
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 18, 2001, 171–182

CONTINUOUS SELECTIONS VIA GEODESICS

Giovanni Colombo — Vladimir V. Goncharov

Abstract. Some continuous selection results for a class of nonconvex-

valued maps are obtained. One of them contains Michael’s theorem, in
the case of a Hilbert codomain. Methods of nonsmooth analysis and Γ-

convergence are used.

1. Introduction

The classical problem of finding continuous selections from lower semicon-
tinuous set-valued maps from a paracompact space X into a Banach space Y

has been studied by many authors (see, e.g. the survey book by Repovš and
Semenov [18]). If the values of the map F are convex and closed, then a con-
tinuous selection exists (Michael’s theorem). In the case where the values of F

are not necessarily convex, one has first to mention Filippov’s counterexample
(see [3, Example 1, p. 68]), showing that continuous selections may fail to ex-
ist. However, in the particular case where Y = Lp(T,E), T being a nonatomic
measure space and E a Banach space, and the values of F are nonconvex but
decomposable, continuous selections do exist (see [2], [13], [5], [1]). In order
to obtain continuous selections, a key tool is connecting points with continu-
ity, while remaining in a prescribed set. If the values of F are convex, then
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one can use convex combinations, while if the values are decomposable, suitable
“decomposable combinations” (see (3.2)) perform the task.

This paper also deals with the problem of finding continuous selections in
a possibly nonconvex setting. The main idea is the simple observation that
segments in convex sets are exactly the geodesics, and therefore geodesic-like
curves may be good substitutes of segments in some classes of nonconvex sets
(see also [15], where the idea of geodesic combinations appears in an abstract
framework). More precisely, if we assume that F is locally selectionable and for
any x ∈ X the value F (x) enjoy the property that any pair of points y1, y2 ∈ F (x)
can be connected by a curve in F (x) depending continuously on y1, y2 and on x,

then a continuous selection exists (see Proposition 3.1 below).
The main point of the present paper consists in providing a class of noncon-

vex multifunctions enjoying the above property of “continuous connection among
points”, and to obtain the corresponding selection result. The basic ingredients
are already present in the literature. They are the so-called ϕ-convex sets, that
is sets which satisfy an external sphere condition with locally uniform radius
(see e.g. [12], [6], [7], [9], [17], where such property is studied under different
points of view). Since a convex set satisfies an external sphere condition with
constant infinite radius, it is natural to imagine that some properties which hold
globally for convex sets still hold for ϕ-convex sets, but locally. This is the case,
for example, for the existence and uniqueness properties of the metric projection
(see [6]), which are at the basis of local existence and continuous dependence
of geodesics (see [7]). We prove a selection theorem (Theorem 3.1) assuming
the lower semicontinuity of F together with the local compactness of its graph,
the locally uniform ϕ-convexity of the values F (x), and the global uniqueness
of geodesics in F (x) (called hyperbolicity). We remark that the continuous de-
pendence of geodesics must be established also with respect to the set in which
they are taken, differently from [15], where the geodesic structure is indepen-
dent of x. This is obtained with the help of a Γ-convergence argument. As a
corollary, we obtain selections for continuous maps having as values embedded
C2-manifolds with locally uniform negative curvature. A second result (Theorem
3.2), without the strong compactness requirement, comes by a strengthening of
the hyperbolicity assumption: we suppose the diameter of the values of F to be
small with respect to the radius of the external sphere. Since this hypothesis is
automatically satisfied in the convex case, Theorem 3.2 contains Michael’s se-
lection theorem (in the particular case of a Hilbert codomain). Under a similar
assumption, it is also easy to obtain the existence of fixed points of a compact
continuous map of a closed ϕ-convex set into itself, thus generalizing Schauder’s
fixed point theorem. Some known examples (see the final remarks) illustrate the
sharpness of our assumptions.
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2. ϕ–convex sets

