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EXISTENCE AND CONVERGENCE RESULTS
FOR EVOLUTION HEMIVARIATIONAL INEQUALITIES

Stanisław Migórski

Abstract. In the paper we examine nonlinear evolution hemivariational

inequality defined on a Gelfand fivefold of spaces. First we show that the

problem with multivalued and L-pseudomonotone operator and zero ini-
tial data has a solution. Then the existence result is established in the

case when the operator is single valued of Leray–Lions type and the initial

condition is nonzero. Finally, the asymptotic behavior of solutions of hemi-
variational inequality with operators of divergence form is considered and

the result on upper semicontinuity of the solution set is given.

1. Introduction

In this paper we study the problem of existence of solutions for evolution
hemivariational inequalities driven by multivalued coercive and pseudomono-
tone operators defined within the framework of an evolution triple of spaces.
We also investigate the asymptotic behavior of solutions to parabolic hemivari-
ational inequalities with single-valued nonlinear operators of divergence form.
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The problem under consideration is following

(1.1)

{
u′ +Au+ ∂J(u) 3 f,
u(0) = u0,

where A is a nonlinear and multivalued operator between V and 2V∗ , f ∈ V∗,
u0 ∈ V , ∂J denotes the Clarke subdifferential (cf. Clarke [4]) of a locally Lipschitz
functional J defined on X , V = Lp(0, T ;V ), X = Lp(0, T ;X), V is a reflexive
Banach space such that V ⊂ X compactly, 0 < T < ∞ and 2 ≤ p < ∞ (see
notation in Section 2). This problem can be considered as a nonlinear evolution
inclusion with a nonmonotone multivalued perturbation.

The existence of solutions for hemivariational inequalities in the elliptic case
has been investigated by many authors using different methods, see Panagio-
topoulos [16], Naniewicz and Panagiotopoulos [15], Haslinger and Panagiotopou-
los [6] and the literature therein. The parabolic hemivariational inequalities have
been treated only recently by Miettinen [10] who used a regularization technique
with the Galerkin method, by Carl [3] and Papageorgiou [19] who both combined
the method of upper and lower solutions, the theory of pseudomonotone opera-
tors with truncation and penalization techniques. Moreover, Liu [9] has shown
an existence result for parabolic hemivariational inequalities with a single-valued
evolution operator of class (S+) while Miettinen and Panagiotopoulos [11] and
Migórski and Ochal [14] have studied the problem using a regularized approxi-
mating method.

In the present paper we generalize the results mentioned above and we prove
a theorem on the existence of solutions to (1.1) using techniques of multivalued
analysis and the theory of pseudomonotone operators. The idea of the proof
goes back to Lions [8] who delivered a surjectivity result for evolution equations.
For the preliminary version of our existence result see Migórski [13].

The second aim of the paper is to give a convergence result for the family
(indexed by a parameter h) of parabolic hemivariational inequalities of type
(1.1). The index appears in the time-dependent operators Ah(t) : V → V ∗,
t ∈ [0, T ], h ∈ N∪{∞} of the form Ah(t) = −div ah(x, t,D · ), in the functionals
Jh : X → R, in the second member and in the initial condition. The mappings
ah : Ω × (0, T ) × RN → RN are supposed to be maximal monotone on RN

for a.e. (x, t) ∈ Ω × (0, T ) and satisfy suitable boundedness and coerciveness
hypotheses. Being motivated by the potential applications to some problems in
the homogenization theory, we are interested in a convergence result under the
assumption that ah

PG−→ a∞, as h→∞ in the sense of parabolic G-convergence
of Svanstedt [22]. Under this hypothesis and other suitable conditions on the
data we will show the upper semicontinuity of the solution set. To author’s
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knowledge the related work on the dependence on parameters of the solution set
of hemivariational inequalities is not yet seen.
It should be mentioned here that the inclusion (1.1) is of interest because it

is a model for nonmonotone semipermeability problem:

(1.2)



∂u

∂t
−∆u = f in Ω× (0, T ),

f = f1 + f2 −f1 ∈ ∂j(x, u) a.e. Ω× (0, T ),
u(0) = u0,

u = 0 on ∂Ω× (0, T ),

(Ω being a bounded domain in R3) which arise in electrostatics, heat conduction
problems and in the description of the flow of Bingham’s fluids. The problem
(1.2) can be written in the form (1.1) with J(v) =

∫
Ω

∫ T
0 j(x, v(x, t)) dx dt.

The problems of type (1.2) were considered by Duvaut and Lions in [5], where
semipermeability relations were assumed to be monotone and they lead to vari-
ational inequalities. The case of nonmonotone semipermeability relations were
first studied by Panagiotopoulos in the stationary case in [17] under the name
of hemivariational inequalities. For the description of temperature control prob-
lems related to (1.2) see Panagiotopoulos [16], Naniewicz and Panagiotopoulos
[15], and Migórski [13]. For more motivation coming from nonsmooth/nonconvex
mechanics and details concerning applications we refer to Panagiotopoulos [16]
and [18], and the references mentioned there.
The outline of this paper is following. In Section 2 we recall basic notation,

definitions and preliminary results. In Section 3 we first deal with the existence
problem for (1.1) with zero initial data and then we study the case when the
operator A is single-valued of classical Leray–Lions type. The discussion on the
convergence of solutions to parabolic hemivariational inequalities is presented in
Section 4.

