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NON-RADIAL SOLUTIONS
WITH ORTHOGONAL SUBGROUP INVARIANCE

FOR SEMILINEAR DIRICHLET PROBLEMS

Ryuji Kajikiya

Abstract. A semilinear elliptic equation, −∆u = λf(u), is studied in a
ball with the Dirichlet boundary condition. For a closed subgroup G of the

orthogonal group, it is proved that the number of non-radial G invariant

solutions diverges to infinity as λ tends to ∞ if G is not transitive on the
unit sphere.

1. Introduction

We study the multiple existence of non-radial solutions for a semilinear el-
liptic equation

−∆u = λf(u), x ∈ Ω,(1.1)

u = 0, x ∈ ∂Ω,(1.2)

u(gx) = u(x), x ∈ Ω, g ∈ G,(1.3)

where Ω ≡ {x ∈ Rn : |x| < R}, n ≥ 2 and G is a closed subgroup of the
orthogonal group O(n) and λ > 0 is a parameter. We deal with the nonlinear
term like as f(u) = u − |u|p−1u with p > 1 or f(u) = sinu and prove that
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the number of non-radial solutions of (1.1)–(1.3) diverges to ∞ as λ → ∞.
Since g ∈ G is an orthogonal matrix and Ω is a ball, (1.3) makes sense. We
call a solution of (1.1)–(1.3) a G invariant solution. It is clear that a radially
symmetric solution is G invariant for any G. In this paper, we study non-radial
G invariant solutions. Since G is a closed subgroup of O(n), it is an isometric
linear transformation group on the unit sphere Sn−1,

Sn−1 = {x ∈ Rn : |x| = 1}.

A group G is said to be transitive on Sn−1 if for any x, y ∈ Sn−1 there exists a
g ∈ G such that gx = y. We suppose the assumption below.

Assumption (A). There exists a constant a > 0 such that f(s) is defined
on [−a, a] and satisfies the following conditions:

(A1) f(s) > 0 for s ∈ (0, a) and f(a) = 0,
(A2) f is odd and Lipschitz continuous on [−a, a],
(A3) f(s) is non-decreasing in a neighborhood of s = 0,
(A4) f(s)/s is strictly decreasing in (0, a).

Theorem 1. Suppose that Assumption (A) holds. Then the following asser-
tions are equivalent:

(i) G is not transitive on Sn−1,
(ii) for each k ∈ N, there exists a λk > 0 such that for λ > λk, (1.1)–(1.3)

has at least k non-radial G invariant solutions whose L∞-norms are less
than or equal to a.

If G is transitive, then a G invariant solution becomes a radially symmetric
solution. Therefore the assertion (ii) in Theorem 1 implies (i). What a kind of
G is transitive on Sn−1? The answer is due to Montgomery–Samelson ([6]) and
Borel ([1]) as follows.

Theorem 0 ([1], [6]). Let n ≥ 2 and G be a connected closed subgroup of
SO(n). Then the following are equivalent:

(i) G is transitive on Sn−1,
(ii) G is O(n)-conjugate to one of the following groups: SO(n); SU(m),

U(m) (n = 2m); Sp(m), Sp(m)Sp(1), Sp(m)U(1) (n = 4m); Spin(9)
(n = 16); Spin(7) (n = 8); G2 (n = 7).

When G is not necessarily connected, G is transitive if and only if the con-
nected component of G which has a unit matrix is O(n)-conjugate to one of the
Lie groups listed in (ii) of Theorem 0.

Under Assumption (A), f(s)/s has a finite limit as s → 0, i.e. f ′(0) =
lims→0 f(s)/s exists and 0 < f ′(0) < ∞. If f is locally Lipschitz continuous in
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[−a, a] \ {0} and f ′(0) = ∞, then for each λ > 0 fixed, (1.1)–(1.3) has infinitely
many non-radial G invariant solutions {uk} such that the C2(Ω) norm of uk

converges to zero as k →∞. This result has been proved in my paper [5].
If f(u) = |u|p−1u with 1 < p < (n+2)/(n−2), then (1.1)–(1.3) has infinitely

many non-radial G invariant solutions {uk} such that the C2(Ω) norm of uk

diverges to ∞ as k →∞. This is proved in my earlier paper [3].

2. Examples

In this section we give some examples of f(u) and G.

