace given by the union of the n-simplices appearing in a combinable partial sum of c_{n}. It is contractible and therefore the local system induced over it is trivial. For each coincidence point a_{i}, lying in the interior of one of the i-th maximal simplices consider the segment, denoted by α_{i}, from a_{i} to a. Take two points, namely a_{1} and a_{i}. The local index at the point a_{i} represents an element which is an integer multiplied by the generator of Z at the local group indexed by the element 1. The assumption that the index lies in the same summand (with respect to the trivialization of the bundle over the subspace) is the same as saying that if we transport the local index at $\left(f\left(a_{1}\right), g\left(a_{1}\right)\right)$ to the point $\left(f\left(a_{i}\right), g\left(a_{i}\right)\right)$ along the path $\left(f\left(\alpha_{1} \alpha_{i}^{-1}\right), g\left(\alpha_{1} \alpha_{i}^{-1}\right)\right)$, we get an element of the summand Z indexed by the neutral element. Now, by Proposition 3.6 in [4] it follows that $f\left(\alpha_{1} \alpha_{i}^{-1}\right) \cong g\left(\alpha_{1} \alpha_{i}^{-1}\right)$, for all i. These conditions, together with the tecnicques developed in [1], allow us to deform the pair $\left(f^{\prime}, g^{\prime}\right)$ so that all these coincidences coalesce to a. Repeating this procedure to all others combinable sets we end up with $\ell\left(c_{n}\right)=N O(f, g ; K)$ coincidence points.

Remark 4.2. In the case where some, if not all, components of K_{0} or some components of the intersections of a certain number of $K_{i}^{\prime} s$ have zero dimension,
it could happen that two or more combinable partial sums have the intersection of their supports being only one point. In this case, only one set of coincidences, arising from the combinable partial sums, would be joint to this point. Therefore, we would have to add to the number $\ell\left(c_{n}\right)$ the number of elements of all, except the biggest, combinable partial sums for which the intersection of supports is the same single point. Then, the minimum of these numbers, as c_{n} runs through all possible cocycles representing the obstruction class, will give us the minimum number of coincidences in the homotopy class of the pair (f, g).

As an application of the above result, let $K^{\prime} \subset K$ be any subcomplex such that the homomorphism $i^{*}: H^{n}(K, Z[\pi]) \rightarrow H^{n}\left(K^{\prime}, Z[\pi]\right)$, induced by the inclusion map, is a cohomology isomorphism with local coefficients where $\pi=\pi_{1}\left(\mathbb{N}^{n}\right)$. Observe that if two subcomplexes have this property then their intersection does too. Hence, we may always consider the minimal one, namely, the intersection of all subcomplexes satisfying the above condition.

Theorem 4.3. Given $f, g: K \rightarrow \mathbb{N}^{n}$ then $M C[f, g]=M C\left[f^{\prime}, g^{\prime}\right]$, where f^{\prime}, g^{\prime} are the restrictions of f, g, respectively, to K^{\prime}.

Proof. Given (f, g) consider its restriction $\left(f^{\prime}, g^{\prime}\right)$ to K^{\prime}, and let $\left(f^{\prime \prime}, g^{\prime \prime}\right)$ a pair of maps in K^{\prime} homotopic to $\left(f^{\prime}, g^{\prime}\right)$. Take any cocycle c_{n} representing the obstruction $O^{n}\left(f^{\prime}, g^{\prime}\right)$. Since K^{\prime} reflects all cohomology of K, this cocycle also represents the obstruction $O^{n}(f, g)$. Therefore there exists $\left(f_{1}, g_{1}\right)$ homotopic to (f, g) such that $c^{n}\left(f_{1}, g_{1}\right)$ is the cocycle c_{n}. Observe that any combinable partial sum of c_{n} in K^{\prime}, is also combinable in K. Therefore, from Theorem 4.1, it follows that $M C[f, g] \leq M C\left[f^{\prime}, g^{\prime}\right]$. The other inequality is clear and the result follows.

5. Some special cases

Before analyzing the special cases, let us observe that in the context we are working, we do not expect the minimum number of coincidences to coincide with the Nielsen number. This can be seen in [1] even in the case where the target is simply connected. The coincidence Nielsen number can be defined as in [2] or in [6], since, in our context, the given definitions are equivalent.

In the fixed point case, in dimension two, it is well known that the Wecken property does not hold, i.e. the minimal number of fixed points does not coincide with the Nielsen number. It was observed in [8] that for maps $f: P \rightarrow P$, where P is the pantalon, the disk with two holes, the difference $M C[f]-N(f)$ can become arbitrarily large as we vary over the homotopy classes of self-maps on P. Inspired on these facts we set

Definition 5.1. Let $W\left\{K, \mathbb{N}^{n}\right\}$ be the maximum of all $M C[f, g]-N(f, g)$, where $[f, g]$ runs over all homotopy classes of pairs of maps from K to \mathbb{N}^{n}.