In the following, H is a Hilbert space with inner product 〈 · , · 〉 and norm
‖ · ‖, and X is a paracompact topological space. We denote by w-H the space H

endowed with the weak topology. We say that a set G ⊂ X ×H is locally weakly
closed if each point (x, y) ∈ G admits a neighbourhood W (x, y) in X ×H such
that G ∩ W (x, y) is closed in X × w-H. We say also that a set G ⊂ X × H is
locally σ-compact if for each x ∈ X there exists a neighbourhood U(x) in X such
that G ∩ (U(x)× B(0, k)) is compact in X ×H for all k = 1, 2, . . . Let K ⊂ H

be closed. The vector v ∈ H is said to be a proximal normal to K at x ∈ K if
there exists σ = σ(x, v) such that 〈v, y − x〉 ≤ σ‖y − x‖2 for all y ∈ K. The set
of all proximal normals to K at x ∈ K (which is a convex cone, see [8, §1]) is
denoted by NK(x). The metric projection of a point x ∈ H into K, i.e. the set
of all y ∈ K such that ‖y−x‖ = inf{‖y′−x‖ : y′ ∈ K} := d(x, K) is denoted by
πK(x). We now introduce the class of sets we consider.

Definition 2.1. We say that a closed set K ⊂ H is ϕ-convex if there exists
a continuous function ϕ : K → [0,∞) such that for all x, y ∈ K, v ∈ NK(x)

(2.1) 〈v, y − x〉 ≤ ϕ(x) ‖v‖‖y − x‖2.

In other words, ϕ-convexity means that for each x ∈ K and for each v ∈
NK(x) there exists a closed ball, with radius continuously depending on x and
center placed in the half line x + vR+, which touches K only at x. The name
“ϕ-convex” is taken from [14], [6], [7]. This class of sets was studied in infinite
dimensional Hilbert spaces first by A. Canino ([6], [7]), where several properties,
including local existence and uniqueness of the metric projection and of geodesics,
were established. Later, ϕ-convex sets were characterized by means of the local
smoothness of the distance function in [17], [9]; a finite dimensional version of
this result is contained in [12, §4]. Observe that convex sets as well as sets
with C1,1-boundary are ϕ-convex, while other examples can be found in [6]. The
following properties will be used in the sequel.

Lemma 2.1. Let K ⊂ H be a nonempty closed and ϕ-convex set. Then there
exists an open set U ⊃ K such that the metric projection πK is well defined,
single-valued and locally Lipschitzean in U . More precisely:

(a) given x ∈ K and η > ϕ(x) the projection is a singleton for all points in
the ball x + δB, where δ > 0 is such that 4ηδ < 1 and ϕ(y) ≤ η for all
y ∈ K ∩ (x + 3δB),

(b) given r > 0 and η ≥ 0 such that 2rη < 1, for all z1, z2 ∈ U ∩ (K + rB),
ϕ(πK(z1)) ≤ η, and ϕ(πK(z2)) ≤ η, such that the following Lipschitz
estimate holds

‖πK(z1)− πK(z2)‖ ≤ (1− 2rη)−1‖z1 − z2‖.
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Furthermore, for all z ∈ co K ∩ U it holds

(2.2) d(z,K) = ‖z − πK(z)‖ ≤ ϕ(πK(z))(diam K)2

where co means the closed convex hull and diam K is the diameter of the set K.

Proof. For the proof of (a) and (b) we refer to [7, Proposition 1.12], [9,
Theorem 6.1] and to [6, Proposition 2.9]. To prove the last statement, let us
take z ∈ co K ∩ U and let z =

∑n
i=1 λixi, λi ≥ 0,

∑n
i=1 λi = 1, xi ∈ K. Since

z − πK(z) ∈ NK(πK(z)) we have by the definition of ϕ-convexity:

