THE BORSUK-ULAM PROPERTY FOR CYCLIC GROUPS

Marek Izydorek - Waceaw Marzantowicz

Abstract

An orthogonal representation V of a group G is said to have the Borsuk-Ulam property if the existence of an equivariant map $f: S(W) \rightarrow$ $S(V)$ from a sphere of representation W into a sphere of representation V implies that $\operatorname{dim} W \leq \operatorname{dim} V$. It is known that a sufficient condition for V to have the Borsuk-Ulam property is the nontriviality of its Euler class $\mathbf{e}(V) \in H^{*}(B G ; \mathcal{R})$. Our purpose is to show that $\mathbf{e}(V) \neq 0$ is also necessary if G is a cyclic group of odd and double odd order. For a finite group G with periodic cohomology an estimate for G-category of a G-space X is also derived.

1. The Euler class of cohomology sphere

Let V be an n-dimensional orthogonal representation of a compact Lie group G. Assume that V is \mathcal{R}-orientable, i.