2. Preliminaries

In this section we fix our notation, recall some basic definitions and facts
from multivalued analysis and present auxiliary results.
Let V and X be two reflexive separable Banach spaces and let H be a real

Hilbert space with V ⊂ X ⊂ H, where V is dense in X and X is dense in H.
The embeddings are assumed to be continuous and V embeds compactly in
X. Typically V = W 1,p(Ω;RN ) or V = W 1,p0 (Ω;RN ), X = Lp(Ω;RN ), H =
L2(Ω;RN ) with some 2 ≤ p <∞, Ω being an open bounded subset of RN with
Lipschitz boundary.
Let 2 ≤ p < ∞ and 0 < T < ∞. We introduce the following spaces V =

Lp(0, T ;V ), X = Lp(0, T ;X), H = L2(0, T ;H) and W = {w ∈ V : w′ ∈ V∗},
where the time derivative involved in the definition of W is understood in the
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sense of vector valued distributions. Clearly we have W ⊂ V ⊂ X ⊂ H ≈
H∗ ⊂ X ∗ ⊂ V∗ with dense and continuous embeddings, X ∗ = Lq(0, T ;X∗),
V∗ = Lq(0, T ;V ∗) and 1/p + 1/q = 1. Recall that if for a Banach space Y , Y ∗

has the Radon–Nikodym property (in particular if Y is a reflexive Banach space
or a separable dual Banach space), then we have Lp(0, T ;Y )∗ = Lq(0, T ;Y ∗),
1/p + 1/q = 1 (see for example Hu and Papageorgiou [7], Theorem A.3.98,
p. 918). Equipped with the norm ||v||W = ||v||V + ||v′||V∗ the space W becomes
a separable, reflexive Banach space. The pairing for the pair (V,V∗) is denoted
by 〈f, v〉V =

∫ T
0 〈f(t), v(t)〉 dt and the inner product on the Hilbert space H by

(f, v)H =
∫ T
0 (f(t), v(t))H dt. Evidently 〈 · , · 〉|V×H = ( · , · )H.

The following lemma is needed in the sequel.

Lemma 2.1.

(a) Every function from W is, after an eventual modification on a set of
Lebesgue measure zero, continuous from [0, T ] into H; moreover, the
embedding of W into C([0, T ];H) is continuous.

(b) If the embedding of V into X is compact, then so is the embedding of
W into X .

(c) If {vn}n≥1 ⊂ W, vn
w−→ v inW, then for every t ∈ [0, T ], vn(t)

w−→ v(t)
in H.

Proof. The results in (a) and (b) are standard ones (see for example Lions
[8] and Zeidler [23]). We show (c). From (a), we have vn

w−→ v in C([0, T ];H).
Fix h ∈ H, t ∈ [0, T ] and let v∗ ∈ C([0, T ];H)∗ be defined by v∗(y) = (h, y(t)).
Then the result follows easily. �

Let Y be a reflexive Banach space and let 〈 · , · 〉Y denote the natural pairing
between Y and its dual Y ∗. In what follows we recall some definitions for a
multivalued operator T : Y → 2Y ∗ (see e.g. [2], [8] and [23]).

• An operator T is said to be pseudomonotone if it satisfies
(a) for every y ∈ Y , Ty is a nonempty, convex and weakly compact set
in Y ∗,

(b) T is u.s.c. from every finite dimensional subspace of Y into Y ∗ endo-

wed with the weak topology,

(c) if yn
w−→ y in Y , y∗n ∈ Tyn and lim sup 〈y∗n, yn − y〉Y ≤ 0, then for

each z ∈ Y there exists y∗(z) ∈ Ty such that

〈y∗(z), y − z〉Y ≤ lim inf 〈y
∗
n, yn − z〉Y .

• An operator T is said to be generalized pseudomonotone if for every
sequence (yn, y∗n) ∈ GrT satisfying yn

w−→ y in Y , y∗n
w−→ y∗ in Y ∗
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and lim sup 〈y∗n, yn − y〉Y ≤ 0, we have (y, y∗) ∈ GrT and 〈y∗n, yn〉Y →
〈y∗, y〉Y .
• An operator T is said to be of type (M) if (a) and (b) hold, and
(d) if (yn, y∗n) ∈ GrT , yn

w−→ y in Y , y∗n
w−→ y∗ in Y ∗ and

lim sup 〈y∗n, yn〉Y ≤ 〈y
∗, y〉Y ,

then (y, y∗) ∈ GrT .

Let L : D(L) ⊂ Y → Y ∗ be a linear densely defined maximal monotone
operator.

• An operator T is said to be generalized pseudomonotone with respect
to D(L) if and only if (a) and (b) hold and

(e) if {yn} ⊂ D(T ) ∩D(L) is such that yn
w−→ y in Y , Lyn

w−→ Ly in
Y ∗, y∗n ∈ T (yn), y∗n

w−→ y∗ in Y ∗ and lim sup 〈y∗n, yn〉Y ≤ 〈y∗, y〉Y ,
then (y, y∗) ∈ GrT and 〈y∗n, yn〉Y → 〈y∗, y〉Y .

• An operator T is called surjective if for each f ∈ Y ∗ there exists an
element y ∈ D(T ) such that f ∈ Ty, i.e. R(T ) = Y ∗.
• An operator T is said to be coercive if there exists a function c : R+ → R
with c(r) → ∞ as r → ∞ such that 〈y∗, y〉Y ≥ c(||y||Y )||y||Y for every
(y, y∗) ∈ GrT or equivalently (see [20], p. 115)

inf{〈y∗, y〉 : y∗ ∈ Ty}
||y||Y

→∞, as ||y|| → ∞, y ∈ D(T ).

• An operator T is said to be bounded if it maps bounded sets into
bounded sets. T is quasi-bounded if to every M > 0 there corresponds
a constant C > 0 such that whenever (y, y∗) ∈ GrT , 〈y∗, y〉 ≤ M ||y||Y
and ||y||Y ≤M , it follows that ||y∗||Y ∗ ≤ C.
• A single-valued operator T : Y → Y ∗ is said to be hemicontinuous if it
is weakly continuous on straight lines in Y , i.e. if s 7→ 〈T (u + sv), w〉
is continuous for all u, v, w ∈ Y . It is said to be demicontinuous if it is
continuous from Y to Y ∗ endowed with weak topology.

The following results will be used in the sequel.

