Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 16, 2000, 181–194

STABILITY OF PRINCIPAL EIGENVALUE OF THE SCHRÖDINGER TYPE PROBLEM FOR DIFFERENTIAL INCLUSIONS

Grzegorz Bartuzel — Andrzej Fryszkowski

ABSTRACT. Let $\Omega \subset \mathbb{R}^3$ be a bounded domain. Denote by $\lambda_1(m)$ the principal eigenvalue of the Schrödinger operator $L_m(u) = -\nabla^2 u - mu$ defined on $H_0^1(\Omega) \cap W^{2,1}(\Omega)$. We prove that $\lambda_1 : L^{3/2}(\Omega) \to \mathbb{R}$ is continuous.

Consider differential inclusion

(*)
$$\begin{cases} -\nabla^2 x \in \mathcal{F}(t, x), \\ x|_{\partial\Omega} = 0, \end{cases}$$

where t runs over bounded domain $\Omega \subset \mathbb{R}^n$ with sufficiently smooth boundary $\Gamma = \partial \Omega, \nabla^2$ is Laplace operator in Ω and \mathcal{F} is a Lipschitzean multifunction with a constant $m \in L^p(\Omega)$, i.e.

$$\operatorname{dist}_{H}(\mathcal{F}(t,x),\mathcal{F}(t,y)) \le m(t)|x-y|.$$

By a solution (*) we mean a function $x \in H^1_0(\Omega) \cap W^{2,1}(\Omega)$ such that

$$-\nabla^2 x \in \mathcal{F}(t, x(t))$$

for a.e. $t \in \Omega$. In the paper [2] we examined the case n = 1 i.e.

(**)
$$\begin{cases} -x'' \in \mathcal{F}(t,x) & \text{for } t \in [0;\pi], \\ x(0) = 0 = x(\pi). \end{cases}$$

2000 Mathematics Subject Classification. 35A15, 35R99.

Key words and phrases. Stability, principal eigenvalue, Schrödinger operator.

O2000Juliusz Schauder Center for Nonlinear Studies

We have proved that if m is sufficiently small then the set of solutions of (**) is an absolute retract. The main tool used in [2] were the spectral properties of the operator $L_m = -\nabla^2 - m$ extended to Sobolev space H_0^1 and in particular the stability property of the principal eigenvalue of the operator $L_m, m \in L^1$. Having this property we were able to renorm L^1 , in such a way that the solution set of (**) is the set fixed of points of certain multivalued contraction and then apply the B-C-F theorem [3], [6] on properties of the set of fixed points. Transfering of these methods to the case of \mathbb{R}^n it seems to be possible however it demands thorough study of spectral properties of the operator

$$L_m x = -\nabla^2 x - m \cdot x \quad \text{for } x \in H^1_0.$$

In particular, we need to examine the stability properties of the principal eigenvalue of the operator L_m in dependence on $m \in L^p$ with properly chosen p. We should point out that spectral properties of the operator L_m are well known, in case m is a sufficiently smooth function. The results, known in the literature, concerning the stability of the principal (or others) eigenvalue of the operator L_m seem not to cover our case $m \in L^p$. In this paper we deal with L_m for $t \in \Omega \subset \mathbb{R}^3$, where Ω is bounded domain and $m \in L^{3/2}$.

Let $\Omega \subset \mathbb{R}^3$ be a bounded domain with sufficiently smooth boundary Γ and $H^1_0(\Omega)$ be a Sobolev space i.e. a completion in the norm

$$|| u || = (||\nabla u||_2 + ||u||_2)^{1/2},$$

of the space $C_0^{\infty}(\Omega) = \{u : \Omega \to \mathbb{R} \mid \text{supp} u \subset \Omega\}$ of infinitely many times differentiable functions where $||u||_p = \left(\int_{\Omega} |u|^p\right)^{1/p}$, is a norm in L^p with obvious modification for $p = \infty$. Moreover,

$$W^{2,p} = \{ u \in L^p \mid \partial_i \partial_j u \in L^p, \ i, j = 1, 2, 3 \}$$

Then H_0^1 can be continuously embedded in L^6 and compactly embedded in L^2 . The latter means in particular that there exists a constant S such that

(1)
$$\left(\int_{\Omega} |u(t)|^6 dt\right)^{1/6} \le S \parallel u \parallel$$

for $u \in H_0^1$. Moreover, for $m \in L^{3/2}$ the space H_0^1 can be continuously embedded in $L^2(m) = \{u \mid u^2m \in L^1\}$, because from (1) and the Hölder inequality we have

(2)
$$\int_{\Omega} mu^{2} \leq \left(\int_{\Omega} m^{3/2}\right)^{2/3} \left(\int_{\Omega} |u^{2}|^{3}\right)^{1/3} \leq ||m||_{3/2}^{2/3} S^{2} ||u||^{2}.$$