〈z − πK(z), xi − πK(z)〉 ≤ ϕ(πK(z))‖z − πK(z)‖‖xi − πK(z)‖2

≤ ϕ(πK(z))‖z − πK(z)‖(diam K)2,

i = 1, . . . , n. Multiplying by λi and summing we clearly obtain (2.2). �

In what follows, we consider the space L2(0, 1;H) of all H-valued strongly
measurable functions u( · ) with

∫ 1

0
‖u(t)‖2 < ∞, and we denote by W 1,2(0, 1;H)

the space of all absolutely continuous functions whose derivative (which exists
for a.e. t ∈ [0, 1] by Theorem 2.1 [4, p. 16]) belongs to L2(0, 1;H). The space
W 1,2(0, 1;H) with the scalar product

〈u( · ), v( · )〉 = 〈u(0), v(0)〉+
∫ 1

0

〈u̇(t), v̇(t)〉 dt

is a Hilbert space.
We use the symbol w-W 1,2(0, 1;H) to denote the space W 1,2(0, 1;H) supplied

with the weak topology. Moreover, the symbol w̃-W 1,2(0, 1;H) indicates the
(finer) topology generated by the union of the weak topology with the topology
of uniform convergence.

Fix K ⊂ H and y1, y2 ∈ K. Let us consider the set

(2.3) HK
y1,y2

:= {γ ∈ W 1,2(0, 1;H) : γ(t) ∈ K for all t, γ(0) = y1, γ(1) = y2}

which is nonempty by Proposition 2.16 ([6]), if K is assumed to be closed, ϕ-
convex and connected. Define the energy functional

(2.4) JK
y1,y2

(γ) =


1
2

∫ 1

0

‖γ̇(t)‖2 dt if γ ∈ HK
y1,y2

,

∞ if γ ∈ W 1,2(0, 1;H) \HK
y1,y2

.

Proposition 2.1. Let K ⊂ H be closed, ϕ-convex and connected, and let
y1, y2 ∈ K. Then the functional JK

y1,y2
admits a minimizer, provided either K is

weakly closed, or ‖y1 − y2‖ is small enough.

Proof. Observe that JK
y1,y2

is coercive (see Definition 1.12 [10, p. 12]) and
lower semicontinuous in w-W 1,2(0, 1;H). If K is weakly closed, then it is easy
to show that HK

y1,y2
is weakly closed in W 1,2(0, 1;H), so that JK

y1,y2
admits a

minimizer. The remainder of the statement is contained in [7, Theorem 3.3]. �
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Definition 2.2. We say that a closed connected ϕ-convex set K ⊂ H is
hyperbolic if for all y1, y2 ∈ K the above defined functional JK

y1,y2
admits exactly

one minimizer in W 1,2(0, 1;H).

The term “hyperbolic” is taken from Riemannian geometry. Although the
minimizers of JK

y1,y2
are proved in [7] to be locally unique and continuously de-

pending on the extreme points, global uniqueness can be violated, even in R2.
In what follows, the concept of Γ-convergence will be used. The relevant

definitions and results can be found, for example, in [10, Chapters 4 and 7].

3. Geodesic curves and selection results

We begin with a general selection method.

Proposition 3.1. Let F be a multivalued map from X into a normed space
E with the following two properties

(1) For all x ∈ X there exists a neighborhood Vx, and a continuous function
fx : Vx → E such that fx(y) ∈ F (y) whenever y ∈ Vx,

(2) For all x ∈ X and all pairs y1, y2 ∈ F (x) there exists a continuous
function γx(y1, y2; · ) : [0, 1] → F (x) such that
(a) γx(y1, y1;α) ≡ y1 and γx(y1, y2; 0) = y1, γx(y1, y2; 1) = y2 for all

y1, y2 ∈ F (x), x ∈ X,
(b) γx(y1, y2;α) = γx(y2, y1; 1− α) for all α ∈ [0, 1], y1, y2 ∈ F (x),

x ∈ X,
(c) given x ∈ X, yi ∈ F (x), i = 1, 2, and ε > 0 there exist δ > 0 and

a neighbourhood U(x) such that

‖γx′(y′1, y
′
2;α)− γx(y1, y2;α)‖ ≤ ε for all α ∈ [0, 1],

whenever x′ ∈ U(x) and y′i ∈ F (x), i = 1, 2, satisfy ‖yi − y′i‖ ≤ δ.