Proposition 2.1. Let T : Y → Y ∗ be a pseudomonotone operator. If
yn

w−→ y in Y and Tyn
w−→ η in Y ∗ with lim sup 〈Tyn, yn〉Y ≤ 〈η, y〉Y , then

η = Ty.

Proof. Let z ∈ Y . Since

〈Ty, y − z〉 ≤ lim inf 〈Tyn, yn − z〉 ≤ lim sup 〈Tyn, yn − z〉
≤ lim sup 〈Tyn, yn〉 − lim 〈Tyn, z〉 ≤ 〈η, y〉 − 〈η, z〉 = 〈η, y − z〉,
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we have 〈Ty, y − z〉 ≤ 〈η, y − z〉 for all z ∈ Y . Taking z = y ± v, v ∈ Y , we get
Ty = η. �

The following surjectivity result for mappings of type (M) can be found in
Chapter III.5, p. 156 of Pascali and Sburlan [20] or Hu and Papageorgiou [7],
Corollary 6.29, p. 372.

Theorem 2.1. If T : Y → 2Y ∗ is quasi-bounded coercive operator of type
(M), then T is surjective.

Finally, we recall the definitions of the generalized directional derivative and
the generalized gradient of Clarke for a locally Lipschitz function g : E → R,
where E is a Banach space (see Clarke [4]). The generalized directional derivative
of g at x in the direction v, denoted by g0(x; v), is defined by

g0(x; v) = lim sup
y→x, t↓0

g(y + tv)− g(y)
t

.

The generalized gradient of g at x, denoted by ∂g(x), is a subset of a dual space
E∗ given by ∂g(x) = {ζ ∈ E∗ : g0(x; v) ≥ 〈ζ, v〉E×E∗ for all v ∈ E}.

3. Existence of solutions

The goal of this section is to investigate the existence of solutions to an
abstract evolution inclusion which can be considered as a multivalued version of
a parabolic hemivariational inequality.
Let L : D(L) ⊂ V → V∗ be the operator defined by Lv = v′ with D(L) =

{v ∈ V : v′ ∈ V∗, v(0) = 0}. It is well known (see e.g. Proposition 32.10, p. 855
of Zeidler [23]) that L is linear densely defined and maximal monotone operator.
Let J : X → R be a locally Lipschitz function and let J 0( · , · ) and ∂J ( · )

denote, respectively, the generalized directional derivative and the generalized
gradient of J in the sense of Clarke [4].
The evolution hemivariational inequality under consideration is following:

find u ∈ D(L) such that

〈Lu+Au− f, v − u〉V + J
0(u; v − u) ≥ 0 for all v ∈ V,

where A is a multivalued map from V to 2V∗ . By using the definition of the
generalized gradient, this problem can be formulated as follows: find u ∈ W
such that

(3.1)

{
Lu+Au+ ∂J (u) 3 f,
u(0) = 0.

Our hypotheses on the data of (3.1) are following.

H(A): A : V → 2V∗ is an operator which is bounded, coercive and generalized
pseudomonotone with respect to D(L).
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H(J ): J : X → R is a function which is Lipschitz continuous on each bounded
subset of X and there exists k ≥ 0 such that

(3.2) J 0(v;−v) ≤ k(1 + ||v||X ) for all v ∈ X .

By a solution of (3.1) we mean a function u ∈ W such that Lu+ ρ+w = f ,
u(0) = 0 with ρ ∈ Au and w ∈ ∂J (u). We have the following existence result
concerning problem (3.1).

Theorem 3.1. If hypotheses H(A) and H(J ) hold and f ∈ V∗, then problem
(3.1) has at least one solution.

Proof. We introduce on D(L), which is a linear subspace of V, the graph
norm by ||u||D(L) = ||u||V + ||Lu||V∗ for u ∈ D(L). Equipped with this norm
D(L) is a reflexive Banach space and the embedding D(L) ⊂ V is dense and
continuous.

Let F : V → V∗ be the duality map. It is known that it has many nice prop-
erties (see Zeidler [23], Proposition 32.22); it is single-valued, demicontinuous,
bijective, strictly monotone, bounded and F−1 : V∗ → V = V∗∗ is equal to the
duality map of the dual space. Moreover for all u ∈ V, we have ||Fu||V∗ = ||u||V
and 〈Fu, u〉 = ||u||2V .
For every positive ε, we define two operators{

Mε : D(L)→ D(L)∗,
〈Mεu, v〉D(L) = ε〈F−1Lu,Lv〉V + 〈Lu, v〉V ,

for u, v ∈ D(L) and {
Pε : D(L)→ 2D(L)

∗
,

Pεu =Mεu+Au+ ∂J (u),
for u ∈ D(L). First we establish some properties of operators Mε and Pε. From
the estimate

|〈Mεu, v〉D(L)| ≤ ε||F−1Lu||V ||Lv||V∗ + ||Lu||V∗ ||v||V
≤ ε||Lu||V∗(||Lv||V∗ + ||v||V) ≤ ε||u||D(L)||v||D(L),

we have ||Mεu||D(L)∗ ≤ ε||u||D(L), so Mε is a bounded operator. Exploiting the
monotonicity of F−1 we can show that Mε is also monotone. It is easy to see
that Mε is demicontinuous (recall that F−1 is such). Since Mε is defined on the
whole space D(L) and monotone, we know (cf. Pascali and Sburlan [20]) that
Mε is hemicontinuous. Therefore Proposition 27.6 of Zeidler [23] tells us that
Mε is pseudomonotone operator (being monotone and hemicontinuous).

