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A NEW MORSE THEORY
AND STRONG RESONANCE PROBLEMS

Shujie Li

Abstract. Is it possible to establish a new Morse theory if the function f

losses the (PS) condition at some isolated values? Yes, it is! In this paper

we will recall a such a theory. One of the purposes of establishing such a
theory is to consider multiplicity results for strong resonance problems and

to deal with multiple resonant energy levels. Both of these questions were

not studied much in the past because of the limitation of methods. Using
the new Morse theory we can deal with these problems.

1. Introduction

The Morse theory was established in the 20s by M. Morse (see [12]). Its ob-
ject is the relation between the topological type of critical points of a function f
and the topological structure of the manifold on which the function f is defined.
The Morse theory of functional defined on an infinite dimensional Hilbert space
(or manifold) was given by R. S. Palais, S. Smale, E. Rothe, D. Gromoll and
W. Meyer in the 60s (see [14], [15] and [9]). For the equivariant Morse theory,
which was first studied by R. Bott (see [3], [4]). For the Finsler manifolds mod-
elled on Banach space, it was given by K. Uhlenbeck ([17]), K. C. Chang ([5])
and T. Tromba ([16]) starting from the 70s. The tool in this study is the de-
formation theorem. Since the space (or manifold) X is infinite dimensional one
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can always assume that f satisfies some compactness conditions. A well known
condition was called the Palais–Smale condition: f ∈ C1(X,R1), if any sequence
{xn} ⊂ X, along which |f(xn)| is bounded and df(xn) → 0 possesses a conver-
gent subsequence. We denote this condition by (PS) for simplicity. Without this
condition at some isolated values it means that the deformation theorem fails,
so does the usual Morse theory.

Is it possible to establish a new Morse theory if the function f looses the
(PS) condition at some isolated values? In this paper we will recall a such a
theory which was first introduced by N. Hirano, Shujie Li and Z. Q. Wang for
global case in [10], and by T. Bartsch and Shujie Li for local behavior of f near
infinity in [2].

First, let us recall the usual Morse inequalities. Let X be a Hilbert space.
f :X → R1 be of class C1. We write K = {x ∈ X | f ′(x) = 0} for the set of
critical points of f , K is finite, and fc = {x ∈ X | f(x) ≤ c}, the level set of f
at c. Let x0 ∈ K be an isolated critical point with value c = f(x0). Then the
critical groups of f at x0 are well defined (see [6] and [13])

Ck(f, x0) = Hk(fc, f c \ {x0};G), k ∈ Z.

Here H∗( · ;G) denotes the singular homology group with coefficients in a com-
mutative ring G. Suppose that f satisfies the (PS) condition, then the usual
Morse inequalities read as

(1.1)
∑
x∈K

P (f, x) = P (f,∞) + (1 + t)Q(t)

where

P (f, x) =
∞∑

k=0

βk(f, x)tk for x ∈ K,

P (f,∞) =
∞∑

k=0

dimHk(X, fa)tk,

βk(f, x) = dimCk(f, x) for all x ∈ K,

Q(t) is a formal series with nonnegative coefficients, a < 0 is such that a <

infx∈K f(x). We call
∑

x∈K P (f, x) the Morse polynomial, and P (f,∞) the
Poincare polynomial. (1.1) is a very important tool in critical point theory.
(1.1) establishes the relation between the topological type of critical points of f
and the topological structure of X.

What will happen if f looses the (PS) condition? What is the relation be-
tween the topological type of critical points of f and the topological structure
of X?
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It is still possible to establish the Morse inequalities in some cases, for in-
stance, if f looses the (PS) in a set C∞ ⊂ R1 and there are only finite values of
f in R1. The case of

P (f, c) =
∞∑

k=0

βk(f, c)tk for c ∈ C∞,

where βk(f, c) = dimHk(fc+ε ∩ C̃R,M , f c−ε ∩ C̃R,M ) for c ∈ C∞ and C̃R.M is a
special set will be given in the next section. Though in our setting f looses the
(PS) condition we can still establish the following inequalities

(1.2)
∑
x∈K

P (f, x) +
∑

c∈C∞

P (f, c) = P (f,∞) + (1 + t)Q(t)

where a < min{infx∈K f(x), inff(x)∈C∞ f(x)} in P (f,∞). When comparing the
new inequalities (1.2) with (1.1) there is a new polynomial

∑
c∈C∞

P (f, c) on
the left hand side. This new polynomial was determined by the critical groups
at infinity and characterized the topological changes of the level set of f at such
isolated values. It is a very delicate task to compute these critical groups at
infinity. In fact, we need a splitting theorem at infinity which was given by
T. Bartsch and Shujie Li in [2]. When f satisfies the (PS) condition the new
polynomial is trivial and we obtain the usual Morse inequalities.

One of the purposes of establishing such a theory is to consider multiplicity
results for strong resonance problems and to deal with multiple resonant energy
levels. Both of these questions were not studied much in the past because of
the limitation of methods. Using the new Morse theory we can deal with these
problems.

2. A new Morse theory

We consider the following functional:

f(x) =
1
2
(Ax, x) + g(x)

where A:X → X is a self-adjoint linear operator such that 0 is isolated in the
spectrum of A.

Set V = KerA, W = V ⊥. W splits as W = W+
⊕
W− with W± invariant

under A and A|W+ is positive definite, A|W− is negative definite.
Let x = v + ω where v ∈ V , ω ∈ W . There exists α > 0 such that

±1/2〈Aω, ω〉 ≥ α‖ω‖2 for ω ∈W±. We denote µ = dimW−, and ν = dimV .
We impose the following condition on f :

(A∞) g ∈ C2(X,R), ‖g′(x)‖ is bounded. For any M > 0, uniformly in ω ∈
{‖ω‖ ≤M}, ‖g′′(ω + ν)‖ < α, g′(ω + ν) → 0 as ‖v‖ → ∞. Moreover, g
is assumed to be bounded on any bounded set.
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In applications g′ usually has to be compact and dim KerA is finite. In
this case f satisfies the bounded Palais–Smale condition (BPS)c: any bounded
sequence {xn} ⊂ X such that f(xn) → c and f ′(xn) → 0 has a convergent
subsequence.

