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NOTE ON THE DECK TRANSFORMATIONS GROUP
AND THE MONODROMY GROUP

Henryk Żołądek

Abstract. For a ramified covering between Riemann surfaces the groups
Deck of deck transformations and Mon of monodromy permutations are

introduced. We associate with them groups of automorphisms of certain

extensions of function fields. We study relations between these objects.

1. Introduction

The idea of Riemann surface (introduced by Riemann [11]) is one of the
most classical and most fruitful in mathematics (see [4], [14]). For example, the
conformal field theory and the quantum cohomology theory (see [2]) grew out of
this idea.
Nevertheless some notions associated with Riemann surfaces seem to be not

well established; in different sources they appear under different names and are
studied from specific points of view. The author had encountered this state of
affairs when working on the topological proof of the theorem of Abel and Ruffini
(in [16]) and in studying the monodromy groups of first integrals of polynomial
vector fields (in [15]). (The proof in [16] constitutes a reconstruction of some
ideas from the book of Dubrovin, Novikov and Fomenko [3] and from the lectures
of Arnold for talented high school students, written by one of the listeners in [1]).
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In both situations the main tool is the monodromy group Mon of the Riemann
surface of the corresponding algebraic function, or of the first integral.
In classical books, like the Forster’s [4], the notion of the group of deck

transformations Deck plays dominant role. Also the notion of Galois covering
(with few examples) is introduced there. In [4] there is no example of a covering
which is not Galois.
The ramified coverings are intensively studied in hyperbolic geometry. (Here

we shall use mainly the book of Kruskal, Apanasov and Gusevski ([8]) with many
examples, but the reader is also referred to the book of Maskit ([9]).) There the
Galois coverings appear under the name regular coverings and suitable examples
are provided.
The group Deck is interpreted as an automorphism group of an algebraic

extension of fields of rational functions on Riemann surfaces. The case of Galois
covering corresponds to the case of Galois extension of fields.
It turns out that the group Mon also admits an algebraic interpretation. It

serves as the automorphism of the extension of the field of rational functions
on the target space by means of all branches of the corresponding algebraic
function (see Theorem 1 below). The monodromy group of a general multi-valued
holomorphic function was introduced by Khovanskĭı ([7]). There the covering is
infinite, but one assumes that the set of singular points is at most countable.
One can introduce here also the notion of the group of deck transformations;
moreover, the dimension of manifolds can be greater than 1. In [15] it was
proven that Mon = Deck for the functions defining the liouvillian first integrals
of polynomial differential systems.
One aim of this paper is to clarify the relation between the groups Mon and

Deck. Usually Deck is smaller than Mon, but there is no natural inclusion. Only
the equality Mon = Deck takes place in the case of Galois covering. We give
necessary conditions for a finite covering to be a Galois covering. Other aim is
to interpret of some algebraic notions (like primitive element, normal extension,
Galois group) in terms of Riemann surfaces and their ramified coverings. At the
end of this note we discuss multi-dimensional and infinite degree generalizations
of the above theory created for algebraic functions.

2. A ramified covering associated with an algebraic function

By an algebraic function y = f(x) on a Riemann surface N we mean a
function defined by an equation

(1) F (x, y) = yn + an−1(x)yn−1 + . . .+ a0(x) = 0,

where aj(x) ∈ C(N) are rational functions on N . (When N = CP 1, then
the equation (1) defines an algebraic function in usual sense, as a multi-valued
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function on C. In the case of positive genus g = g(N) of N we can treat N as
an algebraic curve in some projective space CPK ; the equation (1) holds in the
affine variety (N ∩CK)×C ⊂ CPK+1 and N has several points at infinity.) We
assume that the polynomial F is irreducible, F 6= F1F2.
Take a generic point a ∈ N . Then the equation (1) with x = a has n

isolated solutions y = b1, . . . , bn. In a neighbourhood Ua of a there are well
defined single-valued branches f1(x), . . . , fn(x) of solutions to (1). The pairs
(fj , Ua) form analytic elements of the algebraic function f(x). We prolong these
elements along curves γ ⊂ N \ {x′1, . . . , x′r} which starts at a and end at points
c ∈ N ; (the points x′i are singular points of f , where two or more branches are
glued together). We begin with an analytic element (fa, Ua) and end-up with an
analytic element (fc, Uc). The union of analytic elements forms an open surface
M0 with a natural projection p0:M0 → N \ {x′1, . . . , x′r}. M0 is a part of the
algebraic curve Γ ⊂ CPK+1 whose affine part is defined by (1). By irreducibility
of F the surface M0 is connected.

Next we complete M0 to a closed surface M (in the topology defined by
analytic elements, see [4]). Then the intersections of local branches are separated
and the cusps are smoothed. M is a compact, connected and smooth surface
equipped with a holomorphic map p:M → N which is a ramified covering. This
means that for any critical point yj ∈ M of p with a critical value xi ∈ N
we have p(ξ) = ξv for some holomorphic charts centered at yj and at xi; the
exponent v is the ramification index of yj . We can identify the surfaceM with the
normalization of the projective curve Γ ⊂ CPK+1; it is the strict transform for
resolution of singularities of Γ. We call M the Riemann surface associated with
the algebraic function f(x). The multi-valued function f :N → C is replaced
by the single-valued function f̃ :M → C (or, better, by a holomorphic map
f̃ :M → CP 1) such that f̃ = f ◦ p. The set {x1, . . . , xm} of critical values of the
projection constitutes the set of all singular (branching) points of f ; (it is a subset
of the set {x′1, . . . , x′r} introduced above). The integer n = degy F is the degree
of the covering, n = deg p. We put N ′ def= N \ {x1, . . . , xm}, M ′

def= p−1(N ′) and
p′ = p|M ′ :M ′ → N ′; p′ is an non-ramified covering.