Consider a quadratic form

(3)
$$D_m[u] = \int_{\Omega} (|\nabla u|^2 - mu^2) dt$$

and let

(4)
$$D_m[u,v] = \int_{\Omega} (\nabla u \nabla v - muv) \, dt$$

be the corresponding bilinear form. It generates the operator L_m by the formula $\langle L_m u, v \rangle$. The previous remarks mean, in particular, that the domain of L_m contains H_0^1 . Let

(5)
$$H[u] = \int_{\Omega} u^2(t) dt.$$

In case, when m = 0 it is known [5], that there exists a number

(6)
$$\lambda_1 = \lambda_1(\Omega) := \inf_{0 \neq u \in H_0^1} \frac{D_0[u]}{H[u]}$$

and it is the principal eigenvalue of the Laplace operator $L_0 u = -\nabla^2 u$, for $u \in H_0^1$. Therefore, there exists an eigenfunction $u_1 \in H_0^1$ such that

(7)
$$-\nabla^2 u_1 = \lambda_1(\Omega) u_1 \quad \text{for } u_1|_{\Gamma} = 0.$$

Moreover, there exists $\lambda_1(\Omega) < \lambda_2 \leq \lambda_3 \leq \ldots$, such that $\lim_{n\to\infty} \lambda_n = \infty$ and $\lambda_1, \ldots, \lambda_n$ are consequtive eigenvalues of L_0 . The relation (6) means, in particular, that for arbitrary $u \in H_0^1$ we have

(8)
$$\int_{\Omega} |\nabla u|^2 \ge \lambda_1(\Omega) \int_{\Omega} |u|^2$$

and

(9)
$$\int_{\Omega} |\nabla u_1|^2 = \lambda_1(\Omega) \int_{\Omega} |u_1|^2.$$

We shall show that the operator L_m posses analogous properties for $m \in L^{3/2}$. The most methods used are based on the monograph [5]. We begin with

PROPOSITION 1. Let $m_n \to m_0$ in $L^{3/2}$. Then for arbitrary $\varepsilon > 0$, there exists a constant $K_{\varepsilon} > 0$ such that

(10)
$$\int_{\Omega} m_n u^2(t) \, dt \le \varepsilon \int_{\Omega} |\nabla u|^2 \, dt + K_{\varepsilon} \int_{\Omega} |u(t)|^2 \, dt.$$

PROOF. Let S be a constant such that

(11)
$$\left\{ \int_{\Omega} u^{6}(t) dt \right\}^{1/6} \leq S \left\{ \int_{\Omega} [|\nabla u|^{2} + |u(t)|^{2}] dt \right\}^{1/2}.$$

Fix $\varepsilon > 0$ and pick N such that

$$||m_n - m_0||_{3/2} < \varepsilon/2S^2$$
 for $n > N$.

Observe that the function $\max_{0 \le i \le N} |m_i(t)| \in L^{3/2}$ and therefore

$$\lim_{K \to \infty} \mu\{t \mid \max_{0 \le i \le N} |m_i(t)| > K - \varepsilon\} = 0.$$

Applying the Vitali–Hahn–Saks Theorem we conclude that there exists a constant K_ε such that on the set

$$\Omega_{\varepsilon} = \{ t \mid \max_{0 \le i \le N} |m_i(t)| > K_{\varepsilon} - \varepsilon \}$$

is satisfied the following inequality

$$\int_{\Omega_{\varepsilon}} \left| m_n(t) \right|^{3/2} dt \le \frac{\varepsilon^{3/2}}{2\sqrt{2}S^3}$$

for $n = 0, 1, \dots$ To see that (10) holds we have to consider two cases.

(a) If $n \leq N$, then

$$\begin{split} \int_{\Omega} m_n u^2 &= \int_{\Omega \setminus \Omega_{\varepsilon}} m_n u^2 + \int_{\Omega_{\varepsilon}} m_n u^2 \\ &\leq (K_{\varepsilon} - \varepsilon) \int_{\Omega \setminus \Omega_{\varepsilon}} u^2 + \left\{ \int_{\Omega_{\varepsilon}} m_n^{3/2} \right\}^{2/3} \left\{ \int_{\Omega_{\varepsilon}} (u^2)^3 \right\}^{1/3} \\ &\leq (K_{\varepsilon} - \varepsilon) \int_{\Omega} u^2 + \frac{\varepsilon}{2S^2} S^2 \left\{ \int_{\Omega} [(u^2) + |\nabla u|^2] \right\} \\ &= \frac{\varepsilon}{2} \int_{\Omega} |\nabla u|^2 + \left(K_{\varepsilon} - \frac{\varepsilon}{2} \right) \int_{\Omega} |u|^2. \end{split}$$