To study the (PS) condition for f , we define

C∞ := {c ∈ R | ∃vn ∈ V, ωn ∈W with ‖vn‖ → ∞,

‖ωn‖ → 0 such that g(vn + ωn) → c}.

Clearly, C∞ is a closed set. Let CR,M = {x = v + ω | ‖v‖ > R, ‖ω‖ < M}.

Lemma 2.1. Let (A∞) hold and assume g′ is compact and ν <∞. Then for
any fixed R,M > 0, f satisfies (PS) condition in X \ CR,M .

Proof. Let {xn} be a (PS)c sequence of f , {xn} /∈ CR,M , i.e.

1
2
〈Axn, xn〉+ g(xn) = c+ o(1),(2.1)

Axn = −g′(xn) + o(1).(2.2)

Since ‖Axn‖ = ‖Aωn‖ ≥ 2α‖ωn‖. From (A∞) and (2.2) we have that ‖ωn‖ is
bounded. If ‖vn‖ → ∞ then ‖ωn‖ → 0. It implies {xn} ⊂ CR,M , a contradiction.
So ‖xn‖ is bounded, and by a standard argument we get the lemma. �

Corollary 2.2. If {xn} is a (PS)c sequence, then either

(a) {xn} has a bounded subsequence, or
(b) c ∈ C∞ is such that up to a subsequence, ‖vn‖ → ∞, ‖ωn‖ → 0 and

g(vn + ωn) → c.

Remark 2.3. f satisfies the (PS)c condition if c /∈ C∞. Especially, when
C∞ = φ, f satisfies the (PS)c condition for all c ∈ R.

Let K = {x | f ′(x) = 0}, Kc = {x | f ′(x) = 0, f(x) = c}. From Lemma 2.1
we know that K is bounded in X \ CR,M . Now, we discuss the deformation
condition.

Definition 2.4. We say that f satisfies the deformation condition (D)c at
c ∈ R, if for any ε > 0 and any neighbuorhood N of Kc there exist ε > ε > 0
and a continuous deformation η: [0, 1]×X → X such that

(i) η(0, · ) = idX ,
(ii) η(t, x) = x if x /∈ f−1([c− ε, c+ ε]),
(iii) f(η(s, x)) ≤ f(η(t, x)) if s ≥ t,
(iv) η(1, f c+ε \N) ⊂ fc−ε.

The following is well known (see [2], [6]).
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Corollary 2.5.

(a) If f satisfies the (PS)c condition, then (D)c holds.
(b) If f satisfies (D)c for all c ∈ [a, b] and if Kc = φ for c ∈ [a, b] then there

exists a deformation η(t, · ):X → X such that η(0, · ) = id, η(t, x) = x

if x /∈ f−1([a− 1, b+ 1]), f(η(t, x)) is decreasing in t and η(1, f b) ⊂ fa.
(c) If f satisfies (D)c for all c ≥ a and if Kc = φ for c ≥ a then there

exists a deformation η(t, · ):X → X with η(0, · ) = id, η(t, x) = x if
f(x) ≤ a− 1, f(η(t, x)) is decreasing in t and η(1, X) ⊂ fa.

Corollary 2.6. Let (A∞) hold and assume that g′ is compact and ν <∞.
Then, for any c /∈ C∞, (D)c holds.

Now we consider the computation of Hq(fc+ε, f c−ε), where c is an isolated
value in C∞. Let us fix some notation first. fc+ε

c−ε = {x | c − ε ≤ f(x) ≤ c + ε}
and Kc+ε

c−ε = K ∩ fc+ε
c−ε . Define a normalized negative gradient flow for f

(2.3)

 η̇(t, x) = − f ′(η(t, x))
‖f ′(η(t, x))‖

,

η(0, x) = x.

In the following, for a subset F ⊂ X, we denote

(2.4) F̃ =
⋃
t∈R

η(t, F ).

In this paper we assume that f has only isolated critical points so there is an
ε0 > 0 such that Kc+ε0

c−ε0
= Kc and Kc is compact. Define

UR,M = {x = v + ω | ‖v‖ ≤ R} ∪ {x = v + ω | ‖v‖ > R, ‖ω‖ ≥M},
U c+ω

R,M = UR,M ∩ fc+ω,

CR,M = {x = v + ω | ‖v‖ > R, ‖ω‖ < M} = X \ UR,M ,

Cc+ε
R,M = CR,M ∩ fc+ε,

Ac+ε
R,M = U c+ε

2R,M/2 ∩ C
c+ε
R,M .

Lemma 2.7. For R large and R > M > 0, there exists ε1 > 0 such that for
all 0 < ε < ε1

(a) (fc+ε
c−ε ∩ Ũ c+ε

R,M ) ∩ (fc+ε
c−ε ∩ C̃c+ε

2R,M/4) = φ,

(b) (fc+ε ∩ Ãc+ε
R,M ) ∼= (fc−ε ∩ Ãc+ε

R,M ).

Proof. Choose R large, R > M > 0 such that K ⊂ B(0, R/2) ∪ C3R,M/8.