Then F admits a continuous selection.

Proof. For n = 1, 2, . . . denote by ∆n the simplex {(α1, . . . , αn) : αi ≥
0,

∑n
i=1 αi = 1} and observe that for (α1, . . . , αn) ∈ ∆n and αn < 1 we have

(α1/(1 − αn), . . . , αn−1/(1 − αn)) ∈ ∆n−1. Fix now x ∈ X, y1, . . . , yn ∈ F (x),
and define the functions γx

n(y1, . . . , yn; ·) : ∆n → F (x) by recursion as follows:

γx
n(y1; 1) = y1,

γx
n(y1, . . . , yn;α1, . . . , αn)

=

 γx

(
γx

n−1

(
y1, . . . , yn−1;

α1

1− αn
, . . . ,

αn−1

1− αn

)
, yn;αn

)
if αn < 1,

yn if αn = 1,
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where γx is taken from the condition (2). From (c) and an induction argument
it follows easily that given x ∈ X and yi ∈ F (x), i = 1, . . . , n, for all ε > 0 there
exist δn > 0 and a neighbourhood Un(x) such that

(3.1) ‖γx′

n (y′1, . . . , y
′
n;α1, . . . , αn)− γx

n(y1, . . . .yn;α1, . . . , αn)‖ ≤ ε

for all (α1, . . . , αn) ∈ ∆n, x′ ∈ Un(x) and y′i ∈ F (x), i = 1, . . . , n, with
‖yi − y′i‖ ≤ δn. Observe that by induction it follows also that the functions
γx

n(y1, . . . , yn; · ) are continuous in ∆n. To see this it is enough to take into
account that γx(a, y;α) → y as α → 1 for each point a ∈ F (x), and to apply a
compactness argument on the same line as in [15, p. 567].

Condition (a) implies inductively that if αi = 0 for some i = 1, . . . , n then

γx
n(y1, . . . , yi, . . . , yn;α1, . . . , αi, . . . , αn)

= γx
n−1(y1, . . . , yi−1, yi+1, . . . , yn;α1, . . . , αi−1, αi+1, . . . , αn),

while from (b) we see that γx
n(y1, . . . , yn;α1, . . . , αn) does not depend on the

ordering of the pairs (yi, αi). In other words, the value γx
n(y1, . . . , yn;α1, . . . , αn)

remains the same if we change the places of arbitrary points yi, yj together with
the corresponding numbers αi and αj .

Let us consider now a locally finite refinement (Wι)ι∈I of the covering (Vx)x∈X

(which appears in the property (1)), together with a continuous partition of unity
(αι)ι∈I subordinate to it. For all ι ∈ I let xι ∈ X be such that Wι ⊂ Vxι , and
set fι(x) = fxι

(x), x ∈ Wι. Define, for x ∈ X, I(x) = {ι ∈ I : αι(x) > 0} =
{ι1, . . . , ιm}, and

f(x) = γx
m(fι1(x), . . . , fιm(x);αι1(x), . . . , αιm(x)).

By the above, the function f : X → E is well defined and f(x) ∈ F (x) for all
x ∈ X. Continuity of f now follows from the property (3.1), the continuity of all
the functions fι(x), αι(x), and the local finiteness of the covering (Wι)ι∈I . The
proof is complete. �

Remark. If F (x) is convex, then it is natural to choose as γx(y1, y2; · )
the convex combination (1 − α)y1 + αy2. If E = Lp(T, Y ), with (T, µ) a fi-
nite nonatomic measure space and Y a Banach space, then being (Tα)α∈[0,1]

an increasing chain of measurable subsets of T such that µ(Tα) = αµ(T ) and
F : X → E a multifunction with decomposable values, one can set

(3.2) γx(y1, y2;α)( · ) = χT1−α
( · )y1( · ) + χTα

( · )y2( · ),

where χS(t) = 1 if t ∈ S, and = 0 if t 6∈ S. However, the above result does not
improve the selection technique for decomposable-valued maps, since it requires
local selections to be given.
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The next two results make Proposition 3.1 applicable to a class of maps with
ϕ-convex values. We prove first the local selectionability.