Claim 1. For every fixed positive ε, the operator Pε is of type (M).
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From H(A) and from the fact that the values of ∂J are nonempty, weakly
compact and convex subsets of X ∗ (cf. Clarke [4]), we easily get that for all
v ∈ D(L), Pεv is a nonempty, weakly compact and convex subset of D(L)∗.
Next, since the mapping ∂J : X → 2X∗ has a sequentially closed graph

in X × X ∗weak topology and it is a locally relatively weakly compact map, by
Lemma 7.10 of Phelps [21] (or Proposition 2.23, p. 43 of Hu and Papageorgiou
[7]) we have that ∂J is also u.s.c. in this topology. From H(A) again and the
demicontinuity of Mε, we obtain that Pε is u.s.c. from every finite dimensional
subspace of D(L) into D(L)∗weak.
Subsequently, assume that (uk, pk) ∈ GrPε, uk

w−→ u in D(L) (i.e. uk
w−→ u

in V and Luk
w−→ Lu in V∗), pk

w−→ p in D(L)∗ and lim sup 〈pk, uk〉D(L) ≤
〈p, u〉D(L). We will show that (u, p) ∈ GrPε. To this end, let ρk ∈ Auk and
wk ∈ ∂J (uk) be such that

(3.3) pk =Mεuk + ρk + wk.

In view of the boundedness of A and ∂J , we have that {ρk} and {wk} remain
in bounded subsets of V∗ and X ∗, respectively. We can assume that ρk

w−→ ρ
in V∗ (which entails also weakly in D(L)∗) and wk

w−→ w in X ∗. Using the
compactness of the embedding W ⊂ X , we suppose that uk → u in X . Then by
using again the sequential closedness of the graph of ∂J , we have w ∈ ∂J (u).
We also have immediately u ∈ D(L) (recall that by Mazur’s theorem, D(L) is
weakly closed since it is closed and convex subset of W).
We will show now that

(3.4) lim sup
k
〈ρk + wk, uk − u〉D(L) ≤ 0.

Suppose (3.4) does not hold. Thus, we can find d > 0 and a subsequence of
{uk}, which is identified for simplicity of notation with {uk}, such that

lim
k
〈ρk + wk, uk − u〉D(L) = d > 0.

Hence

lim sup
k
〈Mεuk, uk − u〉D(L) = lim sup

k
〈pk, uk − u〉D(L)

− lim
k
〈ρk + wk, uk − u〉D(L) ≤ −d < 0.

From the pseudomonotonicity of Mε it follows that

〈Mεu, u− v〉D(L) ≤ lim inf
k
〈Mεuk, uk − v〉D(L) for all v ∈ D(L).

In particular, for v = u, we obtain

0 ≤ lim inf
k
〈Mεuk, uk − u〉D(L) ≤ lim sup

k
〈Mεuk, uk − u〉D(L) ≤ −d < 0,

which gives a contradiction. The proof of (3.4) is completed.
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From (3.4) and the preceding convergences, we get

lim sup
k
〈ρk, uk〉D(L) = lim sup

k
〈ρk + wk, uk − u〉D(L)

− lim
k
〈wk, uk − u〉X + lim

k
〈ρk, u〉D(L) ≤ 〈ρ, u〉D(L).

From the fact that A is generalized pseudomonotone with respect to D(L), we
have (u, ρ) ∈ GrA and

(3.5) 〈ρk, uk〉D(L) → 〈ρ, u〉D(L).

Since Mε is a bounded operator, by passing to a subsequence if necessary, we
may assume that there is η ∈ D(L)∗ such that

(3.6) Mεuk
w−→ η in D(L)∗, as k →∞.

Moreover, from (3.3), (3.5) and (3.6), we have

lim sup
k
〈Mεuk, uk〉D(L) = lim sup

k
〈pk, uk − u〉D(L) + lim

k
〈ρk, u〉D(L)

− lim
k
〈ρk, uk〉D(L) + lim

k
〈wk, u− uk〉X

+ lim
k
〈Mεuk, u〉D(L) ≤ 〈η, u〉D(L).

Hence and from (3.6), by Proposition 2.1, we deduce that η =Mεu. Now using
the above convergences and passing to the limit in (3.3), we obtain

p =Mεu+ ρ+ w

which together with ρ ∈ Au and w ∈ ∂J (u) implies that (u, p) ∈ GrPε. Hence
the operator Pε is of type (M), as claimed.
Claim 2. For every fixed ε, operator Pε is bounded and coercive.
The boundedness of Pε follows from the one of A and ∂J . We show the

coerciveness. By the monotonicity of L and the properties of the duality map,
for any v ∈ D(L), we have

〈Mεv, v〉D(L) ≥ ε〈F−1Lv, Lv〉V = ε||Lv||2V∗ .

From the hypothesisH(J ), the coercivity of A and the inequality ||·||X ≤ c0||·||V
we get the following estimate

〈ρ+ w, v〉D(L) ≥ c(||v||V)||v||V − k(1 + c0||v||V) ≥ c̃(||v||V)||v||V − k

for all v ∈ D(L), ρ ∈ Av and w ∈ ∂J (v), where a function c̃ : R+ → R satisfies
c̃(r)→∞, as r →∞. In consequence, for any v ∈ D(L) and p ∈ Pεv, we obtain

(3.7) 〈p, v〉D(L) ≥ c̃(||v||V)||v||V + ε||Lv||2V∗ − k.

Hence
〈p, v〉D(L)
||v||D(L)

→∞ as ||v|| → ∞,
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which ensures the coercivity of Pε.

Claims 1 and 2 allows us to apply Theorem 2.1 and deduce that for any ε > 0
operator Pε is surjective. This implies that for every f ∈ V∗ ⊂ D(L)∗, there
exists uε ∈ D(L) such that f ∈ Pεuε.
Then, observing that F−1Luε ∈ D(L∗) (cf. Lions [8], p. 317) (L∗ is the

adjoint operator to L) and 〈F−1Luε, Lv〉 = 〈L∗(F−1Luε), v〉, the problem f ∈
Pεuε is equivalent to

(3.8)

{
εL∗(F−1Luε) + Luε + ρε + wε = f, ε > 0,

uε ∈ D(L), ρε ∈ Auε, wε ∈ ∂J (uε).

