THE BORSUK-ULAM PROPERTY FOR CYCLIC GROUPS

MAREK IZYDOREK — WACŁAW MARZANTOWICZ

ABSTRACT. An orthogonal representation V of a group G is said to have the Borsuk–Ulam property if the existence of an equivariant map $f: S(W) \rightarrow S(V)$ from a sphere of representation W into a sphere of representation V implies that dim $W \leq \dim V$. It is known that a sufficient condition for V to have the Borsuk–Ulam property is the nontriviality of its Euler class $\mathbf{e}(V) \in H^*(BG; \mathcal{R})$. Our purpose is to show that $\mathbf{e}(V) \neq 0$ is also necessary if G is a cyclic group of odd and double odd order. For a finite group G with periodic cohomology an estimate for G-category of a G-space X is also derived.

1. The Euler class of cohomology sphere

Let V be an n-dimensional orthogonal representation of a compact Lie group G. Assume that V is \mathcal{R} -orientable, i.e. the vector bundle $V \subset EG \times_G V \to BG$ is orientable over a ring \mathcal{R} , or equivalently, the action of G on $H^{n-1}(S(V); \mathcal{R}) \cong H^{n-1}(S(V); \mathbb{Z}) \otimes \mathcal{R}$ is trivial, where S(V) stands for a unit sphere in V (see [14], [15]).

By the Euler class of V over \mathcal{R} , denoted $\mathbf{e}(V)$, we call the Euler class of the vector bundle $EG \times_G V \to BG$ in $H^*(BG; \mathcal{R})$. It is then an element of $H^n(BG; \mathcal{R})$.

DEFINITION 1.1. We say that V has the Borsuk–Ulam property if whenever there is a G-equivariant map $f: S(W) \to S(V)$, W an orthogonal representation

C2000Juliusz Schauder Center for Nonlinear Studies

65

²⁰⁰⁰ Mathematics Subject Classification. Primary: 57S17, 55M30; Secondary: 55R25, 55S35.

Key words and phrases. Equivariant maps, the Euler class, G-category.

of G, then dim $W \leq \dim V$. Otherwise, we say that V does not have the Borsuk–Ulam property.

It is shown in [13] that if V is \mathcal{R} -orientable and $\mathbf{e}(V) \neq 0$ then V has the Borsuk–Ulam property. We will study the converse problem, that of whether the condition $\mathbf{e}(V) = 0$ implies that V does not have the Borsuk–Ulam property.

Suppose that G is a nontrivial, compact, connected Lie group and put $\mathcal{R} = \mathbb{Q}$. Then

$$\mathbf{e}(V) \neq 0 \Leftrightarrow V^T = \{0\}$$

where $T \subset G$ is the maximal torus of G. Moreover, $\mathbf{e}(V)$ is equal to the multiple of all weights of V (see [10], or [13] for more details). In general, even in the case when G is finite it is difficult to derive $\mathbf{e}(V)$. However, there exists a simple formula for $\mathbf{e}(V)$ if G has periodic cohomology, in particular, if G is a finite cyclic group C_k of order k.

Assume that $G = C_k$, and choose $\mathcal{R} = \mathbb{Z}_k$, the ring of integers modulo k. It is well known (cf. [5], [17]), that $H^i(C_k; \mathbb{Z}_k) = \mathbb{Z}_k$, $0 \le i < \infty$, and a periodicity is given by multiplication by the element $u = \mathbf{e}(V^1) \in H^2(C_k, \mathbb{Z}_k)$, where V^1 is the standard linear complex representation of C_k given by the embedding $C_k \subset S^1$ (the generator $g \in C_k$ is identified with $\exp(2\pi\sqrt{-1}k^{-1}) \in S^1$). Denote by V^i , $1 \le i \le k/2$, the *i*-th tensor power of V^1 (over \mathbb{C}) and by V^0 the 1-dimensional (real) trivial representation of G. If k = 2m, then for i = m = k/2, we denote by $V_{\mathbb{R}}^m$ a 1-dimensional real representation of C_k given by the epimorphism $C_k \to C_2 \simeq \{-1, 1\} = O(1)$.