(b) For n > N we have

$$\begin{split} \int_{\Omega} m_n u^2 &\leq \int_{\Omega} |m_n - m_0| u^2 + \int_{\Omega} m_0 u^2 \\ &\leq \left\{ \int_{\Omega} |m_n - m_0|^{3/2} \right\}^{2/3} \left\{ \int_{\Omega} |u^2|^3 \right\}^{1/3} + \int_{\Omega} m_0 u^2 \\ &\leq \|m_n - m_0\|_{3/2} \left\{ \int_{\Omega} u^6 \right\}^{2 \times 1/6} + \frac{\varepsilon}{2} \int_{\Omega} |\nabla u|^2 + (K_{\varepsilon} - \varepsilon) \int_{\Omega} u^2 \end{split}$$

and from (a) it can be estimated by

$$\leq \frac{\varepsilon}{2S^2} S^2 \int_{\Omega} |\nabla u|^2 + u^2 + \left(K_{\varepsilon} - \frac{\varepsilon}{2}\right) \int_{\Omega} u^2 = \varepsilon \int_{\Omega} |\nabla u|^2 + K_{\varepsilon} \int_{\Omega} u^2. \quad \Box$$

Proposition 2. Let $m_n \to m_0$ in $L^{3/2}$. Then there exists a constant K > 0 such that

(12)
$$\int_{\Omega} m_n u^2(t) dt \leq \frac{1}{2} \int_{\Omega} |\nabla u|^2 dt + K \int_{\Omega} |u(t)|^2 dt$$

for $n = 0, 1, ... and u \in H_0^1$,

(13)
$$||u||^2 \le 2D_{m_n}[u] + (2K+1)H[u];$$

(14)
$$\frac{D_{m_n}[u]}{H[u]} \ge \frac{1}{2}\lambda_1(\Omega) - K.$$

PROOF. To obtain (12) put in Proposition 1 $\varepsilon = 1/2$ and $K = K_{1/2}$. Observe that from (12) we have

$$\begin{split} \frac{1}{2} \parallel u \parallel^2 &= \frac{1}{2} \int_{\Omega} |\nabla u|^2 + \frac{1}{2} \int_{\Omega} u^2 = D_{m_n}[u] + \int_{\Omega} m_n u^2 - \frac{1}{2} \int_{\Omega} |\nabla u|^2 + \frac{1}{2} H[u] \\ &\leq D_{m_n}[u] + (K + \frac{1}{2}) H[u] \end{split}$$

and thus (13).

To prove (14) observe that from (12) it follows that

$$D_{m_n}[u] = \int_{\Omega} |\nabla u|^2 - \int_{\Omega} m_n |u|^2$$

$$\geq \int_{\Omega} |\nabla u|^2 - \frac{1}{2} \int_{\Omega} |\nabla u|^2 - K \int_{\Omega} |u|^2 = \frac{1}{2} D_0[u] - KH[u]$$

and so

$$D_m[u] \ge \left[\frac{1}{2}\lambda_1(\Omega) - K\right]H[u].$$

Now we divide the last inequility by H[u] > 0 and this yields (14).

COROLLARY 1. Let $m_n \to m_0$ in $L^{3/2}$. Then there exists constant K > 0 such that for all n = 0, 1, ...

$$\inf_{0 \neq u \in H_0^1} \frac{D_{m_n}[u]}{H[u]} \ge \frac{1}{2}\lambda_1(\Omega) - K > -\infty$$

COROLLARY 2. There exists a constant C such that for arbitrary $u \in H_0^1$ we have

$$\langle L_m u, u \rangle \ge \frac{1}{2} \int_{\Omega} |\nabla u|^2 - C \int_{\Omega} |u|^2.$$

COROLLARY 3. The operator L_m is continuous on H_0^1 since the quadratic form D_m is continuous.

PROOF. Let $u_k \to u_0$ in H_0^1 . Then from (12) we have

$$\int_{\Omega} m(t)(u_k(t) - u_0(t))^2 dt \to 0,$$

i.e. $u_k \to u_0$ in $L^2(m)$. Therefore $\int_{\Omega} m(t)(u_k(t))^2 dt \to \int_{\Omega} m(t)(u_0(t))^2 dt$, and hence

$$D_m[u_k] \to D_m[u_0].$$

Similarly $\langle L_m u, v \rangle = D_m[u, v]$ is a continuous bilinear form on H_0^1 .

PROPOSITION 3. Assume that there exists a function $u_1 \in H_0^1$ such that

$$\inf_{0 \neq u \in H_0^1} \frac{D_m[u]}{H[u]} = \frac{D_m[u_1]}{H[u_1]} = \lambda_1.$$

Then λ_1 and u_1 are, respectively, an eigenvalue and an eigenfunction of L_m , i.e. $-\nabla^2 u_1 \in L^{6/5}$ and

$$(-\nabla^2 - m)u_1 = \lambda_1 u_1$$

PROOF. For any $0 \neq u \in H_0^1$ denote by $F[u] = D_m[u]/H[u]$. Then

(15)
$$\inf_{0 \neq u \in H_0^1} F[u] = F[u_1] = \lambda_1.$$

Fix $\varphi \in H_0^1$. Then taking into account (15) we have, for arbitrary $\varepsilon \in \mathbb{R}$, an inequality