For the a priori estimate, we observe that from (3.7), we have

c̃(||uε||V)||uε||V − k ≤ ||f ||V∗ ||uε||V .

Hence {uε} is bounded in V uniformly with respect to ε. It follows from the
boundedness of A and ∂J that {ρε}, ρε ∈ Auε and {wε}, wε ∈ ∂J (uε) remain
in bounded subsets of V∗ and X ∗, respectively. From (3.8), we have

ε〈L∗(F−1Luε), F−1Luε〉D(L) + 〈Luε, F−1Luε〉V
+ 〈ρε, F−1Luε〉D(L) + 〈wε, F−1Luε〉D(L) = 〈f, F−1Luε〉D(L).

The first term on the left hand side is nonnegative since L∗ is monotone (see e.g.
Zeidler [23], Theorem 32.L, p. 897). The second term, by the property of F−1,
is equal to ||Luε||2V∗ . Therefore, we obtain

||Luε||2V∗ ≤ (||f ||V∗ + ||ρε||V∗ + ||wε||V∗)||Luε||V∗

which obviously implies that {Luε} is bounded in V∗ independently of ε.

From the previous steps of the proof, we deduce that {uε}, {ρε} and {wε}
lie in bounded sets of D(L), V∗ and X ∗, respectively. So we can extract subse-
quences such that

(3.9)


uε → u weakly in D(L) and in X ,
ρε

w−→ ρ in V∗,
wε

w−→ w in X ∗, as ε→ 0

(recall here that D(L) ⊂ X compactly). Again by the closedness properties of
D(L) and Gr ∂J , we get u ∈ D(L) and w ∈ ∂J (u).
We also have ρ ∈ Au. Indeed, by the estimate

〈F−1Luε, Luε − Lu〉V ≤ ||Luε||V∗(||Luε||V∗ + ||Lu||V∗) ≤ ĉ
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from (3.8) we obtain

〈ρε, uε − u〉D(L)
≤〈f − wε, uε − u〉V − ε〈F−1Luε, Luε − Lu〉V − 〈Luε, uε − u〉V
≤〈f − wε, uε − u〉V + εĉ− 〈L(uε − u), uε − u〉V − 〈Lu, uε − u〉V
≤〈f − Lu, uε − u〉V − 〈wε, uε − u〉X + εĉ.

From (3.9), we have lim supε→0〈ρε, uε〉V ≤ 〈ρ, u〉V . Because A is generalized
pseudomonotone with respect to D(L), we have ρ ∈ Au and 〈ρε, uε〉V → 〈ρ, u〉V ,
as ε→ 0.
Finally let v ∈ D(L). From (3.8) again, by taking the duality with v and

using the fact limε→0 〈F−1Luε, Lv〉V = 0, we get

lim
ε→0
(〈Luε, v〉V + 〈ρε, v〉V + 〈wε, v〉X ) = 〈f, v〉V .

Applying (3.9) the last equality gives

〈Lu+ ρ+ w, v〉V = 〈f, v〉V for all v ∈ D(L).

AsD(L) is dense in V, we have 〈Lu+ρ+w−f, v〉V = 0 for all v ∈ V. Consequently
u ∈ D(L) satisfies Lu + ρ + w = f with ρ ∈ Au and w ∈ ∂J (u). This means
that u solves (3.1) as required. �

Remark 3.1. We should point out that Theorem 3.1 remains valid if the
operatorA : V → 2V∗ satisfies H(A) with the coercivity condition with a function
c(r) ≈ r as r → ∞, and the function J : X → R satisfies H(J ) with a weaker
growth condition than (3.2), namely

J 0(v;−v) ≤ k(1 + ||v||σX ) for all v ∈ X ,

with k ≥ 0 and 1 ≤ σ < p.

In conjunction with (3.1) we consider the following problem:

(3.10)


find u ∈ W such that u(0) = 0 and〈
du

dt
, v

〉
V
+ 〈ρ, v〉V +

∫ T
0
j0(t, u; v) dt ≥ 〈f, v〉V ,

for every ρ ∈ Au and v ∈ V.

We admit the following hypothesis:

H(j) : j : (0, T )×X → R is a function such that

(1) t 7→ j(t, x) is measurable on (0, T ), for each x ∈ X,
(2) x 7→ j(t, x) is locally Lipschitz on X for each t ∈ (0, T ) and j( · , x) ∈
L1(0, T ),

(3) for any x ∈ X and t ∈ (0, T ) and for any η ∈ ∂xj(t, x) we have ||η||X∗ ≤
c(1 + ||x||p−1X ) with a constant c ≥ 0 independent of x ∈ X.
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Corollary 3.1. Assume that H(A) holds and f ∈ V∗. Let the function
j : (0, T )×X → R satisfy H(j) and the generalized sign condition

(3.11) j0(t, x;−x) ≤ α(t)(1 + ||x||X) for all x ∈ X

with a nonnegative function α ∈ Lq(0, T ). Then the problem (3.10) has at least
one solution.

Proof. Consider the functional J : X = Lp(0, T ;X)→ R of the form

J (v) =
∫ T
0
j(t, v(t)) dt for v ∈ X .

From Theorem 2.7.5 of Clarke [4], it follows that the functional J is well defined,
Lipschitz continuous on every bounded subset of X , and for v ∈ X and χ ∈ X ∗

such that χ ∈ ∂J (v), we have χ(t) ∈ ∂xj(t, v(t)) a.e. t ∈ (0, T ). Moreover, by
Fatou’s lemma, we easily get

(3.12) J 0(u; v) ≤
∫ T
0
j0(t, u(t); v(t)) dt for u, v ∈ X .