By Lemma 2.1. f satisfies the (PS) condition in U c+ε
3R,M/8. Then there exists an

ε′ > 0 such that ‖f ′(x)‖ ≥ ε′, for all x ∈ fc+ε0
c−ε0

∩ (U3R,M/8 \B(0, R/2)). Let 0 <
ε < min{ε0,M/8ε′}. If for some x ∈ fc+ε

c−ε∩UR,M , η(t, x) ranges from fc+ε
c−ε∩UR,M

to fc+ε
c−ε ∩CR+M/4,3M/4 then there exist t1 < t2 such that η(t1, x) ∈ fc+ε

c−ε ∩∂UR,M ,
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η(t2, x) ∈ fc+ε
c−ε ∩∂CR+M/4,3M/4 ⊂ fc+ε

c−ε ∩U2R,M/2, η(t, x) ∈ CR,M ∩UR+M/4,3M/4

for all t ∈ [t1, t2], so that

M

4
≤ ‖η(t1, x)− η(t2, x)‖ ≤

∫ t2

t1

‖η̇(s, x)‖ ds ≤ |t2 − t1|.

On the other hand

f(η(t2, x))− f(η(t1, x)) =
∫ t2

t1

d

ds
f(η(s, x)) ds

=
∫ t2

t1

−‖f ′(η(s, x))‖ds ≤ −ε′|t2 − t1|.

Then

ε′
M

4
≤ ε′|t2 − t1| ≤ f(η(t1, x))− f(η(t2, x)) ≤ 2ε.

We get a contradiction with the choice of ε. Therefore

˜(fc+ε
c−ε ∩ UR,M ) ∩ (fc+ε

c−ε ∩ CR+M/4,3M/4) = φ.

Since

fc+ε
c−ε ∩ Ũ c+ε

R,M ⊂ ˜(fc+ε
c−ε ∩ UR,M ),

we get

(2.5) (fc+ε
c−ε ∩ Ũ c+ε

R,M ) ∩ (fc+ε
c−ε ∩ CR+M/4,3M/4) = φ.

Similarly, if 0 < ε < min{ε0,Mε′/8}, we have

˜(fc+ε
c−ε ∩ C2R,M/4) ∩ (fc+ε

c−ε ∩ U2R−M/4, M
2

) = φ.

Since

fc+ε
c−ε ∩ Ũ c+ε

2R,M/4 ⊂
˜(fc+ε

c−ε ∩ U c+ε
2R,M/4),

we have

(2.6) (fc+ε
c−ε ∩ C̃c+ε

2R,M/4) ∩ (fc+ε
c−ε ∩ U2R−M/4,M/2) = φ.

Combining (2.5) and (2.6) we get (a). Finally, from the proof of (a) we have

fc+ε
c−ε ∩ Ãc+ε

R,M ⊂ U c+ε
3R,M/4

and f satisfies the (PS) condition in fc+ε
c−ε ∩ Ãc+ε

R,M . Since R is large and K ∩
Ãc+ε

R,M = φ, from the deformation theorem we immediately get (b). �

Let S be an open subset of X, K(S̃) = K ∩ S̃,Kc(S̃) = Kc ∩ S̃ where S̃ was
given by (2.3) and (2.4).
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Lemma 2.8. Let f ∈ C1 and f satisfy the (PS) condition in S̃ ∩ fc+ε
c−ε .

Assume that c is an isolated critical value and Kc(S̃) is finite. Then for ε > 0
small enough

Hk(fc+ε ∩ S̃, f c−ε ∩ S̃) ∼=
⊕

x∈Kc(eS)

Ck(f, x).

Proof. By the deformation theorem and the homotopy invariance of singu-
lar homology groups, we have

Hk(fc+ε ∩ S̃, f c−ε ∩ S̃) ∼= Hk(fc ∩ S̃, f c−ε ∩ S̃)

and

Hk((fc \Kc(S̃)) ∩ S̃, f c−ε ∩ S̃) ∼= Hk(fc−ε ∩ S̃, f c−ε ∩ S̃) ∼= 0.

Applying the exactness of singular homology groups to the triple (fc ∩ S̃, (fc \
Kc(S̃)) ∩ S̃, f c−ε ∩ S̃):

· · · → Hk((fc \Kc(S̃)) ∩ S̃, f c−ε ∩ S̃) → Hk(fc ∩ S̃, f c−ε ∩ S̃)

→ Hk(fc ∩ S̃, (fc \Kc(S̃)) ∩ S̃) → Hk−1((fc \Kc(S̃)) ∩ S̃, f c−ε ∩ S̃) → · s

we have

0 → Hk(fc ∩ S̃, f c−ε ∩ S̃) → Hk(fc ∩ S̃, (fc \Kc(S̃)) ∩ S̃) → 0,

i.e.

Hk(fc ∩ S̃, f c−ε ∩ S̃) ∼= Hk(fc ∩ S̃, (fc \Kc(S̃)) ∩ S̃).

Let Kc(S̃) = {x1, . . . , xn}. Using the excision property we have

Hk(fc ∩ S̃, (fc \Kc(S̃)) ∩ S̃)

∼= Hk

(
fc ∩

n⋃
j=1

B(xj , ε), f c ∩
m⋃

j=1

(B(xj , ε) \ {xj})
)
∼=

⊕
x∈Kc(eS)

Ck(f, x),

for ε > 0 small enough, where B(x, ε) is the ball centered at x with radius ε. �

Theorem 2.9. Let (A∞) hold and assume that g′ is compact and ν < ∞,
assume further that Kc is finite, then for R large and R > M > 0 there exists
ε1 > 0, such that for all 0 < ε < ε1,

Hq(fc+ε, f c−ε) ∼=Hq(fc+ε ∩ Ũ c+ε
2R,M/2, f

c−ε ∩ Ũ c+ε
2R,M/2)

⊕Hq(fc+ε ∩ C̃c+ε
R,M , f c−ε ∩ C̃c+ε

R,M ), for all q = 0, 1, . . .

Proof. Since Kc is finite, so the left hand side of the above formula is
independent of ε > 0 small. By (b) of Lemma 2.7

Hq(fc+ε ∩ (Ãc+ε
R,M )) ∼= Hq(fc−ε ∩ (Ãc+ε

R,M )),
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i.e.