Example 2.1. Examples of f(u) which satisfies Assumption (A): f(u) =
u− |u|p−1u with 1 < p < ∞, f(u) = sin u, f(u) = −u log(|u|+ 1/2).

Example 2.2. Let G be the n dimensional symmetric group, i.e.

G = {g ∈ O(n) : each element of g is equal to 1 or 0}.

This is a finite group, and so it is not transitive. Theorem 1 shows that for
each k ∈ N, if λ > 0 is sufficiently large, (1.1)–(1.3) has at least k solutions ui

(1 ≤ i ≤ k) which are non-radial and satisfy

ui(x1, · · · , xn) = ui(xσ(1), . . . , xσ(n)) for any permutation σ.

Example 2.3. Let 1 ≤ m < n and set

G = O(m)×O(n−m) =
{(

g 0
0 h

)
: g ∈ O(m), h ∈ O(n−m)

}
.

For each k ∈ N, when λ > 0 is sufficiently large, (1.1)–(1.3) has at least k

solutions ui (1 ≤ i ≤ k) which are non-radial and satisfy ui = ui(|x′|, |x′′|) for
x′ ∈ Rm, x′′ ∈ Rn−m with |(x′, x′′)| < R.

Recall that f ′(0) = lims→0 f(s)/s exists and 0 < f ′(0) < ∞ because of
Assumption (A). We can assume without loss of generality that Ω is a unit ball
and the following condition (A5) holds.

(A5) f ′(0) = 1 and f(s) = 0 for |s| ≥ a.

Indeed, let the radius of Ω be R. For a solution u of (1.1)–(1.3), we set
v(x) = u(Rx), µ = λR2f ′(0) and h(u) = f(u)/f ′(0). Then v satisfies

−∆v = µh(v), |x| < 1,

v = 0, |x| = 1,

v(gx) = v(x), |x| < 1, g ∈ G.
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Since h satisfies Assumption (A) and h′(0) = 1, we may assume that Ω is a unit
ball and f ′(0) = 1. We define f̃(s) = f(s) for |s| ≤ a and f̃(s) = 0 for |s| > a.
Instead of (1.1), we consider

(2.1) −∆u = λf̃(u), x ∈ Ω.

Let u be any solution of (2.1), (1.2) and (1.3). Set v(x) = u(x)− a and

D = {x ∈ Ω : u(x) > a}.

If D 6= ∅, then v satisfies

−∆v = 0 (x ∈ D), v = 0 (x ∈ ∂D),

which proves that v ≡ 0 in D. This is impossible. Hence D = ∅ and u(x) ≤ a for
x ∈ Ω. The same way as above proves that u(x) ≥ −a for x ∈ Ω. Consequently,
any solution u of (2.1), (1.2) and (1.3) becomes a solution of (1.1)–(1.3). When
G is not transitive, we have only to prove (ii) of Theorem 1 for f̃ in place of f .
Therefore, we may assume that (A5) holds. Hereafter we always assume that
Assumption (A) with (A5) holds, Ω is a unit ball and G is not transitive on Sn−1.

3. G invariant critical values

In this section, we construct G invariant critical values {αk(λ)} and estimate
them. We define a functional Iλ(u) by

Iλ(u) =
∫

Ω

(
1
2
|∇u|2 − λF (u)

)
dx, where F (u) =

∫ u

0

f(t) dt.

Set

H1
0 (Ω, G) ≡ {u ∈ H1

0 (Ω) : u(gx) = u(x) (g ∈ G, x ∈ Ω)}.

We restrict the domain of the definition for Iλ( · ) to H1
0 (Ω, G). Then Iλ(u) is of

the C1 class. The equation I ′λ(u) = 0 at u ∈ H1
0 (Ω, G) means

I ′λ(u)v ≡
∫

Ω

(∇u∇v − λf(u)v) dx = 0 for v ∈ H1
0 (Ω, G).

If this equation holds for any v ∈ H1
0 (Ω, G), then it remains valid for any v ∈

H1
0 (Ω) also. For the proof, see [3, Lemma 6.2] or [7]. Hence a critical point

u ∈ H1
0 (Ω, G) of Iλ( · ) becomes a weak solution of (1.1)–(1.3). Moreover, it

belongs to C2(Ω) by the elliptic regularity theorem.