Hence and by (3.11) and the Hölder inequality, we obtain

J (v;−v) ≤
∫ T
0
j0(t, v(t);−v(t)) dt

≤
∫ T
0
α(t)(1 + ||v(t)||X) dt ≤ c||α||Lq (1 + ||v||X )

with c > 0 and for each v ∈ X . Therefore J satisfies H(J ). Invoking The-
orem 3.1, we know that problem (3.1) has a solution, i.e. there exists u ∈ W,
u(0) = 0 such that u′ + Au + ∂J (u) 3 f . Let ρ ∈ A(u). By the definition of
generalized gradient and (3.12), we get

〈f − Lu− ρ, v〉X ≤ J 0(u, v) ≤
∫ T
0
j0(t, u(t); v(t)) dt

for v ∈ X . Taking v ∈ V, we have

〈f − u′ − ρ, v〉V ≤
∫ T
0
j0(t, u(t); v(t)) dt

which means that u solves (3.10). �

In what follows we will be dealing with the problem (3.1) with a non zero
initial data and single-valued operator A. We shall prove an existence result for
the problem

(3.13)

{
u′ +Au+ ∂J (u) 3 f,
u(0) = u0.
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The hypothesis on the operator A is following. Let A : V → V∗ be the Nemitsky
operator corresponding to a family of operators A(·), i.e. (Av)(t) = A(t)v(t).

H(A): A(t) : V → V ∗ is an operator such that

(i) t 7→ A(t)v is measurable on (0, T ) for all v ∈ V ,
(ii) v 7→ A(t)v is demicontinuous and pseudomonotone, for all t ∈ (0, T ),
(iii) ||A(t)v||V ∗ ≤ β(t) + c1||v||p−1V , a.e. t ∈ (0, T ) with 2 ≤ p < ∞, β ∈
Lq(0, T ), 1/p+ 1/q = 1,

(iv) 〈A(t)v, v〉V ≥ c||v||pV−a||v||rV−γ(t), 1 ≤ r ≤ p−1, a, c > 0, γ ∈ L1(0, T ).

Theorem 3.2. If hypotheses H(A), H(J ) hold, f ∈ V∗ and u0 ∈ V , then
problem (3.13) has a solution.

Proof. We transform (3.13) into an equivalent evolution inclusion which
is solved in much the same way as in Theorem 3.1. We define the opera-
tors A(t) : V → V ∗ and ∂̂J : X → 2X∗ by A(t)u = A(t)(u + u0) and
∂̂J (v)( · ) = ∂J (v( · ) + u0), respectively. By hypothesis H(A), we have that
A( · )v is measurable, A(t)( · ) is demicontinuous and pseudomonotone, and

||A(t)v||V ∗ ≤ β(t) + c1||v||p−1V , a.e. t with β ∈ Lq and c1 ≥ 0,
〈A(t)v, v〉V ≥ ĉ||v||p − â||v||r − γ(t), a.e. t with γ ∈ L1 and ĉ, â > 0.

This means that A inherits all properties of A. By applying Proposition 1 of
Papageorgiou [19] or Theorem 2(b) of Berkovits and Mustonen [1], we know
that the Nemitsky operator A : V → V∗ corresponding to A(t)( · ) is generalized
pseudomonotone with respect to D(L). Clearly A is bounded and coercive.
Next, by H(J ) we deduce that ∂̂J is a bounded mapping with a sequentially

closed graph in X ×X ∗weak, its values are nonempty, weakly compact and convex
subsets of X ∗. Moreover, using H(J ) and the property that the function h 7→
J 0(v;h) is subadditive (see Clarke [4]), for every v ∈ X and v∗ ∈ ∂̂J (v) ⊂ X ∗,
we have

−〈v∗, v〉X ≤ J 0(v + u0;−v)
≤ J 0(v + u0;−(v + u0)) + J 0(v + u0;u0)
≤ k(1 + ||v + u0||X ) + c||u0||

with a suitable c > 0. Hence ∂̂J is subcoercive, that is,

〈v∗, v〉X ≥ −k1(1 + ||v||X + ||u0||V )− c||u0||V .

Consider the evolution inclusion:

(3.14)

{
Lz +Az + ∂̂J (z) 3 f,
z(0) = 0.
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Using the analogous argument as in the proof of Theorem 3.1, the problem (3.14)
has a solution z ∈ W. It is clear now that u(t) = z(t)+u0 is a solution of problem
(3.13). �

4. A convergence result for parabolic hemivariational inequality

In this section we present a convergence result concerning the upper semi-
continuity of the solution set for the parabolic hemivariational inequality of the
form: find uh ∈ W such that

(4.1)

{
u′h +Ahuh + ∂Jh(uh) 3 fh,
uh(0) = uh0 ,

where Ah : V → V∗ are Nemitsky operators corresponding to Ah(t) : V → V ∗,
Ah(t)v = −div ah(x, t,Dv), i.e. (Ahv)(t) = Ah(t)v(t) for v ∈ V, h ∈ N. The
maps ah are supposed to be monotone and to satisfy coerciveness and bound-
edness hypotheses uniformly with respect to h ∈ N. Throughout this section we
put V = W 1,p0 (Ω), X = L

p(Ω) with 2 ≤ p < ∞ and H = L2(Ω), where Ω is an
open bounded subset of RN . Let 0 < T <∞ and Q = Ω× (0, T ).
Following Svanstedt [22], we admit the following

Definition 4.1. Let m0, m1, m2 be three positive real constants and 0 <
α ≤ 1. By S = S(m0,m1,m2, α) we denote the class of functions a : Q×RN →
RN which satisfy the following conditions:
(i) |a(x, t, 0)| ≤ m0, a.e. in Q,
(ii) a( · , · , ξ) is Lebesgue measurable for every ξ ∈ RN ,
(iii) |a(x, t, ξ)−a(x, t, η)| ≤ m1(1 + |ξ|+ |η|)p−1−α|ξ − η|α, a.e. in Q and for
every ξ, η ∈ RN ,

(iv) (a(x, t, ξ)−a(x, t, η), ξ−η) ≥ m2|ξ − η|p, a.e. in Q and for all ξ, η ∈ RN .