(2.7) Hq(fc+ε ∩ (Ãc+ε
R,M ), f c−ε ∩ (Ãc+ε

R,M )) ∼= 0.

By the following Mayer–Vietoris sequence, (2.7) and Lemma 2.7(a)

· · ·Hq(fc+ε ∩ Ũ c+ε
2R,M/2, f

c−ε ∩ Ũ c+ε
2R,M/2)⊕Hq(fc+ε ∩ C̃c+ε

R,M , f c−ε ∩ C̃c+ε
R,M )

→ Hq(fc+ε, f c−ε) → Hq−1(fc+ε ∩ (Ãc+ε
R,M ), f c−ε ∩ (Ãc+ε

R,M )) → · · ·

we get the conclusion. �

Though in our setting, we do not have the (PS) condition at all levels, we
shall still establish Morse inequalities. Assume K is finite and C∞ is finite. Let

βk(f, x) = dimCk(f, x) for all x ∈ K

be the Betti numbers of f at x ∈ K, and

βk(f, c) = dimHk(fc+ε ∩ C̃R,M , f c−ε ∩ C̃R,M ), for c ∈ C∞

be the Betti number of f at c ∈ C∞, where M,R are given in Theorem 2.9. Let

P (f, x) =
∞∑

k=0

βk(f, x)tk for x ∈ K,

P (f, c) =
∞∑

k=0

βk(f, c)tk for c ∈ C∞,

P (f,∞) =
∞∑

k=0

dimHK(X, fa)tk,

be the Morse polynomials for f at x ∈ K, c ∈ C∞, and ∞, where a < 0 is such
that

a < min{ inf
x∈K

f(x), inf
f(x)∈C∞

f(x)}.

Theorem 2.10. There exists a polynomial Q(t) with nonnegative integer
coefficients such that

P (f,∞) + (1 + t)Q(t) =
∑
x∈K

P (f, x) +
∑

c∈C∞

P (f, c).

Proof. With the aid of Theorem 2.9, we can follow the proof of the usual
Morse inequalities (cf. [6], [13]). �

Remark 2.11. Theorem 2.10 was proved in [10]. If C∞ = φ, then we recover
the usual Morse inequalities. When c ∈ C∞, or say, without the (PS)c condition,
we may understand that there is a critical point at infinity with value the c. We
can replace X by f b where a < b neither are critical values nor are in C∞ such
that f b

a ∩K is finite and [a, b] ∩ C∞ is finite.
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The usefulness of Theorem 2.10 depends upon the computation of P (f, c) for
c ∈ C∞. The following splitting theorem is very crucial for the computation of
P (f, c).

Theorem 2.12. Let f satisfy (A∞). Then for any M > 0 there exist R0 > 0,
δ > 0, a C1-diffeomorphism ψ:CR0,M → CR0,2M and C1-map ω: {v ∈ V | ‖v‖ >
R0} →W δ = {ω ∈W | ‖ω‖ ≤ δ} such that

f(ψ(u)) =
1
2
〈Aω, ω〉+ h(v) for all u ∈ CR0,M

where h(v) = f(v + ω(v)), δ can be chosen as small as we please, if we choose
R0 large, and ω = ω(v) is the unique solution of

PW f ′(v + ω) = 0

with PW :X → W being the linear projection. Furthermore, for any θ ∈ V , we
have:

〈h′(v), θ〉 = 〈g′(v + ω(v)), θ〉.

Remark 2.13. Theorem 2.12 is the generalization of the Morse lemma at
infinity. It was given in [2], and here is a slightly different version.

Next, using examples of nonlinear elliptic BVPs with strong resonance, we
give some results for computation of P (f, c) and then deal with multiple solutions
problems with multiple resonant energy levels. Consider

(2.8)

{
−∆u = λu+ q(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded open subset, and λ ∈ δ(−∆) = {0 < λ1 < λ2 ≤ . . . },
the set of eigenvalues of the Laplacian −∆ on Ω with zero boundary conditions,
counted with multiplicity. Define

f(u) =
1
2

∫
Ω

|∇u|2 dx− λ

2

∫
Ω

u2 dx−
∫

Ω

Q(x, u) dx,

where u ∈ X := H1
0 (Ω), Q(x, t) =

∫ t

0
q(x, s) ds. Then critical points of f on X

correspond to classical solutions of (2.8) when we assume q ∈ C1(Ω×R,R). Let

〈Au, u〉 :=
∫

Ω

|∇u|2 − λ

∫
Ω

u2.

A is a self-adjoint linear operator. According to the spectral decomposition of A
we have

X = V ⊕W− ⊕W+

where V = Ker (−∆−λ) and W− (W+, resp.) corresponding to the eigenvalues
less than (greater than, resp.) λ. We impose the following assumptions on q.

(q1) q ∈ C1(Ω×R,R) and uniformly in x ∈ Ω
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{
q(x, t) → 0
∂

∂t
q(x, t) → 0

as |t| → ∞,

under this condition (2.8) is called a resonant problem.
(q2) There exists M > 0 such that for all (x, t) ∈ Ω×R, Q(x, t)−q(x, t)t/2 ≤

M and Q(x, t) ≤M .
(q3) q(x, 0) = 0 and a0 = limt→0 q(x, t)/t exists uniformly in x ∈ Ω.
(q4) Q±∞ = limt→±∞Q(x, t) exists uniformly in x ∈ Ω withQ± ∈ (−∞,∞).

We call (2.8) a strong resonant problem if the following set Λ is nonempty
and bounded.

Λ :=
{
c ∈ R

∣∣∣∣ −
∫

Ω

Q(x, tv) dx→ c as t→∞ for some v ∈ Ker(−∆− λ)
}
.

Strong resonant problem is more delicate to deal with because the energy
functional fails the (D)c condition.