Definition 3.1. A real number c is called a G invariant critical value if there
exists a u ∈ H1

0 (Ω, G) such that I ′λ(u) = 0 and Iλ(u) = c. In this definition, if u

is radially symmetric, then c is called a radially symmetric critical value.
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Definition 3.2. Let X be a real Banach space and A a closed symmetric
subset of X, i.e. u ∈ A implies −u ∈ A. Suppose that 0 6∈ A. Then we
define a genus γ(A) of A by the smallest integer k such that there exists an odd
continuous mapping from A to Rk \ {0}. If there does not exist such a k, we
define γ(A) = ∞. For the empty set, we set γ(∅) = 0.

Definition 3.3. Let Γk denote the family of closed symmetric subsets A of
H1

0 (Ω, G) such that 0 6∈ A and γ(A) ≥ k. Define αk(λ) by

αk(λ) = inf
A∈Γk

sup
u∈A

Iλ(u).

Definition 3.4. We define

m = m(G) = max{dim G(x) : x ∈ Sn−1},(3.1)

G(x) = {gx : g ∈ G} for x ∈ Sn−1.(3.2)

Since G is a closed subgroup of O(n), G(x) is a closed submanifold of Sn−1.
Since G is not transitive, it follows that 0 ≤ m ≤ n− 2. We prove that {αk(λ)}
are G invariant critical values and we estimate them from above in the next
proposition.

Proposition 3.5. The following assertions hold.

(i) If αk(λ) < 0, then each αi(λ) with 1 ≤ i ≤ k is a G invariant critical
value.

(ii) If αk(λ) = αk+1(λ) = . . . = αk+p(λ) < 0, then γ(K) ≥ p + 1. Here

K = {u ∈ H1
0 (Ω, G) : I ′λ(u) = 0, Iλ(u) = αk(λ)}.

(iii) Fix ν in (2,∞). Then there exists a constant C > 0 independent of k

and λ such that

αk(λ) ≤ inf
t≥0
{Ck2/(n−m)t2 − λ|Ω|F (t) + λCk(ν−2)/2tν}

for any k ∈ N. Here |Ω| denotes the volume of Ω and m is defined by
Definition 3.4.

(iv) There exists a positive constant A such that if λ ≥ Ak2/(n−m), then
αk(λ) < 0.

To prove this proposition, we need the Palais–Smale condition for Iλ( · ).

Lemma 3.6 ([8, Theorem 2.32], [5, Lemma 3.6]). For each λ > 0 fixed, Iλ( · )
is bounded from below and satisfies the Palais–Smale condition.

The following lemma is crucial to obtain Proposition 3.5.
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Lemma 3.7. For each positive integer k, there exists a closed symmetric
subset Ak of H1

0 (Ω, G) ∩ C(Ω) satisfying 0 6∈ A such that

(i) γ(Ak) = k + 1,
(ii) ‖∇u‖2 = 1 for u ∈ Ak,
(iii) C1k

−1/(n−m) ≤ ‖u‖1 for u ∈ Ak,
(iv) ‖u‖ν ≤ Cνk(n−m−2)/2(n−m)−1/ν for u ∈ Ak and ν ∈ (2,∞).

Here m is the integer defined by Definition 3.4 and constants C1, Cν > 0 are
independent of u and k.

The proof of Lemma 3.7 is based on the next lemma.

Lemma 3.8. Let m be defined by (3.1). For each k ∈ N there exist functions
φi (1 ≤ i ≤ 2k) such that φi ∈ H1

0 (Ω, G) ∩ C(Ω), ‖∇φi‖2 = 1,

suppφi ∩ suppφj = ∅ if i 6= j,(3.3)

Aνk(n−m−2)/2(n−m)−1/ν ≤ ‖φi‖ν ≤ Bνk(n−m−2)/2(n−m)−1/ν ,(3.4)

for 1 ≤ i ≤ 2k and ν ≥ 1. Here supp φ denotes the support of a function φ.
Aν , Bν are positive constants which depend only on ν.

This lemma has already been proved in [5, Lemma 4.2] except for (3.4).
However, observing the proof of [5, Lemma 4.2], we can obtain (3.4) also.

Proof of Lemma 3.7. For a positive integer k, let φi (1 ≤ i ≤ 2k) be
determined in Lemma 3.8. Then we define sets Ak and Bk as follows:

Ak =
{ 2k∑

i=1

tiφi : (t1, . . . , t2k) ∈ Bk

}
.