From now on, X is supposed to be a metric space.

Proposition 3.2. Let F : X → H be a lower semicontinuous multivalued
map, with locally weakly closed graph, and assume that there exists an upper
semicontinuous function ϕ : graphF → R+ such that

(i) y 7→ ϕ(x, y) is continuous on F (x) for all x,
(ii) F (x) is ϕ(x, · )-convex for all x.

Then F satisfies the (1) of Proposition 3.1. More precisely, for all x0 ∈ X,
y0 ∈ F (x0) there exists a neighbourhood U(x0) such that the map

x 7→ πF (x)(y0)

is well defined, single-valued and continuous in U(x0).

Proof. Fix x0 ∈ X and y0 ∈ F (x0). Choose η, δ > 0 such that 4ηδ < 1, and
a neighbourhood U(x0) with the property that ϕ(x, y) < η whenever x ∈ U(x0)
and y ∈ F (x) with ‖y − y0‖ < 3δ. By the hypotheses on F we can assume that

d(y0, F (x)) < δ for all x ∈ U(x0),

and that graph F ∩(U(x0)×B(y0, δ)) is closed in X×w-H. By (a) in Lemma 2.1,
for all x ∈ U(x0) the projection of y0 into F (x) is a singleton, that we call f(x).
We show that f is continuous in U(x0). To this aim, take x ∈ U(x0) and a
sequence {xn} ⊂ U(x0) converging to x, and set yn = f(xn). Observe that, by
lower semicontinuity,

(3.3) lim sup
n→∞

d(y0, F (xn)) ≤ d(y0, F (x)),

so that, in particular, the sequence {yn} is relatively weakly compact. Thus
any subsequence of {yn} admits a subsequence, still denoted by {yn}, weakly
converging to a point y which belongs to F (x) by graph closedness. By combining
the weak lower semicontinuity of the norm with (3.3), we obtain that ‖y−y0‖ ≤
d(y0, F (x)). Then from the uniqueness of the projection both y = πF (x)(y0) =
f(x) and lim supn→∞ ‖yn − y0‖ ≤ ‖y − y0‖ follow. The above inequalities yield
that f(xn) converges strongly to f(x); thus the proof is concluded. �

The following result concerns the continuous dependence of geodesics.

Proposition 3.3. Let a multivalued map F : X → H and an u.s.c. func-
tion ϕ : graphF → R+ be such as in Proposition 3.2. Assume, moreover, that
the sets F (x) are connected and hyperbolic for all x, and that graphF is locally
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σ-compact. Then for all x ∈ X and all pairs y1, y2 ∈ F (x) there exists a con-
tinuous curve γx(y1, y2; · ) : [0, 1] → F (x) such that the properties (a)–(c) of
Proposition 3.1 hold.

Proof. Fix x ∈ X and, for all y1, y2 ∈ F (x), consider the set Hx
y1,y2

:=

H
F (x)
y1,y2 and the energy functional Jx

y1,y2
:= J

F (x)
y1,y2 as defined, respectively, in (2.3)

and (2.4). Define γx(y1, y2; · ) to be the unique minimizer of Jx
y1,y2

. Properties
(a) and (b) follow immediately from the definition. To prove (c), let {xn} ⊂ X,
xn → x, and yn

