STABILITY OF PRINCIPAL EIGENVALUE OF THE SCHRÖDINGER TYPE PROBLEM FOR DIFFERENTIAL INCLUSIONS

Grzegorz Bartuzel - Andrzej Fryszkowski

Abstract

Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain. Denote by $\lambda_{1}(m)$ the principal eigenvalue of the Schrödinger operator $L_{m}(u)=-\nabla^{2} u-m u$ defined on $H_{0}^{1}(\Omega) \cap W^{2,1}(\Omega)$. We prove that $\lambda_{1}: L^{3 / 2}(\Omega) \rightarrow \mathbb{R}$ is continuous.

Consider differential inclusion
(*)

$$
\left\{\begin{array}{l}
-\nabla^{2} x \in \mathcal{F}(t, x), \\
\left.x\right|_{\partial \Omega}=0
\end{array}\right.
$$

where t runs over bounded domain $\Omega \subset \mathbb{R}^{n}$ with sufficiently smooth boundary $\Gamma=\partial \Omega, \nabla^{2}$ is Laplace operator in Ω and \mathcal{F} is a Lipschitzean multifunction with a constant $m \in L^{p}(\Omega)$, i.e.

$$
\operatorname{dist}_{H}(\mathcal{F}(t, x), \mathcal{F}(t, y)) \leq m(t)|x-y|
$$

By a solution (*) we mean a function $x \in H_{0}^{1}(\Omega) \cap W^{2,1}(\Omega)$ such that

$$
-\nabla^{2} x \in \mathcal{F}(t, x(t))
$$

for a.e. $t \in \Omega$. In the paper [2] we examined the case $n=1$ i.e.

$$
\left\{\begin{array}{l}
-x^{\prime \prime} \in \mathcal{F}(t, x) \quad \text { for } t \in[0 ; \pi] \tag{**}\\
x(0)=0=x(\pi) .
\end{array}\right.
$$

2000 Mathematics Subject Classification. 35A15, 35R99.
Key words and phrases. Stability, principal eigenvalue, Schrödinger operator.

We have proved that if m is sufficiently small then the set of solutions of $(* *)$ is an absolute retract. The main tool used in [2] were the spectral properties of the operator $L_{m}=-\nabla^{2}-m$ extended to Sobolev space H_{0}^{1} and in particular the stability property of the principal eigenvalue of the operator $L_{m}, m \in L^{1}$. Having this property we were able to renorm L^{1}, in such a way that the solution set of $(* *)$ is the set fixed of points of certain multivalued contraction and then apply the B-C-F theorem [3], [6] on properties of the set of fixed points. Transfering of these methods to the case of \mathbb{R}^{n} it seems to be possible however it demands thorough study of spectral properties of the operator

$$
L_{m} x=-\nabla^{2} x-m \cdot x \quad \text { for } x \in H_{0}^{1}
$$

In particular, we need to examine the stability properties of the principal eigenvalue of the operator L_{m} in dependence on $m \in L^{p}$ with properly chosen p. We should point out that spectral properties of the operator L_{m} are well known, in case m is a sufficiently smooth function. The results, known in the literature, concerning the stability of the principal (or others) eigenvalue of the operator L_{m} seem not to cover our case $m \in L^{p}$. In this paper we deal with L_{m} for $t \in \Omega \subset \mathbb{R}^{3}$, where Ω is bounded domain and $m \in L^{3 / 2}$.

Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with sufficiently smooth boundary Γ and $H_{0}^{1}(\Omega)$ be a Sobolev space i.e. a completion in the norm

$$
\|u\|=\left(\|\nabla u\|_{2}+\|u\|_{2}\right)^{1 / 2}
$$

of the space $C_{0}^{\infty}(\Omega)=\{u: \Omega \rightarrow \mathbb{R} \mid \operatorname{supp} u \subset \Omega\}$ of infinitely many times differentiable functions where $\|u\|_{p}=\left(\int_{\Omega}|u|^{p}\right)^{1 / p}$, is a norm in L^{p} with obvious modification for $p=\infty$. Moreover,

$$
W^{2, p}=\left\{u \in L^{p} \mid \partial_{i} \partial_{j} u \in L^{p}, i, j=1,2,3\right\}
$$

Then H_{0}^{1} can be continuously embedded in L^{6} and compactly embedded in L^{2}. The latter means in particular that there exists a constant S such that

$$
\begin{equation*}
\left(\int_{\Omega}|u(t)|^{6} d t\right)^{1 / 6} \leq S\|u\| \tag{1}
\end{equation*}
$$

for $u \in H_{0}^{1}$. Moreover, for $m \in L^{3 / 2}$ the space H_{0}^{1} can be continuously embedded in $L^{2}(m)=\left\{u \mid u^{2} m \in L^{1}\right\}$, because from (1) and the Hölder inequality we have

$$
\begin{equation*}
\int_{\Omega} m u^{2} \leq\left(\int_{\Omega} m^{3 / 2}\right)^{2 / 3}\left(\int_{\Omega}\left|u^{2}\right|^{3}\right)^{1 / 3} \leq\|m\|_{3 / 2}^{2 / 3} S^{2}\|u\|^{2} \tag{2}
\end{equation*}
$$