Let Bk be a set of points (t1, . . . , t2k) ∈ R2k such that
∑2k

i=1 t2i = 1 and there exist
at least k elements ti (i = r1, . . . , rk) satisfying |ti| ≥ 1/

√
2k for i = r1, . . . , rk.

Then Ak satisfies the assertions (i), (ii) and (iii) of Lemma 3.7. This has been
proved in [5, Lemma 3.9].

We show (iv). Let u =
∑2k

i=1 tiφi ∈ Ak and ν > 2. Since |ti| ≤ 1 and ν > 2,
we have |ti|ν ≤ |ti|2 for 1 ≤ i ≤ 2k, and so

2k∑
i=1

|ti|ν ≤
2k∑
i=1

|ti|2 = 1.

This inequality together with (3.3) and (3.4) shows

‖u‖ν
ν =

2k∑
i=1

|ti|ν‖φi‖ν
ν ≤ Ck((n−m−2)ν/2(n−m))−1.

The proof is complete. �
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Proof of Proposition 3.5. Let Ak be defined by Lemma 3.7. Since Ak ∈
Γk+1 ⊂ Γk, the set Γk is non-empty and αk(λ) ≤ αk+1(λ) ≤ supAk

Iλ(u) < ∞.
Since Iλ(u) is bounded from below, it holds that αk(λ) > −∞. Consequently,
αk(λ) is well-defined and satisfies

−∞ < α1(λ) ≤ α2(λ) ≤ . . . ≤ αk(λ) < ∞.

For the proof of (i) and (ii), see [2] or [8, p. 53]. We show (iii). Fix ν ∈ (2,∞).
We set G(t) ≡ F (t) + C|t|ν and prove that if C > 0 is sufficiently large, G(t) is
convex in [0,∞). It is sufficient to prove that G′(t) is nondecreasing for t ≥ 0.
By (A3), f(t) is non-decreasing in [0, δ] with a certain δ > 0, and hence so is
G′(t). Let L be the Lipschitz constant of f(t). For δ ≤ t1 < t2 < ∞, there is a
ξ ∈ (t1, t2) by the mean value theorem such that

tν−1
2 − tν−1

1 = (ν − 1)ξν−2(t2 − t1) ≥ (ν − 1)δν−2(t2 − t1).

This proves that

G′(t2)−G′(t1) = f(t2)− f(t1) + Cνtν−1
2 − Cνtν−1

1

≥ −L(t2 − t1) + Cν(ν − 1)δν−2(t2 − t1) > 0,

provided that C is chosen so large that Cν(ν − 1)δν−2 −L > 0. Therefore G′(t)
is non-decreasing for t ≥ 0. Since G(t) is even and convex, Jensen’s inequality
gives

1
|Ω|

∫
Ω

G(u)dx =
1
|Ω|

∫
Ω

G(|u|) dx ≥ G(|Ω|−1‖u‖1).

This proves

Iλ(u) =
1
2
‖∇u‖22 − λ

∫
Ω

F (u) dx(3.5)

≤ 1
2
‖∇u‖22 − λ|Ω|G(|Ω|−1‖u‖1) + λC‖u‖ν

ν

≤ 1
2
‖∇u‖22 − λ|Ω|F (|Ω|−1‖u‖1) + λC‖u‖ν

ν .

Let Ak be defined by Lemma 3.7. We set

sAk = {su : u ∈ Ak} for s > 0.

Lemma 3.7 and (3.5) prove

(3.6) Iλ(u) ≤ J(s) for u ∈ sAk and s > 0,

where

J(s) ≡ s2/2− λ|Ω|F (|Ω|−1C1k
−1/(n−m)s) + λCk((n−m−2)ν/2(n−m))−1sν .

Since sAk ∈ Γk+1, inequality (3.6) yields

αk(λ) ≤ αk+1(λ) ≤ sup
u∈sAk

Iλ(u) ≤ J(s),
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which proves
αk(λ) ≤ inf

s>0
J(s).

Setting t = C1|Ω|−1k−1/(n−m)s in the above inequality, we obtain (iii).
We show (iv). Observe the inequality in the assertion (iii), i.e.,

αk(λ) ≤ inf
t≥0

K(t),

K(t) ≡ Ck2/(n−m)t2 − λ|Ω|F (t) + λCk(ν−2)/2tν .