(16)
$$F[u_1 + \varepsilon \varphi] \ge F[u_1].$$

We shall show that there exists the variation $\frac{d}{d\varepsilon}F[u_1 + \varepsilon\varphi]|_{\varepsilon=0}$, it is represented by the Gateaux derivative and it vanishes. Denote by $h(\varepsilon) = F[u_1 + \varepsilon\varphi]$ and notice that h is a differentiable function, since it is a composition of an affine function and the quotient of continuous quadratic forms on H_0^1 (and therefore Frechet's differentiable). It assumes the minimum at t = 0, i.e. $h(0) \leq h(\varepsilon)$. Thus from Fermat's Lemma we get h'(0) = 0. One can easily check that

(17)
$$h'(0) = \{H[u_1]\}^{-1} 2\left\{ \int_{\Omega} (\nabla u_1 \nabla \varphi - m u_1 \varphi - \lambda_1 u_1 \varphi) \right\}.$$

Hence

$$D_m[u_1, \varphi] = \lambda_1 \int_{\Omega} u_1 \varphi \quad \text{for all } \varphi \in H^1_0,$$

i.e. $L_m u_1 = \lambda_1 u_1$ and $-\nabla^2 u_1 = \lambda_1 u_1 + m u_1 \in L^6 + L^{3/2} L^6 \subset L^{6/5}$. Indeed,

$$DF[u_1] \cdot \varphi = \{H[u_1]\}^{-1} D_m[u_1, \varphi] - \{H[u_1]\}^{-2} H[u_1, \varphi] D_m[u_1]$$
$$= \{H[u_1]\}^{-1} \left\{ D_m[u_1, \varphi] - \lambda_1 \int_{\Omega} u_1 \varphi \right\}$$

for $u_1 \neq 0$, and so

$$\frac{d}{d\varepsilon}h(\varepsilon)\Big|_{\varepsilon=0} = DF[u_1 + \varepsilon\varphi] \cdot \frac{d}{d\varepsilon}(u_1 + \varepsilon\varphi)\Big|_{\varepsilon=0}$$
$$= \{H[u_1]\}^{-1} \left\{ D_m[u_1,\varphi] - \lambda_1 \int_{\Omega} u_1\varphi \right\}.$$

PROPOSITION 4. Denote by $K = \{\varphi \in H_0^1 \mid H[\varphi] = 1\}$. Then there exists a function $u_1 \in K$ such that for every $u \in K$ the following inequality

$$D_m[u_1] \le D_m[u]$$

holds.

PROOF. Put $\lambda_1 = \inf_{u \in K} D_m[u]$. From Proposition 1 we can conclude that $D_m[u] \geq \lambda_1(\Omega)/2 - C$ for arbitrary $u \in K$. Hence

(18)
$$\lambda_1 \ge \lambda_1(\Omega)/2 - C > -\infty.$$

Consider a sequence $\{\varphi_k\} \subset K, k = 1, \dots$ such that

(19)
$$D_m[\varphi_k] \to \lambda_1 \quad \text{for } k \to \infty.$$

Since from (13) in Proposition 2 we have $\|\varphi_k\|^2 \leq 2D_m[\varphi_k] + (2C+1)$ then from (17) one can conclude that the sequence $\{\varphi_k\} \subset K$ is bounded in H_0^1 . Hence it relatively compact in $L^2(\Omega)$ and, passing to a subsequence, we may assume that $\varphi_k \to u_1$ in L^2 . The latter, in particular, means that

(20)
$$H[\varphi_k - u_1] \to 0 \quad \text{for } k \to \infty$$

We shall check that u_1 is a required function. Let us notice that

(21)
$$H\left[\frac{\varphi_k - \varphi_l}{2}\right] + H\left[\frac{\varphi_k + \varphi_l}{2}\right] = \frac{1}{2}H[\varphi_k] + \frac{1}{2}H[\varphi_l] = 1$$

and

(22)
$$D_m\left[\frac{\varphi_k - \varphi_l}{2}\right] + D_m\left[\frac{\varphi_k + \varphi_l}{2}\right] = \frac{1}{2}D_m[\varphi_k] + \frac{1}{2}D_m[\varphi_l]$$

From (21) and (20) we see that

(23)
$$H\left[\frac{\varphi_k - \varphi_l}{2}\right] \to 0 \quad \text{when } k, l \to \infty$$

and $H[(\varphi_k + \varphi_l)/2] \to 1$ as $k, l \to \infty$. From the definition of λ_1 one can easily see that for arbitrary k, l we have

$$D_m\left[\frac{\varphi_k+\varphi_l}{2}\right] \ge H\left[\frac{\varphi_k+\varphi_l}{2}\right]\lambda_1.$$

Thus, from (22), we have

$$\liminf_{k,l\to\infty} D_m\left[\frac{\varphi_k+\varphi_l}{2}\right] \ge \lambda_1.$$