Consider a quadratic form

$$
\begin{equation*}
D_{m}[u]=\int_{\Omega}\left(|\nabla u|^{2}-m u^{2}\right) d t \tag{3}
\end{equation*}
$$

and let

$$
\begin{equation*}
D_{m}[u, v]=\int_{\Omega}(\nabla u \nabla v-m u v) d t \tag{4}
\end{equation*}
$$

be the corresponding bilinear form. It generates the operator L_{m} by the formula $\left\langle L_{m} u, v\right\rangle$. The previous remarks mean, in particular, that the domain of L_{m} contains H_{0}^{1}. Let

$$
\begin{equation*}
H[u]=\int_{\Omega} u^{2}(t) d t \tag{5}
\end{equation*}
$$

In case, when $m=0$ it is known [5], that there exists a number

$$
\begin{equation*}
\lambda_{1}=\lambda_{1}(\Omega):=\inf _{0 \neq u \in H_{0}^{1}} \frac{D_{0}[u]}{H[u]} \tag{6}
\end{equation*}
$$

and it is the principal eigenvalue of the Laplace operator $L_{0} u=-\nabla^{2} u$, for $u \in H_{0}^{1}$. Therefore, there exists an eigenfunction $u_{1} \in H_{0}^{1}$ such that

$$
\begin{equation*}
-\nabla^{2} u_{1}=\lambda_{1}(\Omega) u_{1} \quad \text { for }\left.u_{1}\right|_{\Gamma}=0 . \tag{7}
\end{equation*}
$$

Moreover, there exists $\lambda_{1}(\Omega)<\lambda_{2} \leq \lambda_{3} \leq \ldots$, such that $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$ and $\lambda_{1}, \ldots, \lambda_{n}$ are consequtive eigenvalues of L_{0}. The relation (6) means, in particular, that for arbitrary $u \in H_{0}^{1}$ we have

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{2} \geq \lambda_{1}(\Omega) \int_{\Omega}|u|^{2} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{1}\right|^{2}=\lambda_{1}(\Omega) \int_{\Omega}\left|u_{1}\right|^{2} . \tag{9}
\end{equation*}
$$

We shall show that the operator L_{m} posses analogous properties for $m \in L^{3 / 2}$. The most methods used are based on the monograph [5]. We begin with

Proposition 1. Let $m_{n} \rightarrow m_{0}$ in $L^{3 / 2}$. Then for arbitrary $\varepsilon>0$, there exists a constant $K_{\varepsilon}>0$ such that

$$
\begin{equation*}
\int_{\Omega} m_{n} u^{2}(t) d t \leq \varepsilon \int_{\Omega}|\nabla u|^{2} d t+K_{\varepsilon} \int_{\Omega}|u(t)|^{2} d t . \tag{10}
\end{equation*}
$$

Proof. Let S be a constant such that

$$
\begin{equation*}
\left\{\int_{\Omega} u^{6}(t) d t\right\}^{1 / 6} \leq S\left\{\int_{\Omega}\left[|\nabla u|^{2}+|u(t)|^{2}\right] d t\right\}^{1 / 2} \tag{11}
\end{equation*}
$$

Fix $\varepsilon>0$ and pick N such that

$$
\left\|m_{n}-m_{0}\right\|_{3 / 2}<\varepsilon / 2 S^{2} \quad \text { for } n>N .
$$

Observe that the function $\max _{0 \leq i \leq N}\left|m_{i}(t)\right| \in L^{3 / 2}$ and therefore

$$
\lim _{K \rightarrow \infty} \mu\left\{t\left|\max _{0 \leq i \leq N}\right| m_{i}(t) \mid>K-\varepsilon\right\}=0
$$

Applying the Vitali-Hahn-Saks Theorem we conclude that there exists a constant K_{ε} such that on the set

$$
\Omega_{\varepsilon}=\left\{t\left|\max _{0 \leq i \leq N}\right| m_{i}(t) \mid>K_{\varepsilon}-\varepsilon\right\}
$$

is satisfied the following inequality

$$
\int_{\Omega_{\varepsilon}}\left|m_{n}(t)\right|^{3 / 2} d t \leq \frac{\varepsilon^{3 / 2}}{2 \sqrt{2} S^{3}}
$$

for $n=0,1, \ldots$ To see that (10) holds we have to consider two cases.
(a) If $n \leq N$, then

$$
\begin{aligned}
\int_{\Omega} m_{n} u^{2} & =\int_{\Omega \backslash \Omega_{\varepsilon}} m_{n} u^{2}+\int_{\Omega_{\varepsilon}} m_{n} u^{2} \\
& \leq\left(K_{\varepsilon}-\varepsilon\right) \int_{\Omega \backslash \Omega_{\varepsilon}} u^{2}+\left\{\int_{\Omega_{\varepsilon}} m_{n}^{3 / 2}\right\}^{2 / 3}\left\{\int_{\Omega_{\varepsilon}}\left(u^{2}\right)^{3}\right\}^{1 / 3} \\
& \leq\left(K_{\varepsilon}-\varepsilon\right) \int_{\Omega} u^{2}+\frac{\varepsilon}{2 S^{2}} S^{2}\left\{\int_{\Omega}\left[\left(u^{2}\right)+|\nabla u|^{2}\right]\right\} \\
& =\frac{\varepsilon}{2} \int_{\Omega}|\nabla u|^{2}+\left(K_{\varepsilon}-\frac{\varepsilon}{2}\right) \int_{\Omega}|u|^{2}
\end{aligned}
$$

(b) For $n>N$ we have

$$
\begin{aligned}
\int_{\Omega} m_{n} u^{2} & \leq \int_{\Omega}\left|m_{n}-m_{0}\right| u^{2}+\int_{\Omega} m_{0} u^{2} \\
& \leq\left\{\int_{\Omega}\left|m_{n}-m_{0}\right|^{3 / 2}\right\}^{2 / 3}\left\{\int_{\Omega}\left|u^{2}\right|^{3}\right\}^{1 / 3}+\int_{\Omega} m_{0} u^{2} \\
& \leq\left\|m_{n}-m_{0}\right\|_{3 / 2}\left\{\int_{\Omega} u^{6}\right\}^{2 \times 1 / 6}+\frac{\varepsilon}{2} \int_{\Omega}|\nabla u|^{2}+\left(K_{\varepsilon}-\varepsilon\right) \int_{\Omega} u^{2}
\end{aligned}
$$

and from (a) it can be estimated by

$$
\leq \frac{\varepsilon}{2 S^{2}} S^{2} \int_{\Omega}|\nabla u|^{2}+u^{2}+\left(K_{\varepsilon}-\frac{\varepsilon}{2}\right) \int_{\Omega} u^{2}=\varepsilon \int_{\Omega}|\nabla u|^{2}+K_{\varepsilon} \int_{\Omega} u^{2}
$$