Since limt→0 F (t)/t2 = f ′(0)/2 = 1/2 and ν > 2, we have

lim
t→0

K(t)/t2 = Ck2/(n−m) − λ|Ω|/2 < 0,

provided that λ ≥ 4C|Ω|−1k2/(n−m). Hence, for s > 0 sufficiently small, it
follows that

αk(λ) ≤ inf
t≥0

K(t) ≤ K(s) < 0 if λ ≥ 4C|Ω|−1k2/(n−m).

The proof is complete. �

4. Proof of Theorem 1

In this section we show the uniqueness of radially symmetric nodal solutions
and use this fact to prove Theorem 1. For a radially symmetric solution u = u(r),
r = |x|, the problem (1.1) with (1.2) is reduced to

u′′ +
n− 1

r
u′ + λf(u) = 0,(4.1)

u′(0) = 0, u(1) = 0.(4.2)

Definition 4.1. Let µk and φk denote the k-th eigenvalue and eigenfunction
of the problem,

(4.3) u′′ +
n− 1

r
u′ + µu = 0,

with the boundary condition (4.2). We may assume that φk(0) = 1.

It is well-known that {µk} is strictly increasing and µk/k2 converges to π2

as k →∞ (refer to [5, Proof of Proposition 6.1]).

Proposition 4.2. Suppose that k and λ satisfy µk < λ ≤ µk+1. Then for
each integer j ∈ [1, k], there exists a unique solution uj(r) of (4.1) and (4.2)
which has exactly j zeros in [0, 1] and satisfies u(0) > 0. Moreover, the set of all
solutions to (4.1), (4.2) consists of ±uj(r) for 1 ≤ j ≤ k and the zero solution.

To prove this proposition, we consider the initial condition,

(4.4) u′(0) = 0, u(0) = ξ.
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Lemma 4.3 ([4, Theorems 1 and 2]). For ξ ∈ (0, a), the problem (4.1) with
(4.4) has a unique global solution u(r) = u(r, ξ) defined on [0,∞). Furthermore,
it holds that |u(r, ξ)| ≤ ξ for r ≥ 0. There exist unbounded sequences {zk(ξ, λ)}
and {tk(ξ, λ)} such that

u(zk) = 0, u′(tk) = 0,

0 < z1 < t1 < z2 < t2 < . . . ↗∞,

u(r) > 0 for r ∈ (0, z1), (−1)ku(r) > 0 for r ∈ (zk, zk+1),

u′(r) < 0 for r ∈ (0, t1), (−1)k+1u′(r) > 0 for r ∈ (tk, tk+1),

where zk = zk(ξ, λ) and tk = tk(ξ, λ). Moreover, for λ > 0 fixed, each zk(ξ, λ) is
strictly increasing with respect to ξ ∈ (0, a) and satisfies

lim
ξ→a−0

zk(ξ, λ) = ∞ for any k ∈ N.

Lemma 4.4. Let µk and zk(ξ, λ) be defined by Definition 4.1 and Lemma 4.3,
respectively.

(i) If µk < λ, then zk(ξ, λ) < 1 for ξ > 0 sufficiently small.
(ii) If λ ≤ µk+1, then zk+1(ξ, λ) > 1 for all ξ ∈ (0, a).

Proof. We show (i). Suppose that µk < λ. Since f ′(0) = 1, there exists a
δ > 0 such that λf(s)/s > µk for |s| ≤ δ. Since |u(r, ξ)| ≤ ξ for r ≥ 0 by Lemma
4.3, we have

λf(u(r, ξ))/u(r, ξ) > µk for 0 < ξ ≤ δ and r ≥ 0.

Compare two equations below,

(rn−1u′)′ + λrn−1 f(u)
u

u = 0, u′(0) = 0, u(0) = ξ,(4.5)

(rn−1φ′k)′ + µkrn−1φk = 0, φ′k(0) = 0, φk(0) = 1.(4.6)

Recall that the k-th zero of φk is equal to r = 1. Then Sturm’s comparison
theorem means that zk(ξ, λ) < 1.

We show (ii). Suppose that λ ≤ µk+1. Since f(s)/s is strictly decreasing in
(0, a) and f(s) is odd in [−a, a], we get

λf(u(r, ξ))/u(r, ξ) ≤ λf ′(0) = λ ≤ µk+1 for r ≥ 0, ξ ∈ (0, a),

and moreover λf(u(r, ξ))/u(r, ξ) 6≡ µk+1. Compare (4.5) with the equation be-
low,

(rn−1φ′k+1)
′ + µk+1r

n−1φk+1 = 0.