Definition 1. The monodromy group Mon = Mon(f) = Mon(M → N) as-
sociated with the ramified covering M → N (or with an algebraic function f) is
a subgroup of permutations S(p−1(a)) = S(n) of the set p−1(a) = {b1, . . . , bn},
defined as follows. With any loop γ, which represents an element of the funda-
mental group π1(N ′, a), we associate the permutation ∆γ : p−1(a)→ p−1(a) such
that each ∆γ(bi) is the result of analytic prolongation of the analytic element
(fi, Ua) along γ. By definition, Mon = {∆γ ∈ S(n) : γ ∈ π1(N ′, a)}. We treat
also elements of Mon as permutations of the branches f1(x), . . . , fn(x) over Ua.
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Theorem 1. Consider the fields K = C(N) and L1 = K(f1, . . . , fn) (ad-
joining the branches fj(x)); we treat these fields as fields of functions on Ua.
Then we have

Mon(f) ' Aut(K ⊂ L1).

Proof. Elements from the group Mon act on the functions from L1 by
means of analytic continuation. Any element from L1 represents an algebraic
function on C with finite number of singular points (⊂ {x1, . . . , xm}) and there
is no problem with continuation. The continuation is compatible with algebraic
operations and therefore induces an automorphism of L1. This automorphism
is generated by a permutation of the branches fi. Of course, the continuation
acts trivially on rational functions on N . All this leads to the inclusion Mon ⊂
Aut(K ⊂ L1).
Suppose that Mon 6= Aut(K ⊂ L1). By the fundamental theorem of Galois

theory (see Theorem 6 below) the group Mon is associated with an intermediary
field K ⊂ M ⊂ L1, such that Aut(M ⊂ L1) = Mon and M = LMon = {h ∈ L1 :
Mon (h) = {h}}. The fieldM consists of those functions which are invariant with
respect to the analytic continuation (monodromy). Therefore they are single-
valued functions. Their singularities are regular (of power type), also at infinity.
From this it is easy to deduce that they are rational (by Riemann’s theorem
about removable singularities). This means that M = K (a contradiction). �

Definition 2. The deck transformations group of the algebraic function f
(or of the covering M → N) consists of homeomorphisms Φ′:M ′ → M ′ (where
M ′ = p−1(N \ singularities) which preserve fibers, i.e. Φ′ ◦ p′ = p′. (Of course,
any such Φ′ is analytic). This group is denoted by

Deck = Deck(f) = Deck(M → N).

Theorem 2.

(a) Any Φ′ ∈ Deck is prolonged in an uniquely way to a holomorphic dif-
feomorphism Φ of the complete surface M .

(b) Let K = C(N) (as above) and L2 = C(M). We embed C(N) into C(M)
using the induction homomorphism p∗. Then we have

Deck(M → N) ' Aut(K ⊂ L2).

Proof. The point (a) follows from the Riemann’s theorem about removable
singularities.
(The point (b) is proven also in [4]). The embeddings of p∗ is obvious:

h ◦ p ≡ 0 ⇒ h ≡ 0. Of course, any Φ ∈ Deck defines the automorphism Φ∗

of C(M), which is trivial on functions which are constant on fibers of p; thus
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Deck(f) ⊂ Aut(K ⊂ L2). Consider an automorphism σ ∈ Aut(K ⊂ L2). We
apply it to the function f̃ :M → C, which defines the algebraic function f by
f̃ = f ◦ p. Then (σf) ◦ p:N → C is a multi-valued function on N with algebraic
singularities and defines a Riemann surface M1. The surface M1 is associated
with the same algebraic equation (1) as M , i.e. F (x, y) = 0; (we can treat the
latter as F (T ) = 0, F ∈ K[T ]). But the Riemann surface M is unique up to a
fiber isomorphism. This shows that M1 is fiber isomorphic to M . That in order
defines a deck transformation Φ:M →M . �

Theorem 3.

(a) We have the representations

Mon ' π1(N ′, a)
/⋂
j

Stab(bj)(2)

= π1(N ′, a)
/ ⋂
γ∈π1(N ′,a)

γ · p∗π1(M ′, b1) · γ−1

and

(3) Deck ' Norm(p∗π1(M ′, b1))/p∗π1(M ′, b1)

where Stab(bj) = {γ ∈ π1(N ′, a) : ∆γbj = bj} is the stabilizer of bj
and the normalizer of p∗π1(M ′, b1) in π1(N ′, a), Norm( p∗π1(M ′, b1))
is equal {γ ∈ π1(N ′, a) : γ · p∗π1(M ′, b1) · γ−1 = p∗π1(M ′, b1)}.

(b) In particular, the equality

Deck = Mon

holds if and only if p∗π1(M ′, b1) is a normal subgroup of π1(N ′, a).

Proof. (The formula (2) an be found in [3] and in [7]. The formula (3) is
well known, see [8] and [9].)
(a) The homomorphism ∆:π1(N ′, a) → Mon ⊂ S(p−1(a)) is given by the

action of π1(N ′, a) on the fiber p−1(a) = {b1, . . . , bn}. This action is transitive,
i.e. for any bi 6= bj there exists a monodromy map ∆γ such that ∆γ(bi) = bj .
This follows from connectivity of M ′ (the points bi and bj are connected by a
path δ ⊂M ′ whose projection is the loop γ). Next, Mon is uniquely determined
by the actions of π1(N ′, a) on each element bi; the trivial element from Mon
arises from the intersection of all stabilizers of the points bi. This gives the
identity Mon ' π1/

⋂
stabilizers. The stabilizer of bi equals p∗π1(M ′, bi); (it

consists of those loops in N ′ which ale lifted to closed loops through bi). By
transitivity any two stabilizers (e.g. of bi and bj) are conjugated (by means of
the above loop γ). Thus we get the formula (2).
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Let Φ be a deck transformation. It is uniquely defined by its restriction to any
open subset of M ′. Take such a subset in the form Vb1 = component of p

−1(Ua)
containing b1. Let Vbj = Φ(Vbi). We choose a monodromy map ∆γ such that
∆γ0(bi) = bj which we prolong fiberwise to the neighbourhood Vb1 . Of course,
Φ|Vb1 = ∆γ0 |Vb1 . Thus ∆γ0 |Vb1 can be prolonged to a fiber diffeomorphism ofM .
In order to show the identity (3), we must:

(i) distinguish those monodromy maps ∆γ0 which can be prolonged from
Vb1 to deck transformations, and

(ii) notice that the loops δ from π1(M ′, b1) are projected to loops γ = p(δ)
such that ∆γ |Vb1 ≡ id (they are prolonged to trivial elements in Deck).