Remark 4.1. If a ∈ S(m0,m1,m2, α), then the following inequalities hold

|a(x, t, ξ)| ≤ const(1 + |ξ|)p−1, |ξ|p ≤ const(1 + (a(x, t, ξ), ξ)).

for every ξ ∈ RN and a.e. in Q.

Definition 4.2. A sequence of maps {ah}h∈N ⊂ S(m0,m1,m2, α) is said
to PG-converge to a map a, and we write ah

PG−→ a, as h → ∞, if for every
g ∈ Lq(0, T ;W−1,q(Ω)), the sequence {yh} ⊂ W of unique solutions of the
following problems {

y′h − div ah(x, t,Dyh) = g in Q,
yh(0) = 0,

satisfies

yh
w−→ y in W, ah(x, t,Dyh)

w−→ a(x, t,Dy) in Lq(Q;RN ),
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where y ∈ W is the solution of the problem{
y′ − div a(x, t,Dy) = g in Q,
y(0) = 0.

It was shown recently by Svanstedt [22] (cf. also Migórski [12]) that the class
S(m0,m1,m2, α) is compact with respect to PG-convergence. Namely, we have

Proposition 4.1. Let {ah}h∈N be a sequence in S(m0,m1,m2, α). Then
there exists a subsequence of {ah} which PG-converges to a map a of the class
S(m̃0, m̃1,m2, α̃). The positive constants m̃0, m̃1 depend on the constants p, m0,
m1, m2, α and α̃ = α/(p− α).

With every map ah ∈ S(m0,m1,m2, α) (with constants m0, m1, m2, α inde-
pendent of h) we associate a nonlinear operator Ah(t) : V → V ∗ of the form

(4.2) 〈Ah(t)u, v〉 =
∫
Ω
(ah(x, t,Du), Dv) dx.

Hypotheses:

H(A)1 : Ah : V → V∗ is a sequence of operators corresponding to Ah(t) of the
form (4.2) with {ah} ⊂ S and ah

PG−→ a, as h→∞.
H(J)1 : Jh,J : X → R are functions which are Lipschitz continuous on each

bounded subset of X and satisfy the condition (3.2) in H(J ) uniformly
with respect to h, and

(4.3) lim sup
h→∞

graph ∂Jh ⊂ graph ∂J

in X × X ∗weak topology.
(H0) : uh0 , u0 ∈ V , uh0

w−→ u0 in V .
H(f) : fh, f ∈ V∗, fh → f in V∗ or fh, f ∈ X ∗, fh

w−→ f in X ∗.

We denote by N (Ah,Jh, fh, uh0 ) the solution set of (4.1) corresponding to
data Ah, Jh, fh, uh0 .

Theorem 4.1. Under the hypotheses H(A)1, H(J)1, (H0) and H(f), for ev-
ery {uh} ⊂ N (Ah,Jh, fh, uh0 ) there exists a subsequence {uhk} such that uhk

w−→u
in W and u ∈ N (A,J , f, u0).

Proof. We observe that under H(A)1 for every h ∈ N the operator Ah(t)
is bounded, monotone, hemicontinuous (so also demicontinuous) and coercive
(cf. Remark 4.1). So from Theorem 3.1 it follows that Nh = N (Ah,Jh, fh, uh0 )
and N = N (A,J , f, u0) are nonempty. Suppose uh ∈ Nh. We first show
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a priori bounds for uh. The problem (4.1) is equivalent to the following operator
equation: find uh ∈ W such that

(4.4)


u′h +Ahuh + wh = fh,
wh ∈ ∂Jh(uh) with wh ∈ X ∗,
uh(0) = uh0 .

From the integration by parts formula for functions in W (see e.g. Zeidler [23],
Proposition 23.23, pp. 422–423) it follows that 〈u′h, uh〉V = |uh(T )|2H/2−|uh0 |2H/2.
Exploiting the subcoercivity of ∂Jh (i.e. 〈v∗, v〉X ≥ −k(1 + c0||v||V) for each
v∗ ∈ ∂Jh(v)) and the coercivity of Ah, from the equality

〈u′h, uh〉V + 〈Ahuh, uh〉V + 〈wh, uh〉X = 〈fh, uh〉V ,

we have

1
2
|uh(T )|2H −

1
2
|uh0 |2H + c||uh||2V − k(1 + c0||uh||V) ≤ ||fh||V∗ ||uh||V .

Hence

c||uh||2V ≤
1
2
|uh0 |2H + k + (kc0 + ||fh||V∗)||uh||V .

This implies that {uh} is bounded in V uniformly with respect to h. Next, since
Ah and ∂Jh are bounded operators, from u′h = fh − Ahuh − wh, we infer that
{u′h} is bounded in V∗. Thus we have shown that {uh} is bounded inW. Due to
the weak compactness of a ball in the reflexive Banach space W, by passing to a
subsequence if necessary, we assume that there exists u ∈ W such that uh

w−→ u
in W. Now it remains to prove that u ∈ N .
In view of the boundedness of ∂Jh, we have that {wh} lies in a bounded

subset of X ∗. We can assume that

(4.5) wh
w−→ w in X ∗.

Using the compactness of the embedding W ⊂ X , we have

(4.6) uh → u in X = Lp(Q;RN ).

By (4.3), we get (u,w) ∈ graph ∂J , i.e.

(4.7) w ∈ ∂J (u).

From Lemma 2.1(c), it follows that uh(0)
w−→ u(0) in H. So using (H0), we pass

to the limit in the initial condition and we have

(4.8) u(0) = u0.