Fix $\varepsilon > 0$. Then there exist n_0 such that for $k, l \ge n_0$ the following inequalities

$$\begin{split} H\left[\frac{\varphi_{k}-\varphi_{l}}{2}\right] &\leq \varepsilon, \\ D_{m}\left[\frac{\varphi_{k}+\varphi_{l}}{2}\right] &\geq \lambda_{1}-\varepsilon, \\ D_{m}[\varphi_{k}], D_{m}[\varphi_{l}] &\leq \lambda_{1}+\varepsilon. \end{split}$$

hold. Then from (23) and (22) we may see that

$$D_m\left[\frac{\varphi_k - \varphi_l}{2}\right] \le \lambda_1 + \varepsilon - \lambda_1 + \varepsilon = 2\varepsilon$$

But this, taking into account (13) in Proposition 1, means that

$$\left\| \varphi_k - \varphi_l \right\|^2 \le (5 + 4C)\varepsilon$$

Hence $\{\varphi_k\}$ is a sequence Cauchy in H_0^1 , so $\varphi_k \to u_1$ in H_0^1 and $u_1 \in H_0^1$. Moreover, from the continuity of D_m (Corollary 3) and (18) we see that $D_m[\varphi_k] \to D_m[u_1] = \lambda_1$.

Assume that functions $u_1, \ldots, u_{k-1} \in H_0^1$ are such that $H[u_j] = 1, j = 1, \ldots, k-1$ and for $\varphi \in H_0^1$

$$\int_{\Omega} (\nabla u_j \nabla \varphi - (m(t) + \lambda_j) u_j \varphi) \, dt = 0$$

Consider the space $L(k) = \text{span} \{u_1, \ldots, u_{k-1}\}^{\perp}$, i.e.

$$L(k) = \left\{ v \in H_0^1 \, \middle| \, \int_{\Omega} v(t) u_j(t) \, dt = 0, \ j = 1, \dots, k-1 \right\}.$$

PROPOSITION 5. Denote by K(k) the set $K(k) = \{\varphi \in L(k) \mid H[\varphi] = 1\}$. Then K(k) is closed in H_0^1 and there exists $u_k \in K(k)$ such that

$$\inf_{0 \neq u \in K(k)} D_m[u] = \lambda_k = D_m[u_k].$$

Moreover, every λ_k , u_k is, respectively, an eigenvalue and a corresponding eigenfunction of the operator L_m , i.e.

$$-\nabla^2 u_k - m u_k = \lambda_k u_k.$$

PROOF. The closedness of K(k) in H_0^1 follows from a fact that the convergence in H_0^1 implies the convergence in L^2 and L(k) is closed in the norm topology in L^2 . Let $\varphi_l \in K(k)$ be such a sequence that $D_m[\varphi_l] \rightarrow_{l \rightarrow \infty} \lambda_k$. Similarly as in Proposition 4 we may show that $\{\varphi_l\}$ contains a converging in H_0^1 sebsequence. With no loss of generality we may assume that

$$\varphi_l \to u_k \quad \text{for} \ l \to \infty$$

in H_0^1 . But $H[\varphi_l] = 1$. Then also $H[u_k] = 1$ and

$$D_m[\varphi_l] \xrightarrow[l \to \infty]{} D_m[u_k] = \lambda_k.$$

Analogously, as in Proposition 3, we have, for arbitrary $\varphi \in L(k)$,

(24)
$$\frac{dF}{d\varphi}[u_k] = \{H[u_k]\}^{-1} \left\{ \int_{\Omega} (\nabla u_k \nabla \varphi - m u_k \varphi - \lambda_k u_k \varphi) \, dt \right\} = 0$$

and thus, for $\varphi \in L(k)$,

(25)
$$\int_{\Omega} -\nabla^2 u_k \varphi = \int_{\Omega} (m + \lambda_k) u_k \varphi$$

The latter means that

$$-\nabla^2 u_k - m u_k - \lambda_k u_k \in L(k)^{\perp} \subset \operatorname{span} \{u_1, \dots, u_{k-1}\}.$$

Therefore there exist constants C_1, \ldots, C_{k-1} such that

(26)
$$L_m u_k - \lambda_k u_k = C_1 u_1 + \ldots + C_{k-1} u_{k-1}.$$

Multiplying both sides of (26) by $u_j \in M(k), j = 1, ..., k-1$ and then integrating we get

$$C_j = \int_{\Omega} (-\nabla^2 u_k - mu_k - \lambda_k u_k) u_j = \langle L_m u_j, u_k \rangle = 0, \quad j = 1, \dots, k-1.$$

Hence $C_1 = \dots = C_{k-1} = 0$ and $-\nabla^2 u_k - mu_k - \lambda_k u_k = 0.$

Now we shall show that the oprator L_m has infinitely many eigenvalues.