Proposition 2. Let $m_{n} \rightarrow m_{0}$ in $L^{3 / 2}$. Then there exists a constant $K>0$ such that

$$
\begin{equation*}
\int_{\Omega} m_{n} u^{2}(t) d t \leq \frac{1}{2} \int_{\Omega}|\nabla u|^{2} d t+K \int_{\Omega}|u(t)|^{2} d t \tag{12}
\end{equation*}
$$

for $n=0,1, \ldots$ and $u \in H_{0}^{1}$,

$$
\begin{gather*}
\|u\|^{2} \leq 2 D_{m_{n}}[u]+(2 K+1) H[u] \tag{13}\\
\frac{D_{m_{n}}[u]}{H[u]} \geq \frac{1}{2} \lambda_{1}(\Omega)-K .
\end{gather*}
$$

Proof. To obtain (12) put in Proposition $1 \varepsilon=1 / 2$ and $K=K_{1 / 2}$. Observe that from (12) we have

$$
\begin{aligned}
\frac{1}{2}\|u\|^{2} & =\frac{1}{2} \int_{\Omega}|\nabla u|^{2}+\frac{1}{2} \int_{\Omega} u^{2}=D_{m_{n}}[u]+\int_{\Omega} m_{n} u^{2}-\frac{1}{2} \int_{\Omega}|\nabla u|^{2}+\frac{1}{2} H[u] \\
& \leq D_{m_{n}}[u]+\left(K+\frac{1}{2}\right) H[u]
\end{aligned}
$$

and thus (13).
To prove (14) observe that from (12) it follows that

$$
\begin{aligned}
D_{m_{n}}[u] & =\int_{\Omega}|\nabla u|^{2}-\int_{\Omega} m_{n}|u|^{2} \\
& \geq \int_{\Omega}|\nabla u|^{2}-\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-K \int_{\Omega}|u|^{2}=\frac{1}{2} D_{0}[u]-K H[u]
\end{aligned}
$$

and so

$$
D_{m}[u] \geq\left[\frac{1}{2} \lambda_{1}(\Omega)-K\right] H[u] .
$$

Now we divide the last inequlity by $H[u]>0$ and this yields (14).
Corollary 1. Let $m_{n} \rightarrow m_{0}$ in $L^{3 / 2}$. Then there exists constant $K>0$ such that for all $n=0,1, \ldots$

$$
\inf _{0 \neq u \in H_{0}^{1}} \frac{D_{m_{n}}[u]}{H[u]} \geq \frac{1}{2} \lambda_{1}(\Omega)-K>-\infty
$$

Corollary 2. There exists a constant C such that for arbitrary $u \in H_{0}^{1}$ we have

$$
\left\langle L_{m} u, u\right\rangle \geq \frac{1}{2} \int_{\Omega}|\nabla u|^{2}-C \int_{\Omega}|u|^{2}
$$

Corollary 3. The operator L_{m} is continuous on H_{0}^{1} since the quadratic form D_{m} is continuous.

Proof. Let $u_{k} \rightarrow u_{0}$ in H_{0}^{1}. Then from (12) we have

$$
\int_{\Omega} m(t)\left(u_{k}(t)-u_{0}(t)\right)^{2} d t \rightarrow 0
$$

i.e. $u_{k} \rightarrow u_{0}$ in $L^{2}(m)$. Therefore $\int_{\Omega} m(t)\left(u_{k}(t)\right)^{2} d t \rightarrow \int_{\Omega} m(t)\left(u_{0}(t)\right)^{2} d t$, and hence

$$
D_{m}\left[u_{k}\right] \rightarrow D_{m}\left[u_{0}\right] .
$$

Similarly $\left\langle L_{m} u, v\right\rangle=D_{m}[u, v]$ is a continuous bilinear form on H_{0}^{1}.

Proposition 3. Assume that there exists a function $u_{1} \in H_{0}^{1}$ such that

$$
\inf _{0 \neq u \in H_{0}^{1}} \frac{D_{m}[u]}{H[u]}=\frac{D_{m}\left[u_{1}\right]}{H\left[u_{1}\right]}=\lambda_{1}
$$

Then λ_{1} and u_{1} are, respectively, an eigenvalue and an eigenfunction of L_{m}, i.e. $-\nabla^{2} u_{1} \in L^{6 / 5}$ and

$$
\left(-\nabla^{2}-m\right) u_{1}=\lambda_{1} u_{1}
$$

Proof. For any $0 \neq u \in H_{0}^{1}$ denote by $F[u]=D_{m}[u] / H[u]$. Then

$$
\begin{equation*}
\inf _{0 \neq u \in H_{0}^{1}} F[u]=F\left[u_{1}\right]=\lambda_{1} . \tag{15}
\end{equation*}
$$

Fix $\varphi \in H_{0}^{1}$. Then taking into account (15) we have, for arbitrary $\varepsilon \in \mathbb{R}$, an inequality

$$
\begin{equation*}
F\left[u_{1}+\varepsilon \varphi\right] \geq F\left[u_{1}\right] . \tag{16}
\end{equation*}
$$

We shall show that there exists the variation $\left.\frac{d}{d \varepsilon} F\left[u_{1}+\varepsilon \varphi\right]\right|_{\varepsilon=0}$, it is represented by the Gateaux derivative and it vanishes. Denote by $h(\varepsilon)=F\left[u_{1}+\varepsilon \varphi\right]$ and notice that h is a differentiable function, since it is a composition of an affine function and the quotient of continuous quadratic forms on H_{0}^{1} (and therefore Frechet's differentiable). It assumes the minimum at $t=0$, i.e. $h(0) \leq h(\varepsilon)$. Thus from Fermat's Lemma we get $h^{\prime}(0)=0$. One can easily check that

$$
\begin{equation*}
h^{\prime}(0)=\left\{H\left[u_{1}\right]\right\}^{-1} 2\left\{\int_{\Omega}\left(\nabla u_{1} \nabla \varphi-m u_{1} \varphi-\lambda_{1} u_{1} \varphi\right)\right\} . \tag{17}
\end{equation*}
$$