We shall use the following

FACT 1.2. Every real orthogonal representation of C_k is of the form:

$$V = \bigoplus l_i V^i, \qquad 0 \le i \le (k-1)/2, \quad \text{if } k \text{ is odd},$$
$$V = \bigoplus l_i V^i \oplus l_m V_{\mathbb{R}}^m, \quad 0 \le i \le m-1, \qquad \text{if } k = 2m.$$

Moreover, for k = 2m, $k \neq 2$, V is orientable if and only if $V = \bigoplus_{i=0}^{m} l_i V^i$, where $V^m := 2V_{\mathbb{R}}^m$. Every representation $V = l_0 V^0 \oplus l_1 V_{\mathbb{R}}^1$ of C_2 is \mathbb{Z}_2 -orientable.

Since $\mathbf{e}(V \oplus W) = \mathbf{e}(V) \cdot \mathbf{e}(W)$ and $\mathbf{e}(V^i) = i \cdot \mathbf{e}(V^1) = i \cdot u \in H^2(C_k; \mathbb{Z}_k)$ (cf. [13] and [16]), we get $\mathbf{e}(V) = \prod i^{l_i} \cdot u^r$, for $V = \bigoplus l_i V^i$, $0 \le i \le [k/2]$ and $r = \sum l_i$. The last means that $\mathbf{e}(V) \ne 0$ if and only if the integer

$$\mathbf{h}(V) = \prod i^{l_i}, \quad 0 \le i \le [k/2],$$

(with the convention $0^0 = 1$, $0^r = 0$ for r > 0) is not divisible by k. In particular $\mathbf{e}(V) = 0$ if $l_0 \neq 0$. Our main theorems state that for cyclic groups of odd and double odd order $\mathbf{e}(V)$ is the only obstruction for V to have the Borsuk–Ulam property.

THEOREM 1.3. Let V be \mathbb{Z}_k -orientable, orthogonal representation of the group $G = C_k$, with k being an odd number. Then V has the Borsuk-Ulam property if and only if $\mathbf{e}(V) \neq 0$.

PROOF. It is sufficient to show that if $\mathbf{e}(V) = 0$ then there exist an orthogonal representation W satisfying dim $W > \dim V$, and a G-equivariant map $f: S(W) \to S(V)$.

We assume that $V^G = \{0\}$, otherwise S(W) can be mapped into a point. Let V be of dimension n. Consider the vector bundle $\xi = EG \times_G V$ over BG. We claim that if $\mathbf{e}(V) = 0$ then the sphere bundle $S(\xi) = EG \times_G S(V)$ of ξ restricted to the (n+1)-skeleton $BG^{(n+1)}$ of BG has a nonzero section. Indeed, $\pi_i(S(V)) = 0$ if i < n-1, and therefore $S(\xi)_{|BG^{(n-1)}}$ admits a section since all obstructions are in zero groups $H^{i+1}(BG; \pi_i(S(V))), i \leq n-2$. Furthermore, by its geometric interpretation $\mathbf{e}(V)$ is the only obstruction to extending such a section over the n-skeleton of BG. This yields that there is a section on $BG^{(n)}$, since $\mathbf{e}(V) = 0$.

Moreover, since V is \mathbb{Z}_k -orientable and $k \neq 2$ the dimension of V is even. This implies $H^{n+1}(BG; \pi_n(S(V))) = 0$, because either n = 2 and $\pi_2(S^1) = 0$ or $n \geq 4$ and $H^{n+1}(BG; \pi_n(S(V))) = H^{n+1}(BG; \mathbb{Z}_2) = 0$. Thus the section can be extended over $BG^{(n+1)}$. Since G acts freely on EG the sections of the fibration $EG^{(n+1)} \times_G S(V)$ are in one-to-one correspondence with G-mappings from EG^{n+1} to S(V) (cf. [4]). Hence, there is a G-map $f : EG^{(n+1)} \to S(V)$. Put $W = (n/2 + 1)V^1$ so that, W is a representation of C_k of (real) dimension n+2. Let $\phi : S(W) \to EG$ be a G-map into the universal space. Note that EGand S(V) are G-CW complexes, thus ϕ can be replaced, up to a G-homotopy, by a G-cellular map $\overline{\phi} : S(W) \to EG^{(n+1)}$, and the composition $f\overline{\phi}$ gives the required map. The proof is complete. \Box