Then Sturm’s comparison theorem proves that 1 < zk+1(ξ, λ) for any ξ ∈ (0, a).
The proof is complete. �
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Proof of Proposition 4.2. Let µk < λ ≤ µk+1. Fix an integer j ∈ [1, k].
Then Lemmas 4.3 and 4.4 mean the following facts.

Fact 1. zj(ξ, λ) < zk(ξ, λ) < 1 for ξ > 0 sufficiently small.
Fact 2. zj(ξ, λ) is strictly increasing with respect to ξ ∈ (0, a).
Fact 3. limξ→a−0 zj(ξ, λ) = ∞.
By these facts, there exists a unique ξj ∈ (0, a) such that zj(ξj , λ) = 1. We

set uj(r) ≡ u(r, ξj), which is a solution of (4.1), (4.2) having exactly j zeros in
[0, 1] and satisfies u(0) > 0. Since zk+1(ξ, λ) > 1 for all ξ ∈ (0, a) by Lemma 4.4
(ii), no solution u 6≡ 0 of (4.1), (4.2) has more zeros than k in the interval [0, 1].
Therefore, all solutions of (4.1), (4.2) consist of ±uj(r) for 1 ≤ j ≤ k and the
zero solution. The proof is complete. �

Proof of Theorem 1. It is clear that (ii) implies (i) in Theorem 1. We
prove the converse. Suppose that (i) holds. On the contrary, assume that (ii) is
false. That is, there exist a sequence {λk} and a positive integer k0 such that
{λk} diverges to ∞ as k → ∞ and (1.1)–(1.3) with λ = λk has at most k0

solutions which are non-radial and G invariant.
Fix k ∈ N arbitrarily. Let i be an integer satisfying

(4.7) Ai2/(n−m) ≤ λk < A(i + 1)2/(n−m).

Here A is a positive constant defined by Proposition 3.5(iv). Then αi(λk) is
defined by Definition 3.3 and it is negative by Proposition 3.5(iv). Hence, each
αp(λk) (1 ≤ p ≤ i) is a G invariant critical value because of Proposition 3.5(i).

Define an integer j by µj < λk ≤ µj+1. Here µj denotes the j-th eigenvalue
of (4.2) and (4.3). Since µj/j2 converges to π2 as j →∞, there exists a constant
C > 0 independent of j and k such that

(4.8) j ≤ C
√

λk.

Proposition 4.2 asserts that all of radially symmetric solutions of (1.1)–(1.3) are
±up for 1 ≤ p ≤ j and the zero solution. Here up is the p-nodal solution of (4.1)
and (4.2). If αp(λk) = αp+1(λk) with some p ∈ [1, i−1], then Proposition 3.5(ii)
shows that γ(K) ≥ 2, where

K = {u ∈ H1
0 (Ω, G) : I ′λk

(u) = 0, Iλk
(u) = αp(λk)}.

Therefore K is infinite because of the definition of the genus. Since the set of
radially symmetric solutions, ±up(r) with 1 ≤ p ≤ j and the zero solution, is
finite, K has infinitely many G invariant non-radial solutions. This conclusion
contradicts our assumption that (1.1)–(1.3) with λ = λk has at most k0 solutions
which are non-radial and G invariant. Therefore, we deduce that αp(λk) <

αp+1(λk) for 1 ≤ p ≤ i−1. Since the number of non-radial G invariant solutions
is at most k0 by our assumption, there exist integers ν1, . . . , νl with l ≤ k0 such
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that each αp(λk) with 1 ≤ p ≤ i except for αν1(λk), . . . , ανl
(λk) is a radially

symmetric critical value. We set

P = {αp(λk) : 1 ≤ p ≤ i, p 6= νq(1 ≤ q ≤ l)},
Q = {βp : 1 ≤ p ≤ j}, where βp = Iλk

(up).

Then it follows that P ⊂ Q, and so i − k0 ≤ #P ≤ #Q ≤ j. Combining this
inequality, (4.7) and (4.8), we obtain a constant C > 0 independent of k such
that

λ
(n−m)/2
k ≤ Cλ

1/2
k + C for all k ∈ N.

Since limk→∞ λk = ∞, we have a contradiction because of 0 ≤ m ≤ n− 2. The
proof is complete. �

References

[1] A. Borel, Le plan projectif des octaves et les sphères comme espaces homogènes, C. R.
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