Hence

$$
D_{m}\left[u_{1}, \varphi\right]=\lambda_{1} \int_{\Omega} u_{1} \varphi \quad \text { for all } \varphi \in H_{0}^{1}
$$

i.e. $L_{m} u_{1}=\lambda_{1} u_{1}$ and $-\nabla^{2} u_{1}=\lambda_{1} u_{1}+m u_{1} \in L^{6}+L^{3 / 2} L^{6} \subset L^{6 / 5}$. Indeed,

$$
\begin{aligned}
D F\left[u_{1}\right] \cdot \varphi & =\left\{H\left[u_{1}\right]\right\}^{-1} D_{m}\left[u_{1}, \varphi\right]-\left\{H\left[u_{1}\right]\right\}^{-2} H\left[u_{1}, \varphi\right] D_{m}\left[u_{1}\right] \\
& =\left\{H\left[u_{1}\right]\right\}^{-1}\left\{D_{m}\left[u_{1}, \varphi\right]-\lambda_{1} \int_{\Omega} u_{1} \varphi\right\}
\end{aligned}
$$

for $u_{1} \neq 0$, and so

$$
\begin{aligned}
\left.\frac{d}{d \varepsilon} h(\varepsilon)\right|_{\varepsilon=0} & =\left.D F\left[u_{1}+\varepsilon \varphi\right] \cdot \frac{d}{d \varepsilon}\left(u_{1}+\varepsilon \varphi\right)\right|_{\varepsilon=0} \\
& =\left\{H\left[u_{1}\right]\right\}^{-1}\left\{D_{m}\left[u_{1}, \varphi\right]-\lambda_{1} \int_{\Omega} u_{1} \varphi\right\}
\end{aligned}
$$

Proposition 4. Denote by $K=\left\{\varphi \in H_{0}^{1} \mid H[\varphi]=1\right\}$. Then there exists a function $u_{1} \in K$ such that for every $u \in K$ the following inequality

$$
D_{m}\left[u_{1}\right] \leq D_{m}[u]
$$

holds.
Proof. Put $\lambda_{1}=\inf _{u \in K} D_{m}[u]$. From Proposition 1 we can conclude that $D_{m}[u] \geq \lambda_{1}(\Omega) / 2-C$ for arbitrary $u \in K$. Hence

$$
\begin{equation*}
\lambda_{1} \geq \lambda_{1}(\Omega) / 2-C>-\infty \tag{18}
\end{equation*}
$$

Consider a sequence $\left\{\varphi_{k}\right\} \subset K, k=1, \ldots$ such that

$$
\begin{equation*}
D_{m}\left[\varphi_{k}\right] \rightarrow \lambda_{1} \quad \text { for } k \rightarrow \infty \tag{19}
\end{equation*}
$$

Since from (13) in Proposition 2 we have $\left\|\varphi_{k}\right\|^{2} \leq 2 D_{m}\left[\varphi_{k}\right]+(2 C+1)$ then from (17) one can conclude that the sequence $\left\{\varphi_{k}\right\} \subset K$ is bounded in H_{0}^{1}. Hence it relatively compact in $L^{2}(\Omega)$ and, passing to a subsequence, we may assume that $\varphi_{k} \rightarrow u_{1}$ in L^{2}. The latter, in particular, means that

$$
\begin{equation*}
H\left[\varphi_{k}-u_{1}\right] \rightarrow 0 \quad \text { for } k \rightarrow \infty \tag{20}
\end{equation*}
$$

We shall check that u_{1} is a required function. Let us notice that

$$
\begin{equation*}
H\left[\frac{\varphi_{k}-\varphi_{l}}{2}\right]+H\left[\frac{\varphi_{k}+\varphi_{l}}{2}\right]=\frac{1}{2} H\left[\varphi_{k}\right]+\frac{1}{2} H\left[\varphi_{l}\right]=1 \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{m}\left[\frac{\varphi_{k}-\varphi_{l}}{2}\right]+D_{m}\left[\frac{\varphi_{k}+\varphi_{l}}{2}\right]=\frac{1}{2} D_{m}\left[\varphi_{k}\right]+\frac{1}{2} D_{m}\left[\varphi_{l}\right] \tag{22}
\end{equation*}
$$

From (21) and (20) we see that

$$
\begin{equation*}
H\left[\frac{\varphi_{k}-\varphi_{l}}{2}\right] \rightarrow 0 \quad \text { when } k, l \rightarrow \infty \tag{23}
\end{equation*}
$$

and $H\left[\left(\varphi_{k}+\varphi_{l}\right) / 2\right] \rightarrow 1$ as $k, l \rightarrow \infty$. From the definition of λ_{1} one can easily see that for arbitrary k, l we have

$$
D_{m}\left[\frac{\varphi_{k}+\varphi_{l}}{2}\right] \geq H\left[\frac{\varphi_{k}+\varphi_{l}}{2}\right] \lambda_{1}
$$

Thus, from (22), we have

$$
\liminf _{k, l \rightarrow \infty} D_{m}\left[\frac{\varphi_{k}+\varphi_{l}}{2}\right] \geq \lambda_{1}
$$