THEOREM 1.4. Let $G = C_k$ be a cyclic group of order $k = 2 \cdot \text{odd}$. Let V be an orthogonal, \mathbb{Z}_k -orientable representation of G. Then V has the Borsuk–Ulam property if and only if $\mathbf{e}(V) \neq 0$.

We begin with the following

PROPOSITION 1.5. Let V be a \mathbb{Z}_k -orientable, orthogonal representation of a cyclic group C_k $(k \neq 2)$ such that $\mathbf{h}(V) \equiv 0 \pmod{2k}$. Then V does not have the Borsuk-Ulam property.

More precisely, for any cyclic group $G = C_k$ and $V = \bigoplus m_i V^i$ there exists a G-equivariant map $f : S((r+1)V^1) \to S(V)$, for $r = \sum m_i$ provided $\prod i^{m_i}$ is divisible by 2k.

PROOF. Denote by W^1 the standard linear (complex) representation of C_{2k} and by W^i its *i*-th tensor power (over \mathbb{C}). Let W be an orthogonal representation of C_{2k} defined as a direct sum $\bigoplus m_i W^i$ where m_i are taken from the splitting of V. Obviously, $\mathbf{h}(W) = \mathbf{h}(V)$ and $\mathbf{e}(W) = 0$, since 2k divides $\mathbf{h}(W)$. Consequently, there exists a C_{2k} -equivariant map

$$\widetilde{f}: S(rW^1) * C_{2k} \to S(W), \quad r = \sum m_i,$$

where A * B denotes the join of A and B (cf. [16]). For a fixed generator g of C_{2k} we denote by \tilde{f}_s the restriction of \tilde{f} to the space $S(rW^1) * \{g^s, g^{s+1}\}$ which is homeomorphic to a 2*r*-dimensional sphere. Since W is \mathbb{Z}_k -orientable, \tilde{f}_s represents the same element in the homotopy group $\pi_{2r}(S^{2r-1}) \cong \mathbb{Z}_2$ for every $s = 0, \ldots, 2k - 1$. Now, the map

$$\overline{f}: S(rW^1) * \{g^0, g^2, \dots, g^{2k-2}\} \to S(W)$$

given by the restriction of \tilde{f} can be considered as a C_k -equivariant map

$$h: S(rV^1) * C_k \to S(V)$$

with an action of C_k induced by the standard inclusion $C_k \subset C_{2k}$. Let γ be a fixed generator of C_k and \overline{f}_s be the restriction of \overline{f} to the space $S(rV^1) * \{\gamma^s, \gamma^{s+1}\}$. Note, that the map \overline{f}_s represents the sum of homotopy classes of maps \widetilde{f}_{2s} and \widetilde{f}_{2s+1} in the group $\pi_{2r}(S^{2r-1})$. Since $\pi_{2r}(S^{2r-1}) = \mathbb{Z}_2$ and \widetilde{f}_{2s} is homotopic to $\widetilde{f}_{2s+1}, \overline{f}_s$ is homotopically trivial. This gives us an extension of the map \overline{f} to a C_k -equivariant map

$$f: S((r+1)V^1) \to S(V),$$

and the proof is complete.

COROLLARY 1.6. Let V be a \mathbb{Z}_k -orientable, orthogonal representation of C_k , $k \neq 2$. If the Euler class $\mathbf{e}(V) = 0$ then:

- (a) the representation $V \oplus V$ does not have the Borsuk–Ulam property,
- (b) the representation $V \oplus V^{2t}$ does not have the Borsuk–Ulam property for t = 0, 1, 2, ...