THEOREM 1. There exist an nondecreasing sequence of reals $\lambda_1 \leq \ldots \leq \lambda_k$ $\leq \ldots$ and a sequence of functions $u_1, \ldots, u_k, \ldots \in H_0^1$ such that $\lim_{k \to \infty} \lambda_k = \infty$ and for an arbitrary $\varphi \in H_0^1$ we have

(27)
$$\int_{\Omega} (\nabla u_k \nabla \varphi - m u_k \varphi - \lambda_k u_k \varphi) \, dt = 0,$$

(28)
$$\int_{\Omega} u_k u_l \, dt = 0 \quad \text{for } k \neq l,$$

(29)
$$\int_{\Omega} u_k^2 u_l \, dt = 1 \quad \text{for } k \ge 1,$$

(30)
$$\int_{\Omega} [\nabla u_k \nabla u_l - m u_k u_l] dt = 0 \quad \text{for } k \neq l$$

(31)
$$\int_{\Omega} [|\nabla u_k|^2 - mu_k^2] dt = \lambda_k \quad \text{for } k \ge 1,$$

PROOF. It follows from Proposition 4 that there exist u_1 , λ_1 such that for any $\varphi \in H_0^1$ we have the relations

$$\int_{\Omega} \{\nabla u_1 \nabla \varphi - m u_1 \varphi - \lambda_1 u_1 \varphi\} dt = 0,$$

G. BARTUZEL — A. FRYSZKOWSKI

$$H[u_1] = 1, \quad D_m[u_1] = \lambda_1 = \inf_{u \in K_1} \frac{D_m[u]}{H[u]}$$

Let $S_1 = \text{span} \{u_1\}$. Proposition 5 guarantees the existence of λ_2 and $u_2 \in M_2$ such that for every $\varphi \in S_1^{\perp}$

$$\int_{\Omega} \{\nabla u_2 \nabla \varphi - m u_2 \varphi - \lambda_2 u_2 \varphi\} dt = 0,$$

$$H[u_2] = 1, \quad D_m[u_2] = \lambda_2 = \inf_{u \in S_1^{\perp}} \frac{D_m[u]}{H[u]} \quad \text{and} \int_{\Omega} u_1(t) u_2(t) dt = 0.$$

Denote by $S_2 = \text{span} \{u_1, u_2\}$. Continuing inductively this procedure we have the existence of eigenvalues $\lambda_1 \leq \lambda_2 \leq \ldots$ and eigenfunctions of the operator L_m and they are orthonormal in L^2 .

We shall observe that $\lambda_k \to \infty$ for $k \to \infty$. Assume to a contrary that there is an A such that $\lambda_k \leq A$, for $k \geq 1$. Since $D_m[u_k] = \lambda_k$ then from Proposition 13 we would have

$$u_k \parallel \le \sqrt{2A + 2C + 1} < \infty$$

for every $k \in \mathbb{N}$. Hence $\{u_k\}$ would be a bounded in H_0^1 sequence, and therefore compact in L^2 . Passing to a subsequence we may require that $u_k \to u_0$ in L^2 and so

$$|u_k - u_l||_2 \to 0 \text{ as } k, l \to \infty.$$

But this is impossible since u_k and u_l are orthonormal in L^2 and

$$||u_k - u_l||_2^2 = ||u_k||_2^2 + ||u_l||_2^2 = 2 \neq 0 \text{ as } k, l \to \infty.$$

Thus $\lambda_k \to \infty$ for $k, l \to \infty$.

REMARK 1. It easy to observe that for $\{m_n\} \subset L^{\infty}$, n = 0, 1, ..., and $m_n \to m_0$ in L^{∞}

$$\lambda_1(m_n) \to \lambda_1(m_0).$$

PROOF. To see this let u_n be the first eigenfunction corresponding to the eigenvalue $\lambda_1(m_n)$ of L_{m_n} with $||u_n||_2 = 1$, n = 0, 1, ... Then, from Theorem 1, we have

$$\begin{aligned} \lambda_1(m_n) - \lambda_1(m_0) &\leq \frac{D_{m_n}[u_0]}{H[u_0]} - \lambda_1(m_0) = \frac{D_{m_n}[u_0] - \lambda_1(m_0)H[u_0]}{H[u_0]} \\ &= \frac{D_{m_n}[u_0] - D_{m_0}[u_0]}{H[u_0]} = \int_{\Omega} (m_n - m_0)u_0^2 dt \\ &\leq \|m_n - m_0\|_{\infty} \to 0 \end{aligned}$$

for $n \to \infty$. Similarly

$$\lambda_1(m_0) - \lambda_1(m_n) \le ||m_0 - m_n||_{\infty} ||u_n||_2 \to 0 \quad \text{for } n \to \infty.$$

Much more difficult is the case when $\{m_n\} \subset L^{3/2}$, $n = 0, 1, \ldots$ and $m_n \to m_0$ in $L^{3/2}$. The previous way of reasoning demands the boundedness of norms