Fix $\varepsilon>0$. Then there exist n_{0} such that for $k, l \geq n_{0}$ the following inequalities

$$
\begin{aligned}
H\left[\frac{\varphi_{k}-\varphi_{l}}{2}\right] & \leq \varepsilon, \\
D_{m}\left[\frac{\varphi_{k}+\varphi_{l}}{2}\right] & \geq \lambda_{1}-\varepsilon, \\
D_{m}\left[\varphi_{k}\right], D_{m}\left[\varphi_{l}\right] & \leq \lambda_{1}+\varepsilon
\end{aligned}
$$

hold. Then from (23) and (22) we may see that

$$
D_{m}\left[\frac{\varphi_{k}-\varphi_{l}}{2}\right] \leq \lambda_{1}+\varepsilon-\lambda_{1}+\varepsilon=2 \varepsilon
$$

But this, taking into account (13) in Proposition 1, means that

$$
\left\|\varphi_{k}-\varphi_{l}\right\|^{2} \leq(5+4 C) \varepsilon
$$

Hence $\left\{\varphi_{k}\right\}$ is a sequence Cauchy in H_{0}^{1}, so $\varphi_{k} \rightarrow u_{1}$ in H_{0}^{1} and $u_{1} \in H_{0}^{1}$. Moreover, from the continuity of D_{m} (Corollary 3) and (18) we see that $D_{m}\left[\varphi_{k}\right] \rightarrow$ $D_{m}\left[u_{1}\right]=\lambda_{1}$.

Assume that functions $u_{1}, \ldots, u_{k-1} \in H_{0}^{1}$ are such that $H\left[u_{j}\right]=1, j=$ $1, \ldots, k-1$ and for $\varphi \in H_{0}^{1}$

$$
\int_{\Omega}\left(\nabla u_{j} \nabla \varphi-\left(m(t)+\lambda_{j}\right) u_{j} \varphi\right) d t=0
$$

Consider the space $L(k)=\operatorname{span}\left\{u_{1}, \ldots, u_{k-1}\right\}^{\perp}$, i.e.

$$
L(k)=\left\{v \in H_{0}^{1} \mid \int_{\Omega} v(t) u_{j}(t) d t=0, j=1, \ldots, k-1\right\} .
$$

Proposition 5. Denote by $K(k)$ the set $K(k)=\{\varphi \in L(k) \mid H[\varphi]=1\}$. Then $K(k)$ is closed in H_{0}^{1} and there exists $u_{k} \in K(k)$ such that

$$
\inf _{0 \neq u \in K(k)} D_{m}[u]=\lambda_{k}=D_{m}\left[u_{k}\right]
$$

Moreover, every λ_{k}, u_{k} is, respectively, an eigenvalue and a corresponding eigenfunction of the operator L_{m}, i.e.

$$
-\nabla^{2} u_{k}-m u_{k}=\lambda_{k} u_{k}
$$

Proof. The closedness of $K(k)$ in H_{0}^{1} follows from a fact that the convergence in H_{0}^{1} implies the convergence in L^{2} and $L(k)$ is closed in the norm topology in L^{2}. Let $\varphi_{l} \in K(k)$ be such a sequence that $D_{m}\left[\varphi_{l}\right] \rightarrow_{l \rightarrow \infty} \lambda_{k}$. Similarly as in Proposition 4 we may show that $\left\{\varphi_{l}\right\}$ contains a converging in H_{0}^{1} sebsequence. With no loss of generality we may assume that

$$
\varphi_{l} \rightarrow u_{k} \quad \text { for } \quad l \rightarrow \infty
$$

in H_{0}^{1}. But $H\left[\varphi_{l}\right]=1$. Then also $H\left[u_{k}\right]=1$ and

$$
D_{m}\left[\varphi_{l}\right] \underset{l \rightarrow \infty}{\longrightarrow} D_{m}\left[u_{k}\right]=\lambda_{k}
$$

Analogously, as in Proposition 3, we have, for arbitrary $\varphi \in L(k)$,

$$
\begin{equation*}
\frac{d F}{d \varphi}\left[u_{k}\right]=\left\{H\left[u_{k}\right]\right\}^{-1}\left\{\int_{\Omega}\left(\nabla u_{k} \nabla \varphi-m u_{k} \varphi-\lambda_{k} u_{k} \varphi\right) d t\right\}=0 \tag{24}
\end{equation*}
$$

and thus, for $\varphi \in L(k)$,

$$
\begin{equation*}
\int_{\Omega}-\nabla^{2} u_{k} \varphi=\int_{\Omega}\left(m+\lambda_{k}\right) u_{k} \varphi \tag{25}
\end{equation*}
$$

The latter means that

$$
-\nabla^{2} u_{k}-m u_{k}-\lambda_{k} u_{k} \in L(k)^{\perp} \subset \operatorname{span}\left\{u_{1}, \ldots, u_{k-1}\right\}
$$

Therefore there exist constants C_{1}, \ldots, C_{k-1} such that

$$
\begin{equation*}
L_{m} u_{k}-\lambda_{k} u_{k}=C_{1} u_{1}+\ldots+C_{k-1} u_{k-1} \tag{26}
\end{equation*}
$$

Multiplying both sides of (26) by $u_{j} \in M(k), j=1, \ldots, k-1$ and then integrating we get

$$
C_{j}=\int_{\Omega}\left(-\nabla^{2} u_{k}-m u_{k}-\lambda_{k} u_{k}\right) u_{j}=\left\langle L_{m} u_{j}, u_{k}\right\rangle=0, \quad j=1, \ldots, k-1
$$