COROLLARY 1.7. If $V = \bigoplus m_i V^i$ is any \mathbb{Z}_k -orientable representation of C_k $(k \neq 2)$ with the Euler class $\mathbf{e}(V)$ equal to zero then the representation $V' = m_{i_0} V^{2i_0} \bigoplus_{i \neq i_0} m_i V^i$, with $m_{i_0} \neq 0$, does not have the Borsuk–Ulam property.

Theorem 1.4 is a direct consequence of the following

PROPOSITION 1.8. Let $V = \bigoplus m_i V^i$ be a representation of a cyclic group C_k , with $k = 2^d \cdot \text{odd}$. Assume there is i_0 divisible by 2^d with $m_{i_0} \neq 0$. Then $\mathbf{e}(V) = 0$ implies V does not have the Borsuk–Ulam property.

PROOF. If $\mathbf{h}(V)$ is divisible by 2^{d+1} then the above result follows directly from Proposition 1.5. Assume then, that $\mathbf{h}(V)$ is divisible by 2^d and is not divisible by 2^{d+1} . It follows that $m_{i_0} = 1$. Obviously, V^{i_0} is isomorphic to V^{i_0+k} and that is why the summand V^{i_0} can be replaced by V^{i_0+k} in the direct sum $V = \bigoplus m_i V^i$.

Since $k = 2^d \cdot \text{odd}$ and i_0 is also of the form $2^d \cdot \text{odd}$, $i_0 + k$ is divisible by 2^{d+1} . Now again by Proposition 1.5 we have the desired result.

REMARK 1.9. It has been proved in [3] that for $G = C_p \times C_q = C_{pq}$, where p, q distinct primes, and any orthogonal representation V of G with dim $V^{C_p} \ge 1$ and dim $V^{C_q} \ge 1$ there exists a G-map $f : S(V) \to S(V^{C_p} \oplus V^{C_q})$. Of course, that result allows to construct a pair of representations U, W of $G = C_k, k = pq$, with $U^G = W^G = \{0\}$ and dim $U > \dim W$ such that there is a G-map $f : S(U) \to S(W)$. Nevertheless, our result gives a necessary and sufficient condition.

PROBLEM 1.10. For which group G and representation V the condition $\mathbf{e}(V) = 0$ implies that V does not have the Borsuk–Ulam property?

2. An estimate of equivariant category

Closely related to the problem of equivariant mapping into spheres is the computation of equivariant category, $\operatorname{cat}_G(X)$, of a *G*-space *X* (cf. [6]–[8], [12]). This is by definition the smallest natural number *m* (or ∞) such that there exists a covering of *X* consisting of *m G*-invariant open subsets $\mathcal{U}_1, \ldots, \mathcal{U}_m$ each of which can be equivariantly deformed to an orbit Gx_i inside *X*.

Let X be a G-space. We say that an orbit type $(G/H) = (G/G_x), x \in X$, is minimal in X if there is no $y \in X$ such that $H \subset G_y$ and $H \neq G_y$. By $\alpha = \alpha(X)$ we denote the number of connected components of $\bigcup X^{(H)}/G = \bigcup X_{(H)}/G$, where (H) runs over all minimal orbit types of X (cf. [12, Definition 1.2]).

PROPOSITION 2.1. Let G be a finite group, $\{e\} \neq H \subset G$ its subgroup. Suppose that X is a connected G-space and $\alpha = \alpha(X)$ is taken with respect to the action of H on X. Then

$$\operatorname{cat}_G(X) \ge \frac{1}{\alpha} \operatorname{cat}_H(X).$$

PROOF. Let $\{\mathcal{U}_i\}_1^m$, $m = \operatorname{cat}_G(X)$, be a *G*-covering of *X* with $\operatorname{cat}_G(\overline{\mathcal{U}}_i, X)$ = 1. We shall have established the proposition if we prove that

$$\operatorname{cat}_H(\overline{\mathcal{U}}_i, X) = \operatorname{cat}_H(G/G_{x_i}, X) \le \alpha$$

If X is a G-ANR then this follows from Theorem 1.10 of [12]. In the general case gives G is a finite group.

m :