Suppose that a monodromy map ∆γ0 |Vb1 can be prolonged to a fiber diffeo-
morphism of M . We prolong ∆γ0 along paths δ ⊂ M ′ which start at b1. In
particular, if δ ∈ π1(M ′, b1) with p(δ) = γ ∈ p∗π1(M ′, b1), then the prolongation
gives a new diffeomorphism ∆γ−1γ0γ |Vb1 = ∆γ−1 |Vbj ◦ ∆γ0 |Vb1 ◦ ∆γ |Vb1 . The
latter should coincide with ∆γ0 :Vb1 → Vbj . Thus ∆γ−1 |Vbj = id:Vbj → Vbj ,
∆γ0γ |Vb1 = ∆γγ0 |Vb1 and hence ∆γ−10 γγ0 |Vb1 = ∆γ |Vb1 = id. This means that
γ0γγ

−1
0 ∈ p∗π1(M ′, b1). So γ0 ∈ Norm(p∗π1(M ′, b1)).
(b) The property (b) easily follows from the formulas (2) and (3). �

Remark 1. The proof of the formula (3) does not suggest that the group
Deck can be included into the group Mon. We have associated to a Φ ∈ Deck a
map ∆γ0 |Vb1 , but we have not shown that Φ|Vbi = ∆γ0 |Vbi when bi is not in the
same orbit of Deck as b1.

Definition 3. A ramified coveringM
p−→ N is called the Galois covering if

the group Deck acts transitively on the noncritical fiber p−1(a). Galois coverings
are sometimes called the normal coverings (see [4]), or regular coverings (see [8]
and [3]).

Proposition 1. The following conditions:

(a) the group p∗π1(M ′, b1) is a normal subgroup of π1(N ′, a), i.e. Deck =
Mon,

(b) |Deck| = n = deg p,

are equivalent to the condition that a covering M
p−→ N is a Galois covering.

Proof. (a) The group p∗π1(M ′, b1) is a normal subgroup of π1(N ′, a) if and
only if all the stabilizers of points bj in π1(N ′, a) (i.e. p∗π1(M ′, bj)) are equal.
Then the normalizer of p∗π1(M ′, b1) is equal to π1(N ′, a).

If p∗π1(M ′, b1) is a normal subgroup of π1(N ′, a), then by (2) and (3) Mon =
Deck; hence the group Deck acts transitively on the distinguished fiber.
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Assume that p∗π1(M ′, b1) is not normal in π1(N ′, a). Then there are two
different stabilizers p∗π1(M ′, b1) 6= p∗π1(M ′, bj). Suppose that Deck acts transi-
tively on the set {b1, . . . , bn}; in particular b1 and bj are in one orbit of the action
of Deck, bj = Φ(b1). Let Φ|Vb1 = ∆γ0 |Vb1 (like in the proof of the formula (3)
from Theorem 3). Then the formulas ∆γ−1γ0γ |Vb1 = ∆γ0 |Vb1 and ∆γ |Vbj = id for
γ ∈ p∗π1(M ′, b1) show that the stabilizers of b1 and bj coincide, a contradiction.
(b) Because any transformation from Deck is defined by its value on b1 and

there are at most n of them, then |Deck| ≤ n. The equality |Deck| = n holds
only in the case of transitivity of Deck. (Note also that for Galois coverings we
have the equalities |Mon| = |π1(N ′)/p∗π1(M ′)| = |p−1(a)|.) �

It would be nice if one had a direct criterion of Galois property for ramified
coverings. Such criterion should be expressed in local terms of the algebraic
curve F (x, y) = 0.

Definition 4 ([8]). We say that a ramified covering p:M → N is of regular
type if for any critical value xi ∈ N all the critical points yj in the fiber p−1(xi)
have the same ramification index, i.e. we have p(ξj) − xi = ξvj for some local
charts ξj in M with center at yj .

Theorem 4.

(a) If a covering p:M → N is Galois, then it is of regular type.
(b) If N is simply connected (i.e. N = CP 1), then p:M → N is Galois if
and only if it is of regular type.

Proof. (The point (a) of this theorem can be found in [8] and the point (b)
was proven by Greenberg in [5]).
(a) Assume that the group Deck acts transitively on any non-critical fiber.

Let xi be a critical value of the map p and let y1 ∈ p−1(xi) has the ramification
index v1. Thus p(ξ1) = xi + ξv1 for a local chart ξ1:W1 → C, ξ1(y1) = 0. We
choose the base point a ∈ N from the neighbourhood Z = p(W1) of xi. Then
the set p−1(a) ∩W1 contains v1 points bk = (a − xi)1/v1e2πik/v1 , k = 1, . . . , v1.
By transitivity of Deck there exists a transformation Φ1:M → M such that
Φ1(b1) = b2, of course, Φ1 = ∆γi where γi is the loop around xi.
Suppose that p−1(xi) contains another critical point y2 6= y1 with the rami-

fication index v2 and the local chart ξ2 in a neighbourhood W2.
Let bv1+1, . . . , bv1+v2 be the points from p