Hence $C_{1}=\ldots=C_{k-1}=0$ and $-\nabla^{2} u_{k}-m u_{k}-\lambda_{k} u_{k}=0$.
Now we shall show that the oprator L_{m} has infinitely many eigenvalues.
Theorem 1. There exist an nondecreasing sequence of reals $\lambda_{1} \leq \ldots \leq \lambda_{k}$ $\leq \ldots$ and a sequence of functions $u_{1}, \ldots, u_{k}, \ldots \in H_{0}^{1}$ such that $\lim _{k \rightarrow \infty} \lambda_{k}=\infty$ and for an arbitrary $\varphi \in H_{0}^{1}$ we have

$$
\begin{equation*}
\int_{\Omega}\left(\nabla u_{k} \nabla \varphi-m u_{k} \varphi-\lambda_{k} u_{k} \varphi\right) d t=0 \tag{27}
\end{equation*}
$$

$$
\begin{align*}
& \int_{\Omega} u_{k} u_{l} d t=0 \quad \text { for } k \neq l \tag{28}\\
& \int_{\Omega} u_{k}^{2} u_{l} d t=1 \quad \text { for } k \geq 1 \tag{29}
\end{align*}
$$

$$
\begin{array}{r}
\int_{\Omega}\left[\nabla u_{k} \nabla u_{l}-m u_{k} u_{l}\right] d t=0 \quad \text { for } k \neq l \\
\int_{\Omega}\left[\left|\nabla u_{k}\right|^{2}-m u_{k}^{2}\right] d t=\lambda_{k} \quad \text { for } k \geq 1, \tag{31}
\end{array}
$$

Proof. It follows from Proposition 4 that there exist u_{1}, λ_{1} such that for any $\varphi \in H_{0}^{1}$ we have the relations

$$
\int_{\Omega}\left\{\nabla u_{1} \nabla \varphi-m u_{1} \varphi-\lambda_{1} u_{1} \varphi\right\} d t=0
$$

$$
H\left[u_{1}\right]=1, \quad D_{m}\left[u_{1}\right]=\lambda_{1}=\inf _{u \in K_{1}} \frac{D_{m}[u]}{H[u]}
$$

Let $S_{1}=\operatorname{span}\left\{u_{1}\right\}$. Proposition 5 guarantees the existence of λ_{2} and $u_{2} \in M_{2}$ such that for every $\varphi \in S_{1}^{\perp}$

$$
\begin{gathered}
\int_{\Omega}\left\{\nabla u_{2} \nabla \varphi-m u_{2} \varphi-\lambda_{2} u_{2} \varphi\right\} d t=0 \\
H\left[u_{2}\right]=1, \quad D_{m}\left[u_{2}\right]=\lambda_{2}=\inf _{u \in S_{1}^{\perp}} \frac{D_{m}[u]}{H[u]} \text { and } \int_{\Omega} u_{1}(t) u_{2}(t) d t=0 .
\end{gathered}
$$

Denote by $S_{2}=\operatorname{span}\left\{u_{1}, u_{2}\right\}$. Continuing inductively this procedure we have the existence of eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \ldots$ and eigenfunctions of the operator L_{m} and they are orthonormal in L^{2}.

We shall observe that $\lambda_{k} \rightarrow \infty$ for $k \rightarrow \infty$. Assume to a contrary that there is an A such that $\lambda_{k} \leq A$, for $k \geq 1$. Since $D_{m}\left[u_{k}\right]=\lambda_{k}$ then from Proposition 13 we would have

$$
\left\|u_{k}\right\| \leq \sqrt{2 A+2 C+1}<\infty
$$

for every $k \in \mathbb{N}$. Hence $\left\{u_{k}\right\}$ would be a bounded in H_{0}^{1} sequence, and therefore compact in L^{2}. Passing to a subsequence we may require that $u_{k} \rightarrow u_{0}$ in L^{2} and so

$$
\left\|u_{k}-u_{l}\right\|_{2} \rightarrow 0 \text { as } k, l \rightarrow \infty
$$

But this is impossible since u_{k} and u_{l} are ortonormal in L^{2} and

$$
\left\|u_{k}-u_{l}\right\|_{2}^{2}=\left\|u_{k}\right\|_{2}^{2}+\left\|u_{l}\right\|_{2}^{2}=2 \nrightarrow 0 \quad \text { as } \quad k, l \rightarrow \infty
$$

Thus $\lambda_{k} \rightarrow \infty$ for $k, l \rightarrow \infty$.
Remark 1. It easy to observe that for $\left\{m_{n}\right\} \subset L^{\infty}, n=0,1, \ldots$, and $m_{n} \rightarrow m_{0}$ in L^{∞}

$$
\lambda_{1}\left(m_{n}\right) \rightarrow \lambda_{1}\left(m_{0}\right)
$$

Proof. To see this let u_{n} be the first eigenfunction corresponding to the eigenvalue $\lambda_{1}\left(m_{n}\right)$ of $L_{m_{n}}$ with $\left\|u_{n}\right\|_{2}=1, n=0,1, \ldots$ Then, from Theorem 1, we have

$$
\begin{aligned}
\lambda_{1}\left(m_{n}\right)-\lambda_{1}\left(m_{0}\right) & \leq \frac{D_{m_{n}}\left[u_{0}\right]}{H\left[u_{0}\right]}-\lambda_{1}\left(m_{0}\right)=\frac{D_{m_{n}}\left[u_{0}\right]-\lambda_{1}\left(m_{0}\right) H\left[u_{0}\right]}{H\left[u_{0}\right]} \\
& =\frac{D_{m_{n}}\left[u_{0}\right]-D_{m_{0}}\left[u_{0}\right]}{H\left[u_{0}\right]}=\int_{\Omega}\left(m_{n}-m_{0}\right) u_{0}^{2} d t \\
& \leq\left\|m_{n}-m_{0}\right\|_{\infty} \rightarrow 0
\end{aligned}
$$

for $n \rightarrow \infty$. Similarly

$$
\lambda_{1}\left(m_{0}\right)-\lambda_{1}\left(m_{n}\right) \leq\left\|m_{0}-m_{n}\right\|_{\infty}\left\|u_{n}\right\|_{2} \rightarrow 0 \quad \text { for } n \rightarrow \infty
$$