Next theorem is about the computation of P (f,∞) in the strong resonant
case. In [2] a notion of critical groups at infinity was introduced. If f has no
critical point in f b0 for some b0 and satisfies the deformation property for c ≤ b0,
then Hq(X, fc) is independent of c ≤ b0 and is defined as the critical groups of
f at infinity, denoted by Cq(f,∞).

Theorem 2.14. Let (q2) hold, then Cq(f,∞) ∼= δqµG for all q = 0, 1, . . . ,
where µ = dimW−.

Proof. (Main idea, see [10] for details.)
(a) f(tu) ≤ −b for b very large. By (q2) we have

d

dt
f(tu) < 0,

where u ∈ S = {u ∈ X | ‖u‖ = 1}.
(b) By the implicit function theorem, there exists a unique T (u) ∈ C(Y,R)

such that f(T (u)u) = −b, where Y = {u ∈ X | ‖u+‖ < ‖u−‖}, ‖u+‖ and
‖u−‖ are equivalent norms in W+ and W− respectively, u = u0 + u− + u+ ∈
V

⊕
W− ⊕

W+.
(c) T (u) has a positive lower bound ε0 > 0. We can define a deformation

retract η: [0, 1]×(Y \Bε0(0)) → Y \Bε0(0) with Bε0(0) being the ε0-ball centered
at 0, by

η(s, u) = (1− s)u+ sT (u)u for all (s, u) ∈ [0, 1]× (Y \Bε0(0)).

This implies that Y \Bε0(0) ∼= f−b and Y \Bε0(0) ∼= Sµ−1. �
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Next, we consider the computation of P (f, c) for c ∈ C∞. For v ∈ V , we
define

Ω±(v) = {x ∈ Ω | ±v(x) > 0}.

First we characterize C∞. In the following | · | denotes the Lebesgue measure
in RN .

Lemma 2.15. Let (q1) and (q4) hold. Then

(a) C∞ = {−(Q∞|Ω+(v)|+Q−∞|Ω−(v)|) | v ∈ V, ‖v‖ = 1},
(b) C∞ = {−(Q∞|Ω+(v)|+Q−∞|Ω−(v)|),−(Q+∞|Ω−(v)|+Q−∞|Ω+(v)|)},

if dimV = 1, ‖v‖ = 1,
(c) C∞ = {−Q∞|Ω|,−Q−∞|Ω|}, if λ = λ1,
(d) C∞ = {−Q∞|Ω|} if Q∞ = Q∞ = Q−∞.

Concerning the solution ω(v) given in Theorem 2.12 we have the following
estimation.

Lemma 2.16. Let (q1) hold. Then we may apply Theorem 2.12 to f . More-
over, we have that ω = ω(v) ∈ C(V,C1

0 (Ω)) satisfies

‖ω(v)‖C1
0 (Ω) → 0 as ‖v‖ → ∞

and that, for any θ ∈ V ,

〈h′(v), θ〉 = −
∫

Ω

q(x, v + ω(v))θ dx.

From (q1) to get (A∞) we need the following

Lemma 2.17 ([1]). Let V be a finite dimensional subspace of C(Ω) such that
every u ∈ V \ {0} is different from zero a.e. in Ω. Let h ∈ L∞(R) such that

h(t) → 0 as |t| → ∞.

Moreover, consider a compact subset K of Lp(Ω)(p ≥ 1). Then

lim
|t|→∞

∫
Ω

|h(tu(x) + v(x))| dx = 0

uniformly as v ∈ K and u ∈ S where S = {u ∈ V | ‖u‖C = 1} and ‖u‖C =
supx∈Ω |u(x)|.

The proof of Lemma 2.16 needs the Lp-theory and bootstrap argument,
see [10] for details.
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We will introduce a technical condition here. It is easy to be checked in
applications.

(q5)± For any ω: {v ∈ V | ‖v‖ > R} → W ∩ C1
0 (Ω) with ‖ω(v)‖C1

0 (Ω) → 0 as
‖v‖ → ∞, it holds

±
∫

Ω

q(x, v + ω(v))v dx > 0 for ‖v‖ large.

The following theorems give the computation of P (f, c) for c ∈ C∞.

Theorem 2.18. Assume (q1), (q4) and (q5)+ hold. Assume dimV = 1.

(a) If C∞ contains two different values c+ 6= c− with c+ = −(Q+∞|Ω+(v)|+
Q−∞|Ω−(v)|), c− = −(Q+∞|Ω−(v)| + Q−∞|Ω+(v)|), then for M > 0,
R1 > 0 large, there exists ε1 > 0 for all 0 < ε < ε1

Hq(fc±+ε ∩ C̃c±+ε
R1,M , f c±−ε ∩ C̃c±+ε

R1,M ) ∼= δqµG.

(b) If C∞ contains only one value c, then for M > 0, R1 > 0 large enough
there exists ε1 > 0, for all 0 < ε < ε1

Hq(fc+ε ∩ C̃c+ε
R1,M , f c−ε ∩ C̃c+ε

R1,M ) ∼= δqµG⊕G,

where C̃R1,M was given before.

Theorem 2.19. Assume (q1), (q4) and (q5)+ hold with C∞ = {c} contain-
ing only one value. Then for M > 0, R1 > 0 large, there exists ε1 > 0 for all
0 < ε < ε1,

Hq(fc+ε ∩ C̃c+ε
R1,M , f c−ε ∩ C̃c+ε

R1,M ) ∼=


G for q = µ,

G for q = µ+ ν − 1,

0 otherwise,

where c is the only value in C∞, and it is understood that when ν = 1, at the
level µ, there are two G.