 $\{||u_n||\}$. Indeed, let u_n be the first eigenfunction corresponding to the first eigenvalue $\lambda_1(m_n)$ of L_{m_n} , $n = 0, 1, \ldots$ Then, from Theorem 1, we conclude that

$$\begin{aligned} |\lambda_1(m_n) - \lambda_1(m_0)| &\leq \sup\left\{\frac{D_{m_n}[u_0] - \lambda_1(m_0)H[u_0]}{H[u_0]}, \frac{D_{m_0}[u_m] - \lambda_1(m_n)H[u_m]}{H[u_m]}\right\} \\ &= \sup\left\{\int_{\Omega} (m_n - m_0)u_0^2 dt, \int_{\Omega} (m_n - m_0)u_n^2 dt\right\} \\ &\leq \sup\{\|m_n - m_0\|_{3/2}\|u_0\|_6, \|m_0 - m_n\|_{3/2}\|u_n\|_6\}. \end{aligned}$$

So boundedness of the $\{ \parallel u_n \parallel \}$ is needed.

From Proposition 1, see also Corollary 1, it follows that if $m_n \to m_0$ in $L^{3/2}$ then there exists a constant C_0 such that for $n = 0, 1, \ldots$ we have

$$\lambda_1(m_n) \ge C_0,$$

and, for every $0 \neq u \in H_0^1$,

$$D_{m_n}[u] = \int_{\Omega} (|\nabla u|^2 - m_n u^2) \, dt \ge C_0 H[u].$$

It means that for all $0 \neq u \in H_0^1$ and for all $1 > \varepsilon > 0$

$$\int_{\Omega} (|\nabla u|^2 - (m_n + C_0 - \varepsilon)u^2) \, dt \ge \varepsilon \int_{\Omega} u^2 \, dt$$

and equivalently

$$\int_{\Omega} \left((1+\varepsilon) |\nabla u|^2 - (m_n + C_0 - \varepsilon) u^2 \right) dt \ge \varepsilon \int_{\Omega} \left(u^2 + |\nabla u|^2 \right) dt$$

or

(32)
$$\int_{\Omega} \left(|\nabla u|^2 - \left(\frac{m_n + C_0 - \varepsilon}{1 + \varepsilon} \right) u^2 \right) dt \ge \frac{\varepsilon}{1 + \varepsilon} \| u \|^2.$$

Denote by

$$p_{n,\varepsilon} = \frac{m_n + C_0 - \varepsilon}{1 + \varepsilon} \in L^{3/2}$$

and by

$$D_{n,\varepsilon}[u,v] = \int_{\Omega} (\nabla u \nabla v - p_{n,\varepsilon}) uv \, dt$$

The inequality (32) means that for every $u \in H_0^1$ we have

(33)
$$D_{n,\varepsilon}[u,u] \ge \frac{\varepsilon}{1+\varepsilon} \parallel u \parallel^2,$$

hence the form $D_{n,\varepsilon}$ is positively defined. Moreover, $D_{n,\varepsilon}$ are continuous bilinear forms on $H_0^1 \times H_0^1$. Therefore, from the Lax–Milgram theorem, for every $x^* \in H^{-1}$ and $n = 0, 1, \ldots$ there exists a unique $u_n \in H_0^1$ such that

(34)
$$D_{n,\varepsilon}[u_n, v] = \langle x^*, v \rangle$$

for all $v \in H_0^1$. Notice that since H_0^1 embedds in L^6 thus $L^{6/5}$ embedds in H^{-1} . To see this let us consider, for $f \in L^{6/5}$, a functional x^* by $\langle x^*, v \rangle =$ $\int_{\Omega} f(t)v(t) dt$. Observe that for every $v \in H_0^1$, the following inequalities

$$\langle x^{\star}, v \rangle | \le ||f||_{6/5} ||v||_6 \le S ||f||_{6/5} ||v||_6$$

hold. The latter implies that x^* is continuous on H_0^1 . Hence, from (34) one can conclude that for every $f \in L^{6/5}$ and n = 0, 1, ... there exists unique $u_n \in H^1_0$ such that

$$(35) D_{n,\varepsilon}[u_n,v] = \langle f,v \rangle$$

for all $v \in H_0^1$. Moreover, from (32) and (35),

$$|| u_n ||^2 \le \frac{1+\varepsilon}{\varepsilon} D_{n,\varepsilon}[u_n, u_n] = \frac{1+\varepsilon}{\varepsilon} \langle f, u_n \rangle \le \frac{1+\varepsilon}{\varepsilon} || f ||_{6/5} S || u_n ||.$$

So we get

(36)
$$|| u_n || \le \frac{1+\varepsilon}{\varepsilon} S ||f||_{6/5}.$$

Denote by $T_n: L^{6/5} \to H^1_0 \hookrightarrow L^6$ the mapping $T_n f = u_n$, such that for all $v \in H_0^1$ we have

$$D_{n,\varepsilon}[T_n f, v] = \langle f, v \rangle.$$

Obviously all T_n 's are linear and inequality (36) means that

$$|| T_n || \le (1+\varepsilon)S/\varepsilon, \quad n = 0, 1, \dots$$

Thus operators $T_n: L^{6/5} \to L^6$ are uniformly bounded.