−1(a) near y2. There exists Ψ ∈
Deck such that Ψ(bv1+1) = b1. Consider the map Φ2 = Ψ

−1 ◦ Φ1 ◦Ψ ∈ Deck. It
defines a cyclic permutation τ of the set {bv1+1, . . . , bv1+v2}. We have τv1 = id,
what implies that v2 divides v1, v2|v1. By changing the roles of y1 and y2 we get
v1|v2. Hence v1 = v2.
(b) If π1(N, a) = 0, then π1(N ′, a) is generated by the loops γi around

the critical values xi, i = 1, . . . ,m. Therefore it is enough to show that the
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monodromy maps ∆γj can be prolonged to fiber automorphisms of M . For this
it is enough to prove the following.
Let y1, y2 ∈ p−1(xi) (with local charts ξ1,2:W1,2 → C and with the base point

a ∈ Z = p(W1,2)) and let δ be a path inM joining y2 with y1 and omitting critical
points on the way. Thus γ = p(δ) is a loop in π1(N\{x1, . . . , xi−1, xi+1, . . . , xm},
xi) which induces a map ∆γ :W2 →W1. What we need is the identity

(4) ∆−1γ ◦∆γi ◦∆γ |W2 = ∆γi |W2 .

But this is obvious, as the both maps in (4) are rotations by the same angle
2π/v1 = 2π/v2 in the chart ξ2. �

The notion of Galois covering takes its origin from algebra. In the next
section we present some elements of the theory of fields and their extensions.

3. Algebraic Galois theory

In this paper we assume that all fields have characteristic zero. In fact they
are fields of functions on complex varietes. All the below algebraic results are
taken from the book of Waerden ([13]).

Definition 5. An extension K ⊂ L of algebraic fields is called normal if for
any element β ∈ L with its minimal polynomial g(T ) = (T −β1)(T −β2) . . . (T −
βr) ∈ K[T ], β1 = β (where βj belong to the algebraic closure K of K) all the
roots βj also belong to L. Equivalently, K ⊂ L is normal if and only if L is
obtained from K by adjoining all roots of finite number of polynomials from
K[T ]; if the extension is finite, then one polynomial is sufficient.
An extension K ⊂ L is called the Galois extension if it is normal and sep-

arated; (the latter means that g′(β) 6= 0 for the minimal polynomial g(T ) of
any β ∈ L). Because in the characteristic zero all extensions are separated, the
notions of normal extension and Galois extension are the same.
The automorphism group of a Galois extension is called the Galois group and

is denoted by Gal = Gal(K ⊂ L) (or GalKL, or Gal(L/K)).
For an extension K ⊂ L an element α ∈ L is called primitive if L = K(α). If

a primitive element exists, then the extension is called simple.

Theorem 5.

(a) Any extension of the form L = K(β1, . . . , βr) is simple. In particular,
any finite Galois extension is of the form L = K(α).

(b) Let L = K(α). Then any element σ of the group Aut(K ⊂ L) is uniquely
defined by the value σ(α) = αi, where αi is a root of the minimal poly-
nomial g(T ) for α which lies in L. Therefore

|Aut(K ⊂ L)| ≤ [L : K] def= dimK L
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and the equality holds only when the extension is Galois. In the latter
case the group Gal acts transitively on the roots of the minimal polyno-
mial g(T ).

(c) If K ⊂ L is Galois, then LGal def= {β ∈ L : Gal(β) = {β}} = K.

Proof. It is enough to prove the point (a) for r = 2; next we use induction.
So, assume that L = K(β, γ) and let β1 = β, β2, . . . , βk and γ1 = γ, γ2, . . . , γl be
the conjugate elements (in the algebraic closure of K), the roots of the minimal
polynomials f(T ) and g(T ), respectively. We put the primitive element in the
form α = β+ aγ, where a ∈ K is such that βi+ aγj 6= β+ aγ for all i and j 6= 1.
We have to show that γ ∈ K(α).
The element γ is a common root of the two polynomials g(T ) and f(α−aT ),

both from K(α)[T ]. By the above assumption it is unique such common root,
and the greatest common divisor of these polynomials is just T − γ. Because
gcd(g(T ), f(α− aT )) ∈ K(α)[T ], the coefficient γ ∈ K(α).
(b) Let g(T ) = (T − α1) . . . (T − αn) ∈ K[T ] be the minimal polynomial for

the primitive element α = α1. The vector space L = K(α) = K[T ]/(g(T )) over
K has the basis 1, α, . . . , αn−1. Therefore any automorphism σ of L over K is
determined by its value on α. Of course, σ(α) = αi for some i and it extends to
an isomorphism K(α1) → K(αi). However, we can take only those σ for which
αi ∈ L; thus the inequality |Aut| ≤ n. The equality holds when all αi ∈ L, what
means normality; of course, then Aut = Gal acts transitively on the roots.
(c) follows from (b). �

Corollary. A ramified extension p:M → N is Galois if and only if the
extension K = C(N) ⊂ C(M) = L1 is Galois.

Proof. By Proposition 1(b) and Theorem 2 p is Galois if and only if

|Aut(C(N) ⊂ C(M))| = |Deck| = n = deg p.

But the extension K ⊂ L2 is simple, L2 = K(T )/g(T ) = K(f), and [C(M) :
C(N)] = n. Now it is enough to apply Theorem 5(b). �

Theorem 6 (Fundamental theorem of Galois theory). Let K ⊂ L be a Galois
extension. There exists a one-to-one correspondence between the intermediary
fields K ⊂M ⊂ L and the subgroups H ⊂ G = Gal(K ⊂ L) given by the maps

M → H = Gal(M ⊂ L), H →M = LH .