Theorem 2.20. Assume (q1), (q4) and (q5)− hold. Assume dimV = 1.
Then C∞ contains either two values c+ 6= c− or one value. In any case, for
M > 0, R1 > 0 large there exists ε1 > 0, for all 0 < ε < ε1

Hq(fc+ε ∩ C̃c+ε
R1,M , f c−ε ∩ C̃c+ε

R1,M ) ∼= 0 for all q,

where c = c+, or c = c−, or c = c+ = c−.
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Theorem 2.21. Assume (q1), (q4) and (q5)− hold. Assume C∞ = {c}
contains only one value. Then for M > 0, R1 > 0 large, there exists ε1 > 0 for
all 0 < ε < ε1

Hq(fc+ε ∩ C̃c+ε
R1,M , f c−ε ∩ C̃c+ε

R1,M ) ∼= 0 for all q.

The proofs of these four theorems are similar, and we prove Theorem 2.19
only, see [10] for more details.

Proof of Theorem 2.19. From Lemma 2.7 for R > M > 0 large there is
ε1 > 0 such that for ε1 > ε > 0

fc+ε
c−ε ∩ C̃c+ε

2R,M ⊂ fc+ε
c−ε ∩ CR,2M .

By (q1) and Theorem 2.12 with R > M > 0 large, f(u) can be written as

f(ψ(u)) =
1
2
〈Aω, ω〉+ h(v) for all u ∈ CR,2M .

By (q5)+ we have for ‖v‖ large

〈h′(v), v〉 = −
∫

Ω

q(x, v + ω(v))v dx < 0.

Thus h(tv) decreases to c as t→∞ for any v ∈ V \ {0}. Define h̃(v) = h(v)− c,
then h̃(v) decreases to 0 as ‖v‖ → ∞. Then

A1
∆=fc+ε ∩ C̃c+ε

2R,M

= {u = v + ω+ + ω− ∈ C̃c+ε
2R,M | h̃(v) > 0, (‖ω+‖2 − ‖ω−‖2)/2 ≤ ε− h̃(v)}

and

B1
∆=fc−ε ∩ C̃c+ε

2R,M = {u = v + ω+ + ω− ∈ C̃c+ε
2R,M | h̃(v) > 0,

(‖ω+‖2 − ‖ω−‖2)/2 ≤ −ε− h̃(v)}.

We first define a deformation retract from (A1, B1) to (A2, B2), where

A2 = {u ∈ A1 | ‖ω−‖2/2 ≤ ε+ h̃(v)}, B2 = {u ∈ B1 | ‖ω−‖2/2 ≤ ε+ h̃(v)},

for ‖v‖ large ε − h̃(v) > 0. It is easy to see that B2 = {u = v + ω+ + ω− |
ω+ = 0, ‖ω−‖2 = 2(ε + h̃(v))} and we can get η1: [0, 1] × (A1, B1) → (A1, B1)
deforming (A1, B1) to (A2, B2).

Next, one has a simple deformation transforming (A2, B2) to (A3, B3) with
B3 = B2 and

A3 = {u = v + ω− + ω+ ∈ A2 | ω+ = 0}.

In fact, η2(t, u) = v + ω− + tω+ suffices.
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Note now that

A3 = {v + ω− + ω+ | ω+ = 0, h̃(v)− ε ≤ ‖ω−‖2/2 ≤ ε+ h̃(v)},
B3 = {v + ω− + ω+ | ω+ = 0, ‖ω−‖2/2 = ε+ h̃(v)}.

Since h̃(v) decreases monotonically to zero, we can find R0 > 0 large, such that
(A3, B3) is deformed to (A4, B4) with

A4 = {v + ω− + ω+ | ‖v‖ = R0, ω
+ = 0, ‖ω−‖2/2 ≤ ε+ h̃(v)},

B4 = {v + ω− + ω+ | ‖v‖ = R0, ω
+ = 0, ‖ω−‖2/2 = ε+ h̃(v)}.

Then it is easy to see (A4, B4) is topologically equivalent to

(Sν−1 ×Bµ, Sν−1 × Sµ−1),

where Sν−1 is a ν−1-dimensional sphere and Bµ is a µ-dimensional ball. There-
fore

Hq(fc+ε ∩ C̃c+ε
2R,M , f c−ε ∩ C̃c+ε

2R,M ) ∼= Hq(Sν−1 ×Bµ, Sν−1 × Sµ−1)

∼=


G for q = µ,

G for q = µ+ ν − 1,

0 otherwise. �

3. Applications to strong resonant problems of elliptic BVPs

Note that (q5)± is an abstract condition, but it is easy to be checked. Under
this condition many existence and multiplicity results for (2.8) were given in [10].
Let µ0 denote the Morse index of f at 0. Assume dimKer f ′′(0) = 0, i.e. 0 is
a nondegenerate critical point of f .

Theorem 3.1. Let λ = λ1. Assume C∞ = {c+, c−} or C∞ = {c0}.

(a) Under the assumptions (q1), (q4), (q5)+ and (q3) with µ0 6= 1, (2.8)
has at least two nontrivial solutions.

(b) Under the assumptions (q1), (q4), (q5)− and (q3), in which a0 < 0,
max{c−, c+} ≤ 0, (2,8) has at least three nontrivial solutions, including
one positive and one negative. Moreover, if the third solution u3 with
dim Ker f ′′(u3) = 0, then (2.8) has at least four nontrivial solutions.

(c) Under the assumptions (q1), (q4), (q5)− and (q3) with µ0 ≥ 2, (2.8)
has at least three nontrivial solutions, including one positive and one
negative. Moreover, if the third solution u3 with dim Ker f ′′(u3) ≤ µ0−1
then (2.8) has at least four nontrivial solutions.
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Theorem 3.2. Let λ = λ2. Assume C∞ = {c0} if dim Ker (−∆ − λ2) ≥ 2
or C∞ = {c+, c−} if dim Ker (−∆ − λ2) = 1. Assume (q1), (q2), (q4), (q5)−
and (q3) with µ0 6= 1, then (2.8) has at least two nontrivial solutions u1, u2.
Moreover, if the Morse index of u2 is greater than µ0 + 1 then (2.8) has at least
three nontrivial solutions.