Much more difficult is the case when $\left\{m_{n}\right\} \subset L^{3 / 2}, n=0,1, \ldots$ and $m_{n} \rightarrow$ m_{0} in $L^{3 / 2}$. The previous way of reasoning demands the boundedness of norms
$\left\{\left\|u_{n}\right\|\right\}$. Indeed, let u_{n} be the first eigenfunction corresponding to the first eigenvalue $\lambda_{1}\left(m_{n}\right)$ of $L_{m_{n}}, n=0,1, \ldots$ Then, from Theorem 1 , we conclude that

$$
\begin{aligned}
\left|\lambda_{1}\left(m_{n}\right)-\lambda_{1}\left(m_{0}\right)\right| & \leq \sup \left\{\frac{D_{m_{n}}\left[u_{0}\right]-\lambda_{1}\left(m_{0}\right) H\left[u_{0}\right]}{H\left[u_{0}\right]}, \frac{D_{m_{0}}\left[u_{m}\right]-\lambda_{1}\left(m_{n}\right) H\left[u_{m}\right]}{H\left[u_{m}\right]}\right\} \\
& =\sup \left\{\int_{\Omega}\left(m_{n}-m_{0}\right) u_{0}^{2} d t, \int_{\Omega}\left(m_{n}-m_{0}\right) u_{n}^{2} d t\right\} \\
& \leq \sup \left\{\left\|m_{n}-m_{0}\right\|_{3 / 2}\left\|u_{0}\right\|_{6},\left\|m_{0}-m_{n}\right\|_{3 / 2}\left\|u_{n}\right\|_{6}\right\} .
\end{aligned}
$$

So boundedness of the $\left\{\left\|u_{n}\right\|\right\}$ is needed.
From Proposition 1, see also Corollary 1, it follows that if $m_{n} \rightarrow m_{0}$ in $L^{3 / 2}$ then there exists a constant C_{0} such that for $n=0,1, \ldots$ we have

$$
\lambda_{1}\left(m_{n}\right) \geq C_{0}
$$

and, for every $0 \neq u \in H_{0}^{1}$,

$$
D_{m_{n}}[u]=\int_{\Omega}\left(|\nabla u|^{2}-m_{n} u^{2}\right) d t \geq C_{0} H[u] .
$$

It means that for all $0 \neq u \in H_{0}^{1}$ and for all $1>\varepsilon>0$

$$
\int_{\Omega}\left(|\nabla u|^{2}-\left(m_{n}+C_{0}-\varepsilon\right) u^{2}\right) d t \geq \varepsilon \int_{\Omega} u^{2} d t
$$

and equivalently

$$
\int_{\Omega}\left((1+\varepsilon)|\nabla u|^{2}-\left(m_{n}+C_{0}-\varepsilon\right) u^{2}\right) d t \geq \varepsilon \int_{\Omega}\left(u^{2}+|\nabla u|^{2}\right) d t
$$

or

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla u|^{2}-\left(\frac{m_{n}+C_{0}-\varepsilon}{1+\varepsilon}\right) u^{2}\right) d t \geq \frac{\varepsilon}{1+\varepsilon}\|u\|^{2} \tag{32}
\end{equation*}
$$

Denote by

$$
p_{n, \varepsilon}=\frac{m_{n}+C_{0}-\varepsilon}{1+\varepsilon} \in L^{3 / 2}
$$

and by

$$
D_{n, \varepsilon}[u, v]=\int_{\Omega}\left(\nabla u \nabla v-p_{n, \varepsilon}\right) u v d t
$$

The inequality (32) means that for every $u \in H_{0}^{1}$ we have

$$
\begin{equation*}
D_{n, \varepsilon}[u, u] \geq \frac{\varepsilon}{1+\varepsilon}\|u\|^{2} \tag{33}
\end{equation*}
$$

hence the form $D_{n, \varepsilon}$ is positively defined. Moreover, $D_{n, \varepsilon}$ are continuous bilinear forms on $H_{0}^{1} \times H_{0}^{1}$. Therefore, from the Lax-Milgram theorem, for every $x^{\star} \in$ H^{-1} and $n=0,1, \ldots$ there exists a unique $u_{n} \in H_{0}^{1}$ such that

$$
\begin{equation*}
D_{n, \varepsilon}\left[u_{n}, v\right]=\left\langle x^{\star}, v\right\rangle \tag{34}
\end{equation*}
$$

for all $v \in H_{0}^{1}$. Notice that since H_{0}^{1} embedds in L^{6} thus $L^{6 / 5}$ embedds in H^{-1}. To see this let us consider, for $f \in L^{6 / 5}$, a functional x^{\star} by $\left\langle x^{\star}, v\right\rangle=$ $\int_{\Omega} f(t) v(t) d t$. Observe that for every $v \in H_{0}^{1}$, the following inequalities

$$
\left|\left\langle x^{\star}, v\right\rangle\right| \leq\|f\|_{6 / 5}\|v\|_{6} \leq S\|f\|_{6 / 5}\|v\|
$$

hold. The latter implies that x^{\star} is continuous on H_{0}^{1}. Hence, from (34) one can conclude that for every $f \in L^{6 / 5}$ and $n=0,1, \ldots$ there exists unique $u_{n} \in H_{0}^{1}$ such that

$$
\begin{equation*}
D_{n, \varepsilon}\left[u_{n}, v\right]=\langle f, v\rangle \tag{35}
\end{equation*}
$$

for all $v \in H_{0}^{1}$. Moreover, from (32) and (35),

$$
\left\|u_{n}\right\|^{2} \leq \frac{1+\varepsilon}{\varepsilon} D_{n, \varepsilon}\left[u_{n}, u_{n}\right]=\frac{1+\varepsilon}{\varepsilon}\left\langle f, u_{n}\right\rangle \leq \frac{1+\varepsilon}{\varepsilon}\|f\|_{6 / 5} S\left\|u_{n}\right\| .
$$

So we get

$$
\begin{equation*}
\left\|u_{n}\right\| \leq \frac{1+\varepsilon}{\varepsilon} S\|f\|_{6 / 5} \tag{36}
\end{equation*}
$$