Proof. We have to show that the compositions

M→ H → LH and H →M→ Gal(M ⊂ L)

are identities. Note that above the extensions M ⊂ L = K(α) = M(α) are also
Galois.
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The inclusions M ⊂ LH and H ⊂ Gal(M ⊂ L) are obvious. The equality
LH = M follows from Theorem 5(c). Finally, suppose H 6= H1 = Gal(LH ⊂ L);
then [G : H1] = [L : LH ]. But the equality M = LGal(M⊂L) for M = LH implies
that LH1 = LH . Thus [G : H1] = [G : H] and the inclusion H ⊂ H1 gives
H = H1. �

In Theorem 1 we have considered the extension

K = C(N) ⊂ L1 = K(f1, . . . , fn)

associated with any covering, Galois or not. Recall also that L2 = C(M). The
branches fj are all the roots of the polynomial g(T ) = F (x, T ) ∈ K[T ]. This
and Theorem 6 give the following proposition; (for the point (b) one uses the
identity Deck = Mon for Galois coverings).

Proposition 2.

(a) The extension K ⊂ L1 is Galois.
(b) The equality L2 = L1 holds only for Galois coverings.

Remark 2. Although the field L2 = C(M) is clearly smaller that L1, we do
not have any inclusion. The reason is that elements of C(M), e.g. f̃ , cannot be
treated as multivalued functions on some open subset, e.g. on Ua. We cannot
decide which of the (generally) non-equivalent branches to choose. In the case
of Galois covering all the branches appear at equivalent footing. Compare also
Remark 1.

There appears the natural question about realization of the field L1 as a field
of rational functions on some surface S covered over N . One wants to get S as a
Riemann surface of an algebraic function h(x). We should have L1 = K(h), i.e.
h should be a primitive element. The choice of primitive element is dictated by
the proof of Theorem 5(a). Namely one puts

(5) h(x) = f1(x) + b2(x)f2(x) + . . .+ bn(x)fn(x)

for some rational functions bj(x) ∈ C(N). The function z = h(x) satisfies an
algebraic equation H(x, z) = 0 of degree |Mon(M → N)| with respect to z and
the covering S → N is a Galois covering. In the next section we present this
construction in an example (Example 3).

4. Examples

Here we present examples illustrating the theoretical statements and con-
structions from the previous two sections.
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Example 1 (Generic algebraic function). Let the polynomial F (x, y), which
defines an algebraic function y = f(x), be typical. Then the projective curve
Γ ⊂ CP 2 defined by F = 0 is smooth (hence connected and irreducible) and
the restriction of the projection (x, y) → x to Γ ∩ C2 has only non-degenerate
(Morse) critical points with different critical values.
The group Mon is generated by transpositions (of two branches glued at

critical points) and is transitive. This implies that Mon = S(n) (see [16]).
(This fact, together with non-solvability of S(n), n ≥ 5 and solvability of the
monodromy group of functions expressed by radicals, gives the topological proof
of the Abel–Ruffini theorem; see [1] and [16].)
On the other hand, the corresponding covering is manifestly not of regular

type (there is only one critical point in each critical fiber). Thus M → N is not
Galois (Theorem 4(a)). We have Deck = {e}, in fact.
(We see here that the group Deck is not very useful in applications.)

Example 2. The cubic equation

(6) y3 − 3y − 2x = 0,

although gives a singular curve (cusp at infinity), has all the features of the
general algebraic equation from Example 1. Here we are able to provide suitable
formulas.
Using the Cardano formula

y =
(
− q
2
+
(
q2

4
+
p3

27

)1/2)1/3
+
(
− q
2
−
(
q2

4
+
p3

27

)1/2)1/3
(with 36 branches) we get three solutions which, for x real and close to 0, take
the form

(7) f0,1,2(x) = −i[ζ0,1,2(
√
1− x2 − ix)1/3 − ζ0,1,2(

√
1− x2 + ix)1/3]

where ζ0 = 1, ζ1,2 = −1/2 ± i
√
3/2 are the cubic roots of unity and all the

square and cubic roots in (7) are positive for x = 0. We have f0 = −2/3x+ . . . ,
f1,2 = ±

√
3 + . . . for x→ 0, as expected from (6).

The curve (6) is presented at Figure 1(a). There are two finite critical points
of the projection: (x, y) = ±(1,−1). Both are ramification points of the covering
of index 2. There is one more ramification point at infinity, of index 3. Because
p−1(±1) contains regular point and ramification point, the covering is not of
regular type; hence not Galois.
Therefore, the extension K ⊂ L2 is not Galois. Here the both surfaces

M and N are rational; M is parametrized by y. Thus L2 = C(y) and K =
C(x) ' C(y3 − 3y) ⊂ C(y). Any automorphism σ of the field C(y) is the change
y → (ay + b)/(cy + d) induced by a Möbius transformation Φ ofM = CP 1. The
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fact that σ is trivial on the subfield C(y3 − 3y) means that Φ is constant on the
fibers of p. Φ must keep fixed the three ramification points y = ±1,∞ (they are
unique in the critical fibers). Only Φ = id satisfies this condition. In this way
we confirm the triviality of the group of deck transformations, Deck = {e}. On
the other hand, we know that Mon = S(3).
Here we can see why Deck 6⊂ Mon and L2 6⊂ L1. If it were so, then we would

have L2 = LDeck1 = L1 with Aut(K ⊂ L2) = Mon.

As we know, the extension K ⊂ L1 = K(f1, . . . , fn) associated with Ex-
ample 1 (or Example 2) is normal (we adjoin all the roots of the polynomial
F (x, T ) ∈ K[T ]). Theorem 5(a) says that L1 = K(h) for a primitive ele-
ment h ∈ L1. This element represents an algebraic function z = h(x) on N
and satisfies an algebraic equation G(x, z) = zd + bd−1(x)z + . . . + b0(x) =
(z − h1(x)) . . . (z − hd(x)) = 0, h1 = h. The degree d = |Gal(K ⊂ L1)|.
We associate with z = h(x) its Riemann surface S = M(h) with a covering
q:S → N . We have a single-valued function h̃:S → C such that h̃ = h ◦ q.
Of course, h̃ ∈ C(S), where the latter field is isomorphic to L1. We have
Deck(S → N) = Aut(K ⊂ C(S)) = Aut(K ⊂ L1) ' Mon(S → N) and
the covering S → N is Galois. The element h should be chosen in the form
h(x) = f1(x) + c2(x)f2(x) + . . .+ cn(x)fn(x), cj ∈ K(N) (see (5)).