In the general case, since G is a finite group

$$Gx_i = \bigcup_{j=1}^{n_i} Hx_{i,j} \simeq \bigcup_{j=1}^{n_i} H/H_{i,j}$$

as an *H*-space. Let us choose a point x_{β}^* , $1 \leq \beta \leq \alpha$, in every connected component of $X_{(H)}/G$. By Lemma 1.11 of [12], the inclusion $\iota_{i,j} : H/H_{i,j} \subset X$ is *H*-homotopic to a *H*-equivariant map $\phi_{i,j} : H/H_{i,j} \to H/H_{x_{\beta}}$, for some $1 \leq \beta(i,j) \leq \alpha$, which proves the required inequality and consequently Proposition 2.1

LEMMA 2.2. Let p be a prime number. Suppose that X is a (n-1)-dimensional cohomology sphere over \mathbb{Z} , $n \geq 2$. Assume that a p-group G acts on X without fixed points. Then for every minimal orbit type (H) the set $X^{(H)}/G$ is connected.

PROOF. Since (H) is minimal $X^{(H)}/G = X_{(H)}/G = X_H/N(H)$ (cf. [4]). It is sufficient to prove that X_H is connected. From P. Smith theorem (cf. [4]) it follows that

$$X^H \simeq_{\mathbb{Z}_p} S^{n_1-1}, \quad n_1 \le n$$

Let $\{e\} \subset H_1 \subset \ldots \subset H \subset \overline{H} \subset \ldots \subset G$ be a resolving tower of G with factors isomorphic to C_p . Since H is minimal, $X^G = \emptyset$ and $H \neq \overline{H}$, we obtain

$$\emptyset = X^{\overline{H}} = (X^H)^{N(\overline{H},H)} = (X^H)^{C_p}$$

This leads to a contradiction if $X_H = X^H \simeq_{\mathbb{Z}_p} S^0$ and p is odd. If p = 2, then $N(\overline{H}, H) = \mathbb{Z}_2$ has to permute two connected components of $X^H = X_H \simeq_{\mathbb{Z}_2} S^0$. Indeed, any such component $X_0^H \simeq_{\mathbb{Z}_2} *$, and $(X_0^H)^{C_2} \simeq_{\mathbb{Z}_2} *$ by the Smith theory, which shows that $X^{\overline{H}}$ is nonempty if $N(\overline{H}, H)$ preserves a component X_0^H of X^H . This proves that $X^{(H)}/G$ is connected.

The following proposition is an immediate consequence of Proposition 2.1 and Lemma 2.2.

PROPOSITION 2.3. Let G_p be a p-subgroup of a finite group G and X be a G-space which is an (n-1)-cohomology sphere over \mathbb{Z}_p . Let α_p be a number of distinct minimal orbit types of the action of G_p on X. Suppose that $X^{G_p} = \emptyset$. Then

$$\operatorname{cat}_G(X) \ge \frac{1}{\alpha_p} \operatorname{cat}_{G_p}(X).$$

In particular, $\operatorname{cat}_G(X) \ge \operatorname{cat}_H(X)$ if H is a cyclic p-group.

Combining the above with the main result of [2] we get the following generalization of Bartsch's result.

THEOREM 2.4. Let G be a finite group with periodic cohomology such that its 2-Sylow group is cyclic. Suppose that X = S(V) is the sphere of a \mathbb{Z} -orientable orthogonal representation of G of dimension n. Assume that $X^H = \emptyset$ for some p-subgroup $H \subset G$. Then

$$\operatorname{cat}_G(X) \ge n/p^{r-1}$$
 where $|H| = p^r$.

In particular, if $\mathbf{e}(V) \neq 0$ in $H^n(G; \mathbb{Z}) \cong \mathbb{Z}/|G|\mathbb{Z}$, then

$$\operatorname{cat}_G(X) \ge n/p^{r-1}$$

for every divisor p of |G|, $p^r = |G_p|$, such that $\mathbf{e}(V) \not\equiv 0 \pmod{p^r}$.