Theorem 3.3. Let λ = λk with k ≥ 3. Assume C∞ = {c0} if dim Ker (−∆−
λk) ≥ 2 or C∞ = {c+, c−} if dim Ker (−∆ − λk) = 1. Assume (q1), (q2), (q4),
(q5)− and (q3) with µ0 6= µ, then (2.8) has at least one nontrivial solution u1.
Moreover, if dim Ker f ′′(u1) ≤ |µ − µ0|, then (2.8) has at least two nontrivial
solutions.

Theorem 3.4. Let λ = λk with k ≥ 3. Assume C∞ = {c0} if dim Ker (−∆−
λk) ≥ 2 or C∞ = {c+, c−} if dim Ker (−∆ − λk) = 1. Assume (q1), (q2), (q4),
(q5)+ and (q3) with µ0 6= µ, then (2.8) has at least one nontrivial solution u1.
Moreover, if dim Ker f ′′(u1) ≤ |µ+ν−µ0|, then (2.8) has at least two nontrivial
solutions.

Proof of Theorem 3.1. Without loss of generality we assume c+ ≥ c−.
(a) From Theorem 2.12 we have

f(ψ(v, ω)) =
1
2
〈Aω, ω〉+ h(v) for ‖v‖ large

and, by (q5)+, h(tv) is monotonic decreasing to c+ as t → ∞ and to c− as
t → −∞, where v ≥ 0 is the eigenfunction corresponding to λ1. Note that
λ = λ1 implies W = W+, µ = 0. Take t′ > t > 0 large and consider

c = inf
r∈Γ

sup
s∈[0,1]

f(r(s)),

where
Γ = {r ∈ C([0, 1], X) | r(0) = −t′v, r(1) = t′v}.

From
r([0, 1]) ∩ (tv +W ) 6= φ for all r ∈ Γ,

we have
c ≥ inf

u∈tv+W
f(ψ(u)) ≥ h(tv) > max{b|b ∈ C∞}.

We also have h(tv) > max{h(−t′v), h(t′v)}. Then a standard argument shows
that c is a critical value of f because f satisfies (PS)c condition for c /∈ C∞.
Thus, there exists u1 ∈ X such that f(u1) = c, f ′(u1) = 0. It is well-known
that Cq(f, u1) = δq1G, for all q (see [6]). Since µ0 6= 1 we get u1 6= 0. If 0 and
u1 are the only critical points, then will get a contradiction. In fact, computing
directly, we have∑

u∈K

P (f, u) = tµ0 + t,
∑

c∈C∞={c+,c−}

P (f, c) = 2
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(by Theorem 2.18), and P (f,∞) = 1.
From Theorem 2.10 we have

1 + (1 + t)Q(t) = tµ0 + t+ 2.

Setting t = −1 we get 1 = (−1)µ0 + 1, a contradiction. Thus, f has at least
another nontrivial critical point.

(b) Consider the negative gradient flow η(t, u) of f on H1
0 (Ω) which satisfies

(3.1)

{ dη(t, u)
dt

= −∇f(η(t, u)),

η(0, u) = u.

It is well-known that η(t, u) ∈ C1
0 (Ω) if u ∈ C1

0 (Ω) and η(t, u) satisfies the
deformation property for f . Let P be the positive cone in C1

0 (Ω). Then from
the maximal principle we know that P,−P are positively invariant under the
negative flow η(t, u). Since 0 is a minimizer of f and max{c+, c−} ≤ 0 then we
can use the mountain pass theorem in cone. We have two mountain pass critical
points u± and

Cq(f, u±) ∼= δq1G for all q.

Now, if f has only three critical points: 0, u+, u−, we shall get a contradiction.
In this case ∑

u∈K

P (f, u) = 1 + 2t,
∑

c∈C∞

P (f, c) = 0, P (f,∞) = 1.

Thus 1+(1+ t)Q(t) = 1+2t+0, a contradiction. Thus (2.8) has a third solution
u3 6= 0. If u3 is nondegenerate, then by Theorem 2.10 we can get a fourth
nontrivial solution.

(c) Since P and −P are positively invariant under the flow η(t, u), from
a0 + λ1 > λ2 we have

inf
u∈P

f(u) < 0, inf
u∈−P

f(u) < 0.

By (q5)−, neither c+ nor c− can be the infimum of f . Thus infP f is achieved

at u+ ∈
◦
P by the maximum principle. Similarly, one gets a negative solution

u− ∈ −
◦
P . Both u+ and u− are local minimum points of f . If f has only u+,

u−, 0 as its critical points, we have∑
u∈K

P (f, u) = 2 + tµ0 ,
∑

c∈C∞

P (f, u) = 0, P (f,∞) = 1.

Since µ0 ≥ 2, this gives 0− 2 = M1 −M0 ≥ β1 − β0 = 0− 1, a contradiction. So
(2.8) has a third solution u3. If dim Ker f ′′(u3) ≤ µ0− 1, then (2.8) has a fourth
nontrivial solution. Otherwise we have

1 + (1 + t)Q(t) = 2 + tµ0 + P (f, u3)
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It implies thatQ(t) includes at least 1+tµ0−1 (or 1+tµ0) term. Therefore P (f, u3)
includes at least t + tµ0−1 (or t + tµ0+1) term. But from the shifting theorem,
see Corollary 5.1 of [6], we have dim Ker f ′′(u3) > µ0 − 1, a contradiction. �

Using Theorems 2.10, 2.14, 2.18, 2.19, 2.20 and 2.21, we can prove Theorem
3.2, 3.3 and 3.4.