i ∈ F (xn), yn
i → yi, i = 1, 2. It is our purpose to show that

γxn(yn
1 , yn

2 ; · ) converges to γx(y1, y2; · ) in w̃-W 1,2(0, 1;H). Set Hn := Hxn
yn
1 ,yn

2
,

Jn := Jxn
yn
1 ,yn

2
, J := Jx

y1,y2
, and observe that the family of the functionals {Jn :

n ≥ 1} is equi-coercive in the space w̃-W 1,2(0, 1;H) (see Definition 7.6 in [10, p.
70]). Then the result will follow from Corollary 7.24 in [10, p. 84] if we establish
that the sequence Jn, n = 1, 2, . . . , Γ-converges to J in w̃-W 1,2(0, 1;H). To do
this, it is enough to prove that given u ∈ W 1,2(0, 1;H)

(α) for all sequences {un} converging to u in w̃-W 1,2(0, 1;H) it holds

(3.4) lim inf
n→∞

Jn(un) ≥ J(u),

(β) there exists a sequence {vn}, vn ∈ Hn, n = 1, 2, . . . , converging to u in
w̃-W 1,2(0, 1;H) such that

(3.5) lim sup
n→∞

Jn(vn) ≤ J(u)

(see Proposition 8.1 [10, p. 87]).
To show (α), observe that un(t) → u(t) in H for all t ∈ [0, 1], and if un ∈ Hn

for all n, then Jn(un) = J(un) and, by local closedness of graph F , u ∈ Hx
y1,y2

.
Since J is lower semicontinuous in w-W 1,2(0, 1;H), (3.4) now follows. Next, we
construct a sequence vn ∈ Hn converging to u in w̃-W 1,2(0, 1;H) and such that
(3.5) holds. Taking a sequence λn → 0+ such that ‖yn

i − yi‖2 ≤ λ2
n, n ≥ 1, i =

1, 2, define the functions un : [0, 1] → H to be equal to ut((t− λn)/(1− 2λn)) for
t ∈ [λn, 1−λn], un(0) = yn

1 , un(1) = yn
2 , and to be affine in the remainder of the

interval [0, 1]. We have that the un are absolutely continuous, ‖un(t)−u(t)‖ → 0
as n →∞ uniformly on [0, 1], and

(3.6)
∫ 1

0

‖u̇n(t)‖2 dt ≤ 1
1− 2λn

∫ 1

0

‖u̇(t)‖2 dt + 2λn, n ≥ 1.

Let η, δ > 0 with 4ηδ < 1, and a neighbourhood U(x) be such that ϕ(x′, y) ≤ η

for all x′ ∈ U(x) and y ∈ F (x′) with ‖y− u(t)‖ ≤ 3δ for some t ∈ [0, 1]. Assume
also that d(u(t), F (x′)) ≤ δ/2 whenever x′ ∈ U(x) and t ∈ [0, 1]. We use here the
upper semicontinuity of the function ϕ on graph F and the lower semicontinuity
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of F . Since for n large enough d(un(t), F (xn)) ≤ δ, by Lemma 2.1 the projection
vn(t) = πF (xn)(un(t)) is well defined, is absolutely continuous, and

(3.7) ‖v̇n(t)‖ ≤ 2‖u̇n(t)‖

for a.e. t ∈ [0, 1]. Thus vn ∈ Hn and by (3.6) the sequence {vn}n≥1 is rela-
tively compact in the weak topology of W 1,2(0, 1;H). Since, moreover, vn(t) →
u(t) as n → ∞ uniformly in t, we obtain that {vn} converges to u in w̃-
W 1,2(0, 1;H). Set rn = supt∈T d(un(t), F (xn)), and observe that rn → 0 as
n → ∞ by the lower semicontinuity of F . Applying the local Lipschitzian-
ity of the projection (see Lemma 2.1(b)), we can improve the estimate (3.7):
‖v̇n(t)‖ ≤ (1 − 2rnη)−1‖u̇n(t)‖ for a.e. t ∈ [0, 1]. This together with (3.6) al-
ready imply (3.5). The proof is complete. �

We are now ready to prove our main result.