PROOF. By Theorem IV.9.7 of [5], G has periodic cohomology if and only if every its Sylow *p*-subgroup is cyclic (if p is odd), or cyclic and generalized quaternionic if p = 2. For $H = C^{p^r}$ the condition $V^H = \{0\}$ implies $\operatorname{cat}_H(X) \ge n/p^{r-1}$, by the main result of [2]. By Lemma 2.3 $\alpha_H = 1$, and consequently $\operatorname{cat}_G(X) \ge n/p^{r-1}$ as follows from Proposition 2.3. This shows the first part of statement.

If $\mathbf{e}(V) \neq 0 \pmod{p^r}$ then $\mathbf{e}(V)_p = \operatorname{res}_H^G(\mathbf{e}(V))$, with $H = G_p$ is also different from 0 (cf. [5], [9], [17]), and consequently $V^H = \{0\}$, which reduces it to the first part of Theorem.

PROBLEM 2.5. Does $\mathbf{e}(V) \neq 0$ (in $H^*(G;\mathbb{Z})$) imply that $\operatorname{cat}_G(S(V)) \geq \dim V$ for an orthogonal representation V of G?

References

- [1] T. BARTSCH, Critical orbits of invariant functionals and symmetry breaking, Manuscripta Math. **66** (1989), 129–152.
- [2] $\underline{\qquad}$, On the genus of representation spheres, Comment. Math. Helv. **65** (1990), 85–95.
- [3] _____, Borsuk-Ulam theorems for p-groups and counterexamples for non p-groups, Heidelberg (1989), preprint; Topological Methods for Variational Problems with Symmetries, Lecture Notes in Math., vol. 1560, Springer-Verlag, Berlin, 1993.
- [4] G. BREDON, Introduction to Compact Transformation Groups, Academic Press, 1972.
- [5] K. BROWN, Cohomology of Groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, 1982.
- [6] M. CLAPP AND D. PUPPE, Invariants of the Lusternik-Schnirelman type and the topology of critical sets, Trans. Amer. Math. Soc. 298 (1986), 603–620.
- [7] _____, Critical point theory with symmetries, J. Reine Angew. Math. 418 (1991), 1–29.
- [8] E. FADELL, The equivariant Lusternik-Schnirelman method for invariant functionals and relative cohomological index theory, Topological Methods in Nonlinear Analysis, Sem. Math. Sup., vol. 95, Presses Univ., Montreal, 1985, pp. 41–76.
- [9] P. HILTON AND S. STAMMBACH, A course in Homological Algebra, Graduate Texts in Mathematics, vol. 4, Springer-Verlag, 1971.
- [10] W. Y. HSIANG, Cohomological Theory of Topological Transformation Groups, Springer-Verlag, 1975.
- M. IZYDOREK AND W. MARZANTOWICZ, Equivariant maps between cohomology spheres, Topol. Methods Nonlinear Anal. 5 (1995), 279-290.
- [12] W. MARZANTOWICZ, A G-Lusternik-Schnirelman category of space with an action of a compact Lie group, Topology 28 (1989), 403–412.
- [13] _____, Borsuk-Ulam theorem for any compact Lie group, J. London Math. Soc. (2) 49 (1994), 195–208.

- [14] E. SPANIER, Algebraic Topology, McGraw-Hill, 1966.
- [15] R. SWITZER, Algebraic Topology Homotopy and Homology, Die Grundlehren der math. Wiss., vol. Band 212, Springer-Verlag, 1975.
- [16] T. TOM DIECK, Transformation Groups, de Gruyter Studies in Mathematics, vol. 8, 1987.
- [17] E. WEISS, Cohomology of Groups, Academic Press, 1969.

Manuscript received April 28, 1998

MAREK IZYDOREK Institute of Mathematics Technical University of Gdańsk ul. Narutowicza 11/12 80-952 Gdańsk, POLAND

 $E\text{-}mail\ address:$ izydorek@mifgate.pg.gda.pl

WACŁAW MARZANTOWICZ Faculty of Mathematics and Computer Science Adam Mickiewicz University of Poznań ul. Matejki 47/48 60-769 Poznań, POLAND

 $E\text{-}mail\ address:\ marzan@math.amu.edu.pl$

 TMNA : Volume 16 – 2000 – Nº 1

72