It is well known that this number is zero in the fixed point case when the complex K has no local cut points, it is not a surface, and it has dimension greater than or equal to two, see [2]. This is also the case in the coincidence context, where the spaces are orientable manifolds of dimension greater than or equal to three, see [10]. In our context, we will be seeing that $W\left\{K, \mathbb{N}^{n}\right\}$ can be either finite or infinity.
5.1. The case where \mathbb{N}^{n} is simply connected. Let $f, g: K \rightarrow \mathbb{N}^{n}$ be a pair of maps. Since \mathbb{N}^{n} is simply connected we have only one Nielsen class. We will show that in general the number $M C[f, g]$ is bounded for a fixed K but it goes to infinity as we vary K. Many examples can be construct having $M C[f, g]>1$, and a upper bound for the maximum of $M C[f, g]$, among all pairs (f, g), is given.

Let $C=\left\{K_{i_{1}}, \ldots, K_{i_{r}}\right\}$ be the covering of K defined in the previous section, and assume that all components of K_{0} have nonzero dimension.

Definition 5.2. A subset $\left\{K_{i_{1}}, \ldots, K_{i_{s}}\right\}$ of the covering $C=\left\{K_{1}, \ldots, K_{r}\right\}$ is called admissible if the intersection $K_{i_{1}} \cap \ldots \cap K_{i_{r}} \neq \emptyset$. Let $\ell(C)$ be the minimal number of admissible subsets which cover C. For the purpose of computing $\ell(C)$ we can assume, without loss of generality, that the admissible sets are maximal in the sense that for any $K_{j} \neq K_{i_{t}}, t=1, \ldots, r$, we have $K_{j} \cap K_{i_{1}} \cap \ldots \cap K_{i_{r}}=\emptyset$.

Proposition 5.3. Given $f, g: K \rightarrow \mathbb{N}^{n}$ then $M C[f, g] \leq \ell(C)$. In particular $W\left\{K, \mathbb{N}^{n}\right\}$ is finite.

Proof. Let c^{n} be any cocycle representing the obstruction to deform the pair (f, g) to coincidence free. For each admissible covering of K we obtain a decomposition of c^{n} into combinable partial sums. The number of elements in this decomposition is less than or equal to the number of elements of the covering. So it follows that $M C[f, g] \leq \ell(C)$.

Remark 5.4. Observe that in this context, where the target is simply connected, we may replace the complex K by any subcomplex K^{\prime} of K so that the inclusion $i: K^{\prime} \rightarrow K$ induces an isomorphism of the n-th cohomology group with coefficients in Z, not twisted. The minimal of these complexes has been considered in [6]. Therefore $W\left\{K, \mathbb{N}^{n}\right\}$ can be computed as $W\left\{K^{\prime}, \mathbb{N}^{n}\right\}$, where K^{\prime} varies over a larger family of subcomplexes of K, than the family considered in Section 4.
5.2. Examples. Consider the simplicial complex K obtained from a collection of six tori joint by tubes. Observe that $K=K_{1} \cup \ldots \cup K_{21}$, the tori are $K_{1} \cup K_{2}, K_{3} \cup K_{4}, \ldots, K_{11} \cup K_{12}$, and the tubes K_{13}, \ldots, K_{21} either have empty intersection or intercept in a boundary circle, see Figure 3 for an immersed

Figure 3
model of K. Notice also that the decomposition of K as the union of the K_{i}, $i=1, \ldots, 21$, is the one defined in the preceeding section.

It is not hard to see that for $C=\left\{K_{1}, \ldots K_{21}\right\}$, the minimal number of admissible subsets that cover $C, \ell(C)$, is 7 and this covering is realized by the subsets:

$$
\begin{array}{llll}
\left\{K_{1}, K_{2}, K_{14}\right\}, & \left\{K_{3}, K_{4}, K_{20}\right\}, & \left\{K_{5}, K_{6}, K_{21}\right\}, & \left\{K_{7}, K_{8}, K_{18}\right\}, \\
\left\{K_{9}, K_{10}, K_{17}\right\}, & \left\{K_{11}, K_{12}, K_{13}\right\}, & \left\{K_{15}, K_{16}, K_{19}\right\} .
\end{array}
$$

Consider now a pair of maps $(f, g): K \rightarrow S^{2}$. Since S^{2} is simply connected, we know that the obstruction to deform (f, g) to coincidence free can be represented by a sum of elementary cocycles so that no two of them have supports in the same K_{i}. It is not hard to see that with techniques developed by H. Schirmer in [10] and in [1] we may, by adding suitable coboundaries to this cocycle, assume that the cocycle is composed by elementary ones with supports lying in some, if not all, of the complexes K_{1}, \ldots, K_{12}. Therefore (f, g) can be made homotopic to a pair with at most 12 coincidences lying in different $K_{i}^{\prime} s, i=1, \ldots 12$. Since any two coincidences lying in the tori $K_{i} \cup K_{i+1}, i=1,3,5,7,9,11$ can be joint to one, we end up with $M C[f, g] \leq 6$. It is also clear that we can construct a pair (f, g) such that $M C[f, g]$ is, in fact, 6.