Example 3 (Example 2 revisited). Because f0(x)+ f1(x)+ f2(x) = 0 in (6)
and (7), we have L1 = K(f1, f2) = C(x, f1(x), f2(x)). We choose

h(x) = f1(x)− f2(x).

Using the formulas f1+f2 = −f0, f1f2+f0(f1+f2) = −3, i.e. f1f2 = f20 −3,
we express the functions h2, h4, h6 in terms of x and f0. They turn out to be
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dependent; namely, z = h(x) satisfies the equation

G(x, z) = z2(z2 − 9)2 + 108(x2 − 1) = 0.

The curve G(x, z) = 0 is drawn at Figure 1(b). We see that above x = ±1
there are three ramification points (with index 2). Above x = 0 the curve G = 0
is singular. But these singularities are the simple double points; the two local
components are separated in the Riemann surface S. There are also ramification
points above x =∞. We have there two local components z3± i

√
108x+ . . . = 0,

each containing a ramification point with index 3. We see that the covering
S → N = CP 1 is of regular type, hence Galois (by Theorem 4(b)). Moreover,
the Riemann–Hurwitz formula d · χ(N) = χ(S) +

∑
z∈S(v(z) − 1) shows that

χ(S) = 2; i.e. S = CP 1.
We shall construct explicitly the deck transformations generating the group

Deck(S → N) ' S(3). For this we need certain parametrization of S = CP 1.
We use the formula

f22 + f1f2 + f1
2 = 3

(following from (f1+f2)2 = f20 , f1f2 = f
2
0 −3). We have (f2−ζf1)(f2−ζf1) = 3,

ζ = −1/2+ i
√
3/2 and we put f2 − ζf1 = −i

√
3t, f2 − ζf1 = i

√
3t−1. This gives

f1 = t+ t−1, f2 = ζt+ ζt−1, f0 = ζt+ ζt−1.

and the desired parametrization of the surface S

z = f1 − f2 = (1− ζ)t+ (1− ζ)t−1, x =
1
2
f0(t)f1(t)f2(t).

The algebraic function z = h(x) has 6 branches

h1 = f1 − f2, h2 = f2 − f1, h3 = f0 − f2,
h4 = f2 − f0, h5 = f1 − f0, h6 = f0 − f1.

The monodromy map ∆γ1 , corresponding to the loop γ1 around the point x1, acts
as the transposition σ1 = (f0f1) ∈ S({f0, f1, f2}) of branches of the surface M .
In the surface S we get the permutation

τ1 = (h1h3)(h2h4)(h5h6) ∈ S({h1, . . . , h6}).

The latter permutation is given by the changes

(1− ζ)t+ (1− ζ)t−1 → (ζ − ζ)t+ (ζ − ζ)t−1,
(1− ζ)t+ (1− ζ)t−1 → (ζ − 1)t+ (ζ − 1)t−1,

which are induced by one transformation Φ1: t→ ζt−1.
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The monodromy ∆γ2 , corresponding to the loop γ2 around x = −1, gives the
permutations σ2 = (f0f2) and

τ2 = (h1h5)(h2h6)(h3h4)

where the latter is extended to the transformation Φ2: t→ t−1. The involutions
Φ1 and Φ2 generate the group Deck(S → N).

Example 4 (Galois coverings). Large class of Galois coverings is given by
algebraic functions of the form

f(x) = R1(x)µ1 +R2(x)µ2 + . . .+Rs(x)µs

where µj are positive rational numbers and the functions Rj(x) are rational
and such that their divisors of zeroes and poles (including those at infinity) are
disjoint. For example,

f =
√
x+ 3
√
(x− 1)/(x+ 1).

If µj are irreducible ratios pj/qj and Rj are not powers, then we have

Mon = Deck = Zq1 ⊕ . . .⊕ Zqs .

This follows directly from the construction of the Riemann surface of the func-
tion f by taking q1 · . . . · qs copies of the complex plane, cut along radii from
singularities of the summand functions and glued in a suitable way.

Example 5 (The canonical map). Consider a hyperelliptic curve

y2 = P (x2)

where the polynomial P has isolated zeroes different from x2 = 0. It defines
a Riemann surface M of genus g = degP − 1.
Consider the canonical map ι:M → CP g−1, defined as follows (see [6]). Let

ω0 =
dx

y
, ω1 =

xdx

y
, ωg−1 =

xg−1 dx

y

be the basis of the space H1,0(M) = H0(M,Ω1) ' Cg of holomorphic 1-forms
on M . We put

ι(z) = (ω0(z) : ω1(z) : . . . : ωg−1(z)), z ∈M

with the values in the projectivization of H1,0. The map ι:M → ι(M) is the
same as the 2-fold covering p:M → CP 1 associated with the algebraic function√
P (x2).
The curve M admits two symmetries: Θ1: (x, y)→ (x,−y) and Θ2: (x, y)→

(−x, y). Because Θ∗1ωj = −ωj , we see that ι(z) = ι(Θ1(z)). The covering
ι:M → ι(M) is the quotient map M →M/Θ1.
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Consider the family Mt of curves defined by

H(x, y) = t, H = y2 − P (x2).

Take the meromorphic forms

η1 =
x dx

y
, η2 =

dη1
dH
=
x dx

2y3
, η3 =

dη2
dH
, . . .