Next, we give some concrete conditions which imply that (q5)± hold.
Consider first (2.8) with λ = λ1, the first eigenvalue of the Laplacian operator

on Ω. Let us make the following assumption

(q6)± ±q(x, t) · t > 0 for t ∈ R \ {0} and x ∈ Ω.

Lemma 3.5 ([11]). Let λ = λ1 and let q satisfy (q6)+ ((q6)−, resp.), then
(q5)+ ((q5)−, resp.) is satisfied.

When λ equals the higher eigenvalues, the following conditions were intro-
duced. Let Ω0(v) = {x ∈ Ω | v(x) = 0} be the nodal set of v.

(V1) For any v ∈ V , Ω0(v) is a union of (N − 1)-dimensional manifolds.
(V2) For any v ∈ V there exists c > 0 such that for t large

µ({x ∈ Ω | |v(x)| ≤ 1/t}) ≤ c/t,

here µ({ · }) is the Lebesgue measure.
(V3) For any v ∈ V , Ω0(v) is a union of disjoint closed manifolds.

Note that (V3) implies (V1) and (V2). If the nodal set of v is a manifold,
then (V2) is satisfied automatically. Let us make further assumptions on q. The
first one is the following

(A1)± ±q(x, t) ≥ 0, for all (x, t) ∈ Ω× R and

±q0 = ±∂q
∂t

(x, 0) > 0, for all x ∈ Ω.

Lemma 3.6 ([11]). Suppose that (V1), (V2), (A1)± hold. Then (q5)± is
satisfied.

Now, we consider the following conditions

(A2)± For some 2 > α > 0, there exists c0 > 0 such that

± lim
|t|→∞

q(x, t)
|t|−(α+1)t

≥ c0.

(A3)± For some α > 2, there exist cα > 0 and a > 0 such that

lim
|t|→∞

|q(x, t)|
|t|−α

≤ cα, ±q0 =
∂q

∂t
(x, 0) > 0, ±q(x, t)t ≥ 0, |t| ≤ a.

This condition means that q decays faster than 1/t2 at infinity.
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Lemma 3.7 ([11]). Suppose that (V1), (V2), (A2)± hold. Then (q5)± is
satisfied.

Lemma 3.8 ([11]). Let (V3) hold. Assume (A3)±, then if C∞/aα−2 is small
enough, (q5)± is satisfied.

From (A1)±, (A2)± and (A3)± we see that it seems the decay rate α = 2 is
critical in the following sense that in (A2)± the decay is slower than α = 2 and
in this case the behavior of q at infinity dominates, on the other hand, in (A3)±
the decay is faster than α = 2 at infinity for q and in this case the oscillation of
q at infinity does not effect the problem.

Using the new Morse inequalities given in Theorem 2.10 one can prove the
following theorems which can be found in [11].

Theorem 3.9. Assume (q1), (q4), and (A2)+ or (A2)− hold. Then (2.8)
has a solution.

Theorem 3.10. Assume (q1) and (q4) hold. Let (A2)+ hold for t > 0 (t < 0,
resp.) and suppose one of (A1)+ and (A3)+ holds for t < 0 (t > 0, resp.). Then
(2.8) has a solution.

Let µ0 denote the Morse index of f at 0. We have

Theorem 3.11. Assume (q1), (q2) and (q4), and assume (q3) with µ0 6= µ.

(i) Assume one of the three conditions (A1)+–(A3)+ holds for t > 0 and one
of the three holds for t < 0. Then (2.8) has a nontrivial solution u1.
Moreover, if dim Ker f ′′(u1) ≤ |µ − µ0|, then (2.8) has at least two
nontrivial solutions.

(ii) If + is replaced by − in (i), then (2.8) has at least two nontrivial solu-
tions.

Theorem 3.12. Let λ = λ1. Assume (q1), (q2), (q4) and (q3) with µ0 6= 1
and assume (q5)+, then (2.8) has at least two nontrivial solutions. Furthermore,
in case µ0 = 0, for the two solutions, one is positive and one is negative; in
case µ0 ≥ 2, one of the two nontrivial solution is sign-changing. If in addition
we assume µ0 ≥ 2 and inf±P f < minC∞{c}, where P is the positive cone in
C1

0 (Ω), then (2.8) has at least two positive solutions u+
1 , u+

2 , and two negative
solutions u−1 , u−2 and two sign-changing solutions u3, u4, where u+

1 , u−1 are local
minimizers, u+

2 , u−2 and u3 are mountain pass solution.

Theorem 3.13. Let λ = λ1. Assume (q1), (q2), (q4), and (q3) with µ0 6= 1.
Suppose (q5)− holds. Suppose also max{b | b ∈ C∞} ≤ 0. If µ0 = 0 then (2.8)
has two pairs of positive and negative solutions, one are local minimizers and the
other are mountain pass solutions. If µ0 ≥ 2, (2.8) has at least four nontrivial
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solutions, including a pair of positive and negative solutions u+
1 , u−1 , which are

local minimizers, and a pair of sign-changing solutions u3, u4, one of which is
a mountain pass solution, such that u−1 < u3 < u+

1 , u−1 < u4 < u+
1 .

Theorem 3.14. Let λ = λ2. Assume (q1), (q2), (q4) and (q3) with µ0 6= 1.
Suppose (q5)− holds. If µ0 = 0, then (2.8) has solutions: a positive and a negative
one. If µ0 ≥ 2, then (2.8) has at least two nontrivial solutions.

In the literature, strong resonant problems have been considered for the case
of Λ = {c0}, a singleton (see [1], [7], [8]). The existence results have been given in
these papers. Linking methods were used in [1]. A compactification methods was
used in [7] and [8] to reduce the problem to a nonresonant problem. However, the
methods in these papers seem to be not applicable to the case when Λ contains
more (than one) finite values. Furthermore, so far few multiplicity results have
been obtained, if any.
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