We have therefore an example where

$$
M C[f, g] \leq 6<7=\ell(C) \quad \text { and } \quad W\left\{K, \mathbb{N}^{n}\right\}=6
$$

Let us represent the complex K by the graph in Figure 4 . So each tube is represented by a segment and each torus by a circle.

Figure 4
With this in mind, we can produce more examples as represented in Figure 5.

Figure 5
In general we have, for the n-th step, the following: cardinality of C is $3.2^{0}+\ldots+3.2^{n}$,

$$
\ell(C)= \begin{cases}3.2^{n}+3.2^{n-2}+\ldots+3.2^{2}+3.2^{0} & \text { for } n \text { even } \\ 3.2^{n}+3.2^{n-2}+\ldots+3.2^{1}+1 & \text { for } n \text { odd }\end{cases}
$$

$M C[f, g] \leq 3.2^{n}$, for all $(f, g): K \rightarrow S^{2}$, and we have examples of pairs of maps for which $M C[f, g]=3.2^{n}$.

Hence, we have that $W\left\{K, \mathbb{N}^{n}\right\}=3.2^{n}-1$ which is strictly less than $\ell(C)$. Also, as K varies with n, both $\ell(C)$ and $\ell(C)-W\left\{K, \mathbb{N}^{n}\right\}$ go to infinity.
5.4. The case where K is a union of closed manifolds. Let us consider the minimizing problem for $(f, g): K \rightarrow \mathbb{N}^{n}$, where K is a union of n-dimensional manifolds M_{1}, \ldots, M_{r} with no boundary. We can always assume that this covering has no proper subcovering. We make the assumption that $M_{0}=\bigcup_{i \neq j} M_{i} \cap M_{j}$ is by-passing in each M_{i}. This notion of by-passing does not depend on the decomposition of K as a union of closed manifolds. The results obtained here are a generalization of what we have done in [1].

For a pair of maps $(f, g): K \rightarrow \mathbb{N}^{n}$, consider $\left(f_{i}, g_{i}\right): M_{i} \rightarrow \mathbb{N}^{n}$ be the restriction of (f, g) to M_{i}. For each $\left(f_{i}, g_{i}\right)$ we consider the usual essential Nielsen classes.

Let F_{1}, \ldots, F_{r} be a set of essential Nielsen classes so that each F_{i} belongs to a different manifold M_{j}. We say that this set is combinable if the following hold:
(a) The intersection of the manifolds M_{j}, to where the classes F_{i} belong to, is non-empty.
(b) There is a point a in the intersection mentioned above, and paths α_{i} in M_{i} from any point in F_{i} to a so that $f\left(\alpha_{1} * \alpha_{i}^{-1}\right) \cong g\left(\alpha_{1} * \alpha_{i}^{-1}\right)$, see Figure 6.

Figure 6

This relation enable us to divide the set of Nielsen classes of $\left(f_{i}, g_{i}\right): M_{i} \rightarrow \mathbb{N}^{n}$, for $i=1, \ldots, r$ into combinable subsets. These can be done in various manners. We are interested in doing it in a way that we end up with the least number of combinable subsets. Therefore we consider all possible coverings of the set of Nielsen classes by combinable subsets and we set

Definition 5.5. The number $N(f, g ; K)$ corresponds to the smallest cardinality of combinable subsets among all possible coverings.

Theorem 5.6. Let $(f, g): K \rightarrow \mathbb{N}^{n}$ be a pair of maps, where K is a union of n-dimensional closed manifolds M_{1}, \ldots, M_{r}. Let K_{0} be the union of $M_{i} \cap M_{j}, i \neq$ j, and assume all of its components, as well as all components of the intersections
of any number of $M_{i}^{\prime} s$, are of positive dimension. Suppose $M_{i} \cap M_{j}$ is properly contained in both M_{i} and M_{j} and $K_{0} \cap M_{i}$ is by-passing in M_{i}, for all i. Then $N(f, g ; K)$ is the minimum number of coincidences in the homotopy class of the pair (f, g) and therefore $N(f, g ; K)=N O(f, g ; K)$.