Here the form ν = dη/dH is the Gelfand–Leray form on the curve H = t such
that dη = ν ∧ dH. If δ(t) is a family of integer cycles in the Riemann surfaces
H = t and I(t) =

∫
δ(t) η1 is an Abelian integral, then we have d

jI/dtj =
∫
δ(t) ηj .

For any k ≥ 3 the map

ρ: z → (η1(z) : . . . : ηk(z))

defines a ramified covering over a surface N = ρ(M) ⊂ CP k−1. Because Θ∗1ηj =
−ηj and Θ∗2ηj = ηj , the map ρ is constant on orbits of action of the group Z2⊕Z2
generated by the two involutions. In fact, here Deck(ρ) = Mon(ρ) = Z2 ⊕ Z2
and the covering is Galois.
This example is in fact a special case of Example 4; namely for g(u) =√
P (u) +

√
u. The function g on M is equal to x+ y for x =

√
u.

Due to the symmetries Θ1,2 we have
∫
δ(t) η1 ≡ 0, when the cycle δ(t) is

represented by a real oval of the curve H = t symmetric around the origin. Note
that the form η1 is not exact on the surface H = t (because integrals over non-
symmetric cycles do not vanish). We expect that always, whenever

∫
δ(t) η ≡ 0

for a non-exact η, the curves H = t should reveal some symmetry.
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Example 6 (Covering of regular type, but not Galois)). We use the Exam-
ple 14 from the book [8]. There one constructs a 3-fold covering p:M → E over
an elliptic curve E (torus) with only one critical point with ramification index 3
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and one critical value x1. M has genus 2. Of course, the covering is of regular
type; p−1(x1) is one point.

In order to proceed further, we need more information about the construction
of this covering. Firstly, one realizes the curve E with distinguished point x1 as
an orbifold; this means that a small disc around x1 is identified with {|z| < ε}/Z3.
One puts E = D/Γ where D = {|z| < 1} is the simply connected hyperbolic
surface and Γ is a Fuchsian group of isometries of D with generators a, b, c
satisfying the relations

(8) aba−1b−1c = c3 = e.

(By a Fuchsian group Γ we mean the subgroup of index 2 in a group of isometries
of D generated by inversions with respect to several circles orthogonal to the
absolute ∂D. This subgroup consists of maps which are compositions of even
number of inversions and are Möbius maps preservingD. Moreover, the Fuchsian
group acts onD discontinously, i.e. the stabilizers of points are finite and isolated.
The (infinite) “universal” covering D→ D/Γ is an example of Galois cover-

ing.)
The fundamental domain F ⊂ D of Γ with the action of the maps a, b, c is

presented at Figure 2(a). The elliptic vertex x1 with angle 2π/3 is situated at
the origin x = 0.
The relations (8) are responsible for the discreetness of Γ. This can be ex-

plained in terms of the images g(F ), g ∈ Γ of the fundamental domain. These
sets should meet only along their boundaries (no overlapping); they form a
partition of D. The relation c3 = e is responsible for partition of a neigh-
bourhood the vertex x1 = 0; the relation aba−1b−1c = e responds for regular
partition near the vertex x0 in Figure 2(a). (Poincaré has shown that if any
elliptic transformation g, which arises from a composition gl . . . g1 ∈ Γ such that
v0

g1−→ v1
g1−→ . . . −→ vl = v0 for a subset {v0, . . . , vl} of vertices of the fun-

damental domain, has angle 2π/k at the fixed point v0, then the group Γ is
discrete).
In Figure 2(b) we see the fundamental domain F ′ = F ∪ c(F ) ∪ c2(F ) =

F1 ∪ F2 ∪ F3 of the subgroup Γ′ ⊂ Γ corresponding to the Riemann surface
M = D/Γ′. Here Γ and Γ′ play the roles of fundamental groups for orbifolds.
All theorems from Section 2 hold in the case when the fundamental groups π1(E′)
and π1(M ′) are replaced by Γ′ and Γ. In particular,

Deck(M → E) = Norm(Γ′)/Γ′

In Figure 2(c) we present the generators of the group Γ′; they are a, cac,
c2ac2, bc2, cb, c2bc. By the Poincaré theorem the group Γ′ is Fuchsian. We see
that the vertices of the domain F ′ are divided into three groups {u0, u1, u2, u3},
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{v0, v1, v2, v3}, {w0, w1, w2, w3}. Each group represents one point in M (above
x0 ∈ E); in Figure 2(b) they are labelled by 1, 2, 3, respectively.
From Figure 2(b) one can calculate the group Mon(M → E). The punctured

torus E′ = E \ (critical value) = E \ x1 has the loops α and β generating
its fundamental group π1(E′, x0) (see Figure 2(a)). We have ∆α = (23) and
∆β = (12). Thus Mon = S(3).
We define the homomorphism ∆:Γ→ S(3) = Mon by

∆(a) = (23), ∆(b) = (12), ∆(c) = (132).

It turns out that Γ′ = ∆−1(G′), where G′ = {e, (12)} ⊂ S(3) is a subgroup
which keeps 1 at place. Therefore

Deck = Norm(Γ′)/Γ′ = Norm(G′)/G′ = {e}.

In [8] the authors do not provide the formulas for the maps a, b, c. Below
we show how to find them. We firstly find corresponding automorphisms of the
upper half-plane H = {Im ζ > 0}; they will belong to the group PSL(2,R). We
shall find two matrices A,B ∈ SL(2,R), which induce the corresponding Möbius
transformations γA, γB such that γC−1 , C−1 = ABA−1B−1 is elliptic of order 3.
We put

A =
(
a b

c d

)
, B =

(
λ 0
0 1/λ

)
, A−1 =

(
d −b
−c a

)
.

Then

C−1 =
(
a b

c d

)(
d −λ2b

−λ−2c a

)
=
(
ad− λ−2bc (1− λ2)ab
(1− λ−2)cd ad− λ2bc

)
.