Theorem 3.1. Let a multivalued map F : X → H together with an u.s.c.
function ϕ : graphF → R+ satisfy the same hypotheses of Proposition 3.3. Then
F admits a continuous selection f(x) ∈ F (x), x ∈ X. Moreover, given x0 ∈ X

and y0 ∈ F (x0), the selection f(x) can be chosen such that f(x0) = y0.

Proof. Let U0 be an open neighborhood of x0 and f0 : U0 → H be a contin-
uous selection of F (x) such that f0(x0) = y0, given by Proposition 3.2. Choose
an open neighbourhood V0 of x0 such that V 0 ⊂ U0, and define a continuous
function α : X → [0, 1] equal to 1 on V 0 and to 0 outside U0. If g is an arbitrary
continuous selection from F obtained by applying Propositions 3.1–3.3, then the
function

f(x) =


f0(x) if x ∈ V0,

γx(g(x), f0(x);α(x)) if x ∈ U0 \ V0,

g(x) if x 6∈ U0,

where γx(y1, y2; · ) is the curve appearing in the statement of Proposition 3.3, is
a continuous selection with f(x0) = y0. �

Corollary 3.1. Let F : X → Rn be a continuous multivalued map admiting
as values closed simply connected C2-manifolds with negative sectional curvature
uniformly bounded from below. Then the statement of Theorem 3.1 holds.

Proof. Let κ < 0 be the lower bound for the curvature of F (x). Then
F (x) is −2κ-convex. Moreover, by [11, Theorem 3, p. 248], there exists a unique
geodesic curve connecting any two points in F (x). Therefore, Theorem 3.1 can
be applied. �

In conclusion we exploit the simple fact that if the diameter of a ϕ-convex
set K is small enough, then πK is a retraction of K in the convex hull co K

(see Lemma 2.1). Though being actual corollaries, the statements below contain
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Michael’s selection and Schauder fixed point theorems for the particular case of
Hilbert space-valued functions.

Theorem 3.2. Let a multivalued map F : X → H be lower semicontinuous,
and let an upper semicontinuous function ϕ0 : X → R+ and 0 < η(x) < 1/2,
x ∈ X, be given. Assume furthermore that

(i) F (x) is ϕ0(x)-convex for all x ∈ X,
(ii) ϕ0(x)diam F (x) < η(x) for all x ∈ X,
(iii) for all (x, y) ∈ graphF the set

graphF ∩ (B(x, ϕ0(x))×B(y, 2η(x) diam F (x))

is closed in X × w-H.

Then F admits a continuous selection which can be chosen to pass through an
arbitrary point of graphF .

Proof. It is easy to see that the multifunction co F (x) is lower semicontin-
uous, so that it admits a continuous selection (passing through a given point of
graphF ) which we call f(x). By Lemma 2.1(a), the hypothesis (ii) implies that
f(x) admits a unique projection into F (x) for all x. We claim now that the map
x 7→ πF (x)(f(x)) is continuous, so it is a selection we look for.

Fix x ∈ X and assume that f(x) 6∈ F (x), which may occur only when
ϕ0(x) > 0. Let a sequence {xn} ⊂ X, xn → x as n →∞, be given. In accordance
with Lemma 2.1 (see the estimate (2.2)), by the lower semicontinuity of F, the
upper semicontinuity of ϕ0( · ) and the hypotheses (i), (ii), we can assume that

(3.8) d(f(x), F (xn)) < η(x)diam F (x) <
1

4ϕ0(xn)
for all n = 1, 2, . . .

Hence, by Lemma 2.1 ((a) and (b)) it holds that the projections πF (xn)(f(x))
are single-valued, and

‖πF (xn)(f(xn))− πF (xn)(f(x))‖ ≤ 2‖f(xn)− f(x)‖ → 0, n →∞.