Proof. Observe that the subcomplexes in the decomposition of K, defined in the beginning of Section 4, are exactly the manifolds M_{i}. Let c_{n} be an n-cocycle representing the obstruction to deform (f, g) to coincidence free and such that $\ell\left(c_{n}\right)=N O(f, g ; K)$. Consider $\left(f^{\prime}, g^{\prime}\right)$ a pair homotopic to (f, g) so that $c_{n}\left(f^{\prime}, g^{\prime}\right)=c_{n}$. As before, this means that $\left(f^{\prime}, g^{\prime}\right)$ has coincidences appearing in the simplices that are support for each elementary cocycle in the decomposition of c_{n}. Each combinable partial sum of c_{n} will correspond to a set of n-simplices having non-empty intersection, each of them belonging to some M_{i} and containing only one coincidence. It follows from the proof of Theorem 4.1 that this set of coincidence points lying in these n-simplices will be combinable. Hence $N(f, g ; K) \leq N O(f, g ; K)$ and therefore it suffices to prove that the number $N(f, g ; K)$ can be realized. The same tecnicques developed in [1] to join coincidence points in two different manifolds can be applied step by step in case more manifolds are involved, provided the by-passing condition is imposed.

REMARK 5.7. If some of the above mentioned components have zero dimension, to obtain the minimum we should add to $N(f, g ; K)$ the number of coincidences lying in each combinable subset of Nielsen classes, except for the biggest, having the intersection of the manifolds to where their Nielsen classes belong to, being the same one point.

Finally, we exhibit an example where $W\left\{K, \mathbb{N}^{n}\right\}$ is infinity. Let K be the union of two tori $T^{n}=\left(S^{1}\right)^{n-1} \times S^{1}$ glued by the subcomplex $\left(S^{1}\right)^{n-1} \times\{1\}$, and $\mathbb{N}^{n}=T^{n}$. Consider the sequence of pairs of maps $\left(f_{m}, g_{m}\right)$, where g_{m} is the constant map for all m, and f_{m} is defined by its restrictions, $f_{m_{1}}$ and $f_{m_{2}}$, to each torus, where $f_{m_{1}}$ is given by $f_{m_{1}}\left(z_{1}, \ldots, z_{n}\right)=\left(z_{1}^{m}, \ldots, z_{n}\right)$, and $f_{m_{2}}$ is the identity map for all m. By Theorem 4.1 in [1] we have that $M C\left[f_{m}, g_{m}\right]=m$ and $N\left(f_{m}, g_{m}\right)=1$. Therefore $W\left\{K, \mathbb{N}^{n}\right\}=\infty$

References

[1] L. Borsari and D. L. Gonçalves, A Van Kampen type theorem for coincidences, Topology Appl. 101 (2000), 149-160.
[2] R. B. S. Brooks, On the sharpness of the Δ_{2} and Δ_{1} Nielsen numbers, J. Reine Angew. Math. 259 (1973), 101-108.
[3] R. Dobreńko and J. Jezierski, The coincidence Nielsen number in nonorientable manifolds, Rocky Mountain J. Math. 23 (1993), 67-85.
[4] E. Fadell and S. Husseini, Fixed point index theory for non simply connected manifolds, Topology 20 (1981), 53-92.
[5] \qquad , Local fixed point index theory for non simply connected manifolds, Illinois J. Math. 25 (1981), 673-699.
[6] D. L. Gonçalves, Coincidence theory for maps from a complex to a manifold, Topology Appl. 92 (1999), 63-77.
[7] B. Jiang, On the least number of fixed points, Amer. J. Math. 102 (1980), 749-763.
[8] M. Kelly, Minimizing the number of fixed points for self-maps of compact surfaces, Pacific J. Math. 126 (1987), 81-123.
[9] H. Schirmer, A relative Nielsen number, Pacific J. Math. 122 (1986), 459-473.
[10] 39.
[11] P. Wong, Nielsen fixed point theory for partially ordered sets, Topology Appl. 110 (2001), 185-209.
[12] X. Zhaо, On minimal fixed point numbers of relative maps, Topology Appl. 112 (2001), 41-70.

Lucília Daruiz Borsari and Daciberg Lima Gonçalves
Departamento de Matemática-IME-USP
Caixa Postal 66.281-Ag. Cidade de São Paulo
05311-970-São Paulo SP, BRASIL
E-mail address: lucilia@ime.usp.br, dlgoncal@ime.usp.br

[^0]: 2000 Mathematics Subject Classification. Primary 55M20; Secondary 54H25.
 Key words and phrases. Coincidence Nielsen numbers, index, obstruction, simplicial complexes.