From Remark 4.1, we may assume, possibly passing to a subsequence that

(4.9) ah(x, t,Duh)
w−→ b(x, t) in X ∗ = Lq(Q;RN ),
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with some b ∈ X ∗. Let now ξ ∈ RN , let Ω0 be an open set such that Ω0 b Ω,
and let ∆ be an open interval with ∆ b (0, T ). Let Φ ∈ C∞0 (Ω), Ψ ∈ C∞0 ((0, T ))
be such that Φ|Ω0 = 1 and Ψ|∆ = 1. We define

v(x, t) = Φ(x)Ψ(t)(ξ, x)RN .

Let us consider a sequence {vh} ⊂ W of solutions to the following auxiliary
problems

v′h(t)− div ah(x, t,Dvh) = v′(t)− div a(x, t,Dv),(4.10)

vh(0) = 0.(4.11)

By H(A)1 we have

(4.12)

{
vh

w−→ v in W,
ah(x, t,Dvh)

w−→ a(x, t, ξ) in Lq(Ω0 ×∆;RN ).

Let ϕ ∈ C∞0 (Ω0 ×∆), ϕ ≥ 0. The monotonicity implies

(4.13)
∫
Ω0×∆

(ah(x, t,Duh)− ah(x, t,Dvh), Duh −Dvh)ϕdxdt ≥ 0.

From (4.4) and (4.10) we have

u′h − v′h − div(ah(x, t,Duh)− ah(x, t,Dvh)) + wh = fh − v′ + div a(x, t,Dv).

Multiplying the last equation by (uh− vh)ϕ and integrating by parts, we obtain

(4.14)
∫
Ω0×∆

( ah(x, t,Duh)− ah(x, t,Dvh), Duh −Dvh)ϕdx dt

= 〈u′h − v′h, (uh − vh)ϕ〉Ω0×∆ − 〈wh, (uh − vh)ϕ〉Lp(Ω0×∆;RN )

−
∫
Ω0×∆

(ah(x, t,Duh)− ah(x, t,Dvh), (uh − vh)Dϕ) dx dt

+ 〈fh − v′ + div a(x, t,Dv), (uh − vh)ϕ〉Lp(∆;W 1,p0 (Ω0)).

Claim. We have

〈u′h − v′h, (uh − vh)ϕ〉V → 〈u′ − v′, (u− v)ϕ〉V , as h→∞.

To show this convergence, let zh = uh− vh, z = u− v. We know that zh → z
weakly in W and also in H. Since

〈z′h, zhϕ〉V = −
1
2
(zh, zhϕ′)H

and

|(zh, zhϕ′)H − (z, zϕ′)H| ≤ ||zh||H||(zh − z)ϕ||H + ||zh − z||H||zϕ′||H → 0
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we have 〈z′h, zhϕ〉V → 〈z′, zϕ〉V which proves the Claim. Furthermore, from
(4.9), (4.11), (4.12) and (4.6) we get∫

Ω0×∆
(ah(x, t,Duh)− ah(x, t,Dvh), (uh − vh)Dϕ) dx dt

→
∫
Ω0×∆

(b(x, t)− a(x, t, ξ), (u− v)Dϕ) dx dt,

as h → ∞. Using (4.5), (4.6), (4.12), H(f) and Claim, we pass to the limit in
(4.14) and we obtain∫
Ω0×∆

(ah(x, t,Duh)− ah(x, t,Dvh), Duh −Dvh)ϕdx dt

→〈u′ − v′, (u− v)ϕ〉Ω0×∆ −
∫
Ω0×∆

(b(x, t)− a(x, t, ξ), (u− v)Dϕ) dx dt

− 〈w, (u− v)ϕ〉Ω0×∆ + 〈f − v′ + div a(x, t,Dv), (u− v)ϕ〉Ω0×∆
= 〈−u′ − w + f + div a(x, t,Dv), (u− v)ϕ〉Ω0×∆

−
∫
Ω0×∆

(b(x, t)− a(x, t, ξ), (u− v)Dϕ) dx dt = I1 + I2.

On the other hand, taking the limit in V∗weak topology, from the equation u′h −
div ah(x, t,Duh)+wh = fh we immediately get u′−div b(x, t)+w = f . Inserting
the last equality into I1, we have

I1 =
∫
Ω0×∆

(b(x, t)− a(x, t, ξ), (u− v)Dϕ) dx dt

+
∫
Ω0×∆

(b(x, t)− a(x, t, ξ), (Du−Dv)ϕ) dx dt.

This allows us to pass to the limit in (4.13) and we get∫
Ω0×∆

(b(x, t)− a(x, t, ξ), Du− ξ)ϕdx dt ≥ 0.

Since ϕ can be chosen arbitrarily, we have

(b(x, t)− a(x, t, ξ), Du(x, t)− ξ) ≥ 0 a.e. in Ω0 ×∆, for all ξ ∈ RN ,

and hence also a.e . in Q, for every ξ ∈ RN . Recalling that a(x, t, · ) is continuous
(by the definition of class S(m0,m1,m2, α)), by applying the Minty lemma, it
follows that

(b(x, t)− a(x, t,Du(x, t)), Du(x, t)− ξ) ≥ 0
a.e. in Q and for all ξ ∈ RN . From the arbitrariety of ξ ∈ RN , we deduce
that b(x, t) = a(x, t,Du(x, t)) a.e. in Q. By (4.4) and (4.9), letting h → ∞,
we have u′ − div b(x, t) + w = f . This together with (4.7) and (4.8) gives u ∈
N (A,J , f, u0). The proof is completed. �
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Corollary 4.1. Under the hypotheses of Theorem 4.1, we have

lim sup
h→∞

N (Ah,Jh, fh, uh0 ) ⊂ N (A,J , f, u) in Wweak topology.

Remark 4.2. It should be mentioned that the sufficient conditions for the
convergence (4.3) of Clarke’s generalized gradients have been found by Zolezzi
[24]. The key conditions imposed on the sequence Jh were Γ-convergence, local
equi-boundedness and equi-lower semidifferentiability.
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