We shall show the following

LEMMA 1. There exists a constant C such that

$$||T_n f - T_0 f|| \le C ||m_n - m_0||_{3/2} ||f||_{6/5}$$

for every $f \in L^{6/5}$ and $n = 1, \ldots$

PROOF. Let us recall that from (35) for all n = 0, 1, ... it follows that

$$\int_{\Omega} (\nabla (u_n - u_0) \nabla v - (p_{n,\varepsilon} u_n - p_{0,\varepsilon} u_0) v) dt = 0.$$

Equivalently

$$\int_{\Omega} (\nabla (u_n - u_0) \nabla v - (1 + \varepsilon)^{-1} [(m_n - m_0)u_n + (m_0 + c_0 - \varepsilon)(u_n - u_0)]v) dt = 0$$
or

$$D_{0,\varepsilon}[u_n,v] = \langle (1+\varepsilon)^{-1}(m_n - m_0)u_n,v \rangle$$

i.e.

$$u_n - u_0 = T_0((1 + \varepsilon)^{-1}(m_n - m_0)u_n).$$

From (36) we conclude that

$$\| u_n - u_0 \| \leq \frac{1 + \varepsilon}{\varepsilon} S \| (1 + \varepsilon)^{-1} (m_n - m_0) u_n \|_{6/5} \leq \frac{1}{\varepsilon} S \| m_n - m_0 \|_{3/2} \| u_n \|_6 \leq \frac{1 + \varepsilon}{\varepsilon^2} S^3 \| m_n - m_0 \|_{3/2} \| f \|_{6/5}.$$

Finally

$$\|T_n f - T_0 f\| \le C \|m_n - m_0\|_{3/2} \|f\|_{6/5},$$

where $C = (1 + \varepsilon)S^3/\varepsilon^2$.

From Lemma 1 it follows that

$$|| T_n - T_0 || \le C || m_n - m_0 ||_{3/2}$$

and therefore the operators $T_n: L^{6/5} \to H^1_0$ tend to $T_0: L^{6/5} \to H^1_0$. Moreover, the operators

$$T_n|_{L^2}: L^2 \to L^2$$

are compact. Thus from Lemma VII.6.3 in [4] it follows that

 $\sigma(T_n) \to \sigma(T_0)$

in the Hausdorff metric. But $\sigma(T_n) \subset [0,\infty)$ and $\sup \sigma(T_n)$ tend to

$$\left(\lambda_1\left(\frac{m_n}{1+\varepsilon}\right) - \frac{C_0 - \varepsilon}{1+\varepsilon}\right)^{-1}.$$

Thus $\lambda_1(m_n/(1+\varepsilon))$ tends to $\lambda_1(m_0/(1+\varepsilon))$ for every $0 < \varepsilon < 1$. Therefore, we have proved the following:

THEOREM 2. Let $\{m_n\} \subset L^{3/2}$, n = 0, 1, ... and $m_n \to m_0$ in $L^{3/2}$. Then $\lambda_1(m_n) \to \lambda_1(m_0)$.

References

- G. BARTUZEL AND A. FRYSZKOWSKI, On existence of solutions for inclusions ∇²u ∈ F(x, ∇u), Proc. of the Fourth Conference on Numerical Treatment of Ordinary Differential Equations (R. März, ed.), Sektion Mathematik der Humboldt Universität zu Berlin, Berlin, 1984, pp. 1–7.
- [2] _____, A topological property of the solution set to the Schrödinger differential inclusions, Demonstratio Math. 25 (1995), 411–433.
- [3] A. BRESSAN AND G. COLOMBO, Extensions and selections of maps with decomposable values, Studia Math. 90 (1986), 163–174.
- [4] N. DUNFORD AND J. T. SCHWARTZ, Linear Operators, Part I, Wiley, New York, 1958.
- [5] Y. EGOROV AND V. KONDRATIEV, On Spectral Theory of Elliptic Operators. Operator Theory, Advances and Applications, vol. 89, Birkhäuser, Basel, Boston, Berlin, 1996.
- [6] A. FRYSZKOWSKI, Continuous selections for a class of nonconvex multivalued maps, Studia Math. 76 (1983), 163–174.

G. BARTUZEL — A. FRYSZKOWSKI

[7] K. KURATOWSKI AND C. RYLL-NARDZEWSKI, A general theorem on selectors, Bull. Acad. Polon. Sci. 13 (1965), 397–403.

Manuscript received January 18, 2000

GRZEGORZ BARTUZEL AND ANDRZEJ FRYSZKOWSKI Warsaw University of Technology, 1 Plac Politechniki 00-661 Waszawa, POLAND

 $E\text{-}mail\ address:\ grgb@mini.pw.edu.pl,\ fryszko@mini.pw.edu.pl$

TMNA : Volume 16 - 2000 - N° 1