The condition that the transformation γ−1C is conjugated to the rotation by
2π/3 means that the eigenvalues of C−1 are e±i/3, or that TrC−1 = 1. So we
put a = 13, b = c = 2/3, d = 1/9, λ = 2. Then γA, γB become hyperbolic

transformations and C−1 =
(
4/3 −26
1/18 −1/3

)
, with the eigenvectors

(
ζ1,2
0

)
, ζ1,2 =

3(5 ±
√
27i) ∈ ±H. In the chart x = (ζ − ζ1)/(ζ − ζ2) the map γ−1C is the

needed rotation.
Let D =

(
1 −ζ1
1 −ζ2

)
. Then a = γDAD−1 , b = γDBD−1 , c = γDCD−1 .

5. Generalizations

The multi-valued functions lnx, x
√
2,
√
1− x

√
2,
√
1− (1− xi)i are elemen-

tary, but take infinite number of values, and the fourth function has singularities
in a dense subset of the complex plane. The classical theory of Riemann surfaces
learns us how to deal with functions which have isolated singularities. The cor-
responding theory for functions with at most countable set of singularities (the
so-called S-functions) was created by Khovanskĭı in [7].
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He considers analytic prolongations of analytic elements fc (germs of multi-
valued function f(x)) along paths in C\A, where A is a countable set containing
singularities of f called the prohibited set. Thus one obtains an (open) Riemann
surfaceMA with a projection pA onto C. Analogously as in Section 2 one defines
the monodromy group MonA ⊂ S(p−1(a)) of the covering pA. Next, Khovanskĭı
takes the closure of MonA in the product space (MA)MA , using the Tikhonov
topology. The result is the closed monodromy groupMon, which does not depend
on the prohibited set A.
One can define the deck transformation groups DeckA as consisting on fiber

diffeomorphisms of the covering MA → C and the closed deck transformation
group Deck as the closure of DeckA. Again one obtains the inclusions DeckA ⊂
MonA and Deck ⊂ Mon. We can treat the family {MA} of Riemann surfaces as
a virtual Riemann surface M = M(f) whose monodromy group is Mon. Such
virtual covering would be called Galois if Deck = Mon.
It seems that many statements and notions from Section 2 could be gener-

alized to the case of S-functions. For example, we could try to define coverings
of regular type as those for which all components (in MA) of sets of the form
p−1A (U \ A), U – small disc, are diffeomorphic. The set of coverings of regular
type over C should be the same as the set of Galois coverings.
We leave this subject aside, because we have no rigorous proofs of the above

statements at the moment. Instead, we present some natural examples of infinite
Galois coverings.

Example 7 (Liouvillian first integrals). Consider a differential equation

dy

dx
=
P (x, y)
Q(x, y)

where P and Q are polynomials. Singer [12] has proven that such equation has
a first integral of the liouvillian type (i.e. obtained from rational functions by a
series of operations like exponentiation, integration and solution of an algebraic
equation) if and only if it has an integrating multiplier of the form

R = eg
∏
faii .

Here g(x, y) is a rational function, fi are polynomials and ai ∈ C. Thus the first
integral is a multivalued function

H(x, y) =
∫ (x,y)
(x0,y0)

Rω, ω = Qdx− P dy.

The singularities S of H lie in the algebraic curves defined by fi = 0 and in
poles of g. By analytic continuation one obtains a (two-dimensional) Riemann
surface M =M(H) with a projection onto C2 \ S.
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It turns out (see [15]) that the monodromy transformations take the form
h→ λh+µ. Thus they are prolonged to analytic diffeomorphisms of (C2 \S)×C

Φ(x, y;h) = (x, y;λh+ µ)

which, restricted to M , define the deck transformations. So Deck = Mon and
this covering is Galois.

In [15] the monodromy group Mon(H) was extended together with certain
extension of the Riemann surface M(H). That construction allowed to reveal
the nature of singularities of H(x, y) along the poles of the exponent rational
function g(x, y).

Example 8 (Riccati equation). It is an equation of the form

dy

dx
=
A(x)y2 +B(x)y + C(x)

D(x)

where A, B, C, D are polynomials. Any its solution y = ϕ(x) defines a
multi-valued holomorphic function with singularities in the set x1, . . . , xm of
zeroes of the polynomial D. The evolution operators {ϕ(x)} → {ϕ(x′)} take
the form of Möbius maps (because they are automorphisms of CP 1). There-
fore the monodromy maps ∆: {ϕ(x0)} → {ϕ(x0)} are also of this form: y →
(ay + b)/(cy + d). They are extended to diffeomorphisms (x, y) → (x, (ay + b)/
(cy + d)) of (C \ {x1, . . . , xm})× CP 1.
For example, for the equation dy/dx = y2/x with solutions y(1) = y0, y(x) =

y0/(1− y0 lnx), the monodromy around any circle around x = 0 gives the deck
transformation y/(1− 2πiy).
Also the first integral (not liouvillian, in general), which takes the form

H(x, y) =
yϕ1(x)− E(x)ϕ′1(x)
yϕ2(x)− E(x)ϕ′2(x)

defines a multi-valued function and a Galois covering over C2 \ {D = 0}. Here
also Mon ⊂ PSL(2,C). (In the last formula the function E(x) is rational and
ϕ1,2(x) are two independent solutions of a suitable second order linear differential
equation.)

There should exist an algebraic variant of the theory of infinite coverings. The
Picard–Vessiot extensions from differential Galois theory provide good theory
for the case of multivalued functions defined as solutions of linear differential
equations. These solutions also define Galois coverings. There the automorphism
group is an algebraic Lie group. In the case of differential equations with regular
singularities this Lie group forms an algebraic closure of the discrete monodromy
group (see [10]).
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It is widely expected that these phenomena have further generalizations. In
the case of liouvillian first integrals the existence of such a generalization was
confirmed in [15].
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