Denote by $T_{n}: L^{6 / 5} \rightarrow H_{0}^{1} \hookrightarrow L^{6}$ the mapping $T_{n} f=u_{n}$, such that for all $v \in H_{0}^{1}$ we have

$$
D_{n, \varepsilon}\left[T_{n} f, v\right]=\langle f, v\rangle
$$

Obviously all T_{n} 's are linear and inequality (36) means that

$$
\left\|T_{n}\right\| \leq(1+\varepsilon) S / \varepsilon, \quad n=0,1, \ldots
$$

Thus operators $T_{n}: L^{6 / 5} \rightarrow L^{6}$ are uniformly bounded.
We shall show the following
Lemma 1. There exists a constant C such that

$$
\left\|T_{n} f-T_{0} f\right\| \leq C\left\|m_{n}-m_{0}\right\|_{3 / 2}\|f\|_{6 / 5}
$$

for every $f \in L^{6 / 5}$ and $n=1, \ldots$
Proof. Let us recall that from (35) for all $n=0,1, \ldots$ it follows that

$$
\int_{\Omega}\left(\nabla\left(u_{n}-u_{0}\right) \nabla v-\left(p_{n, \varepsilon} u_{n}-p_{0, \varepsilon} u_{0}\right) v\right) d t=0
$$

Equivalently
$\int_{\Omega}\left(\nabla\left(u_{n}-u_{0}\right) \nabla v-(1+\varepsilon)^{-1}\left[\left(m_{n}-m_{0}\right) u_{n}+\left(m_{0}+c_{0}-\varepsilon\right)\left(u_{n}-u_{0}\right)\right] v\right) d t=0$
or

$$
D_{0, \varepsilon}\left[u_{n}, v\right]=\left\langle(1+\varepsilon)^{-1}\left(m_{n}-m_{0}\right) u_{n}, v\right\rangle
$$

i.e.

$$
u_{n}-u_{0}=T_{0}\left((1+\varepsilon)^{-1}\left(m_{n}-m_{0}\right) u_{n}\right)
$$

From (36) we conclude that

$$
\begin{aligned}
\left\|u_{n}-u_{0}\right\| & \leq \frac{1+\varepsilon}{\varepsilon} S\left\|(1+\varepsilon)^{-1}\left(m_{n}-m_{0}\right) u_{n}\right\|_{6 / 5} \\
& \leq \frac{1}{\varepsilon} S\left\|m_{n}-m_{0}\right\|_{3 / 2}\left\|u_{n}\right\|_{6} \leq \frac{1+\varepsilon}{\varepsilon^{2}} S^{3}\left\|m_{n}-m_{0}\right\|_{3 / 2}\|f\|_{6 / 5}
\end{aligned}
$$

Finally

$$
\left\|T_{n} f-T_{0} f\right\| \leq C\left\|m_{n}-m_{0}\right\|_{3 / 2}\|f\|_{6 / 5},
$$

where $C=(1+\varepsilon) S^{3} / \varepsilon^{2}$.
From Lemma 1 it follows that

$$
\left\|T_{n}-T_{0}\right\| \leq C\left\|m_{n}-m_{0}\right\|_{3 / 2}
$$

and therefore the operators $T_{n}: L^{6 / 5} \rightarrow H_{0}^{1}$ tend to $T_{0}: L^{6 / 5} \rightarrow H_{0}^{1}$. Moreover, the operators

$$
\left.T_{n}\right|_{L^{2}}: L^{2} \rightarrow L^{2}
$$

are compact. Thus from Lemma VII.6.3 in [4] it follows that

$$
\sigma\left(T_{n}\right) \rightarrow \sigma\left(T_{0}\right)
$$

in the Hausdorff metric. But $\sigma\left(T_{n}\right) \subset[0, \infty)$ and $\sup \sigma\left(T_{n}\right)$ tend to

$$
\left(\lambda_{1}\left(\frac{m_{n}}{1+\varepsilon}\right)-\frac{C_{0}-\varepsilon}{1+\varepsilon}\right)^{-1}
$$

Thus $\lambda_{1}\left(m_{n} /(1+\varepsilon)\right)$ tends to $\lambda_{1}\left(m_{0} /(1+\varepsilon)\right)$ for every $0<\varepsilon<1$. Therefore, we have proved the following:

Theorem 2. Let $\left\{m_{n}\right\} \subset L^{3 / 2}, n=0,1, \ldots$ and $m_{n} \rightarrow m_{0}$ in $L^{3 / 2}$. Then

$$
\lambda_{1}\left(m_{n}\right) \rightarrow \lambda_{1}\left(m_{0}\right)
$$

References

[1] G. Bartuzel and A. Fryszkowski, On existence of solutions for inclusions $\nabla^{2} u \in$ $F(x, \nabla u)$, Proc. of the Fourth Conference on Numerical Treatment of Ordinary Differential Equations (R. März, ed.), Sektion Mathematik der Humboldt Universität zu Berlin, Berlin, 1984, pp. 1-7.
[2] , A topological property of the solution set to the Schrödinger differential inclusions, Demomstratio Math. 25 (1995), 411-433.
[3] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1986), 163-174.
[4] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Wiley, New York, 1958.
[5] Y. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators. Operator Theory, Advances and Applications, vol. 89, Birkhäuser, Basel, Boston, Berlin, 1996.
[6] A. Fryszkowski, Continuous selections for a class of nonconvex multivalued maps, Studia Math. 76 (1983), 163-174.
[7] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. 13 (1965), 397-403.

Manuscript received January 18, 2000

Grzegorz Bartuzel and Andrzej Fryszkowski
Warsaw University of Technology,
1 Plac Politechniki
00-661 Waszawa, POLAND

E-mail address: grgb@mini.pw.edu.pl, fryszko@mini.pw.edu.pl