Moreover, by (3.8), the points (xn, πF (xn)(f(x))) belong to the set

graphF ∩ (B(x, ϕ0(x))×B(πF (x)(f(x)), 2η(x) diam F (x))

for all n large enough. This permits (see hypothesis (iii)) to apply the same argu-
ment of the proof of Proposition 3.2, which yields ‖πF (xn)(f(x))−πF (x)(f(x))‖ →
0 as n →∞. Thus the continuity at the point x follows. If f(x) ∈ F (x), instead,
we immediately obtain

‖πF (xn)(f(xn))− f(x)‖ ≤ 2‖f(xn)− f(x)‖+ d(f(x), F (xn)) → 0, n →∞,

which concludes the proof. �
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Proposition 3.4. Let ϕ0 ≥ 0 be fixed, and let K ⊂ H be ϕ0-convex and such
that 4ϕ0diam K < 1. Then each continuous and compact mapping f : K → K

admits a fixed point.

Remarks. (1) Filippov’s counterexample (see [3, p. 68]) uses a continuous
multifunction from (−1, 1) into R2 whose values F (t) are, for t 6= 0, an arc of
ellipse with arbitrarily decreasing smaller axis and arbitrary increasing speed of
rotation as t approaches 0, while F (0) = [−1, 1]. It is clear that all the values do
satisfy the ϕ-convexity assumption, but ϕ is not u.s.c. with respect to t at t = 0.
The upper semicontinuity assumption prevents sudden “changes of shape” of
F (x).

(2) Example 2 in [3, p. 69] shows that the hyperbolicity assumption cannot –
in general – be dropped. In that example a continuous multivalued map F from
the unit ball of R2 into the (closed) subsets of the sphere {x ∈ R2 : ‖x‖ = 1}
is constructed, with no continuous selections nor fixed points. All the values
F (x) are 1/2-convex, but are allowed to be the whole circumference, which is
not hyperbolic.

(3) The idea of introducing a parameter estimating the nonconvexity of a
set, and to generalize Michael’s selection theorem to maps the nonconvexity of
whose values is controlled by this parameter, was already present in [16] (see also
the last generalization in [19]). However, the notion of paraconvexity introduced
there is not related directly to ϕ-convexity. For example, in R2, a set whose
shape is the symbol ∨ is paraconvex, but not ϕ-convex, while a set whose shape
is the symbol ∪ is ϕ-convex and hyperbolic, but not paraconvex.

(4) With a little more of effort, an alternative proof of Theorem 3.2 can be
given following the same scheme of Theorem 3.1. Indeed, it can be shown that
the family of curves γx(y1, y2;α) = πF (x)((1 − α)y1 + αy2), with y1, y2 ∈ F (x),
satisfies the requirements (a)–(c) of Proposition 3.1. Thus our technique provides
an actual generalization of Michael’s selection theorem.
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[11] B. A. Dubrovin, S. P. Novikov and A. T. Fomenko, Modern Geometry – Methods
and Applications, vol. 3, Springer, New York, 1984.

[12] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491.

[13] A. Fryszkowski, Continuous selections for a class of non-convex multivalued maps,

Studia Math. 76 (1983), 163–174.

[14] A. Marino and M. Tosques, Some variational problems with lack of convexity and

some partial differential inequalities, Methods of Nonconvex Analysis, Proceedings from

CIME, Varenna 1989 (A. Cellina, ed.), Springer, Berlin, 1990, pp. 58–83.

[15] E. Michael, Convex structures and continuous selections, Canad. J. Math. 11 (1959),

556–575.

[16] , Paraconvex sets, Math. Scand. 7 (1959), 372–376.

[17] R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of

distance functions, Trans. Amer. Math. Soc. 352 (2000), 5231–5249.
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P/7000/671 Évora, PORTUGAL

and

Institute of System Dynamics and Control Theory
Russian Academy of Sciences

ul. Lermontov 134 664033 Irkutsk, RUSSIA

E-mail address: goncha@uevora.pt

TMNA : Volume 18 – 2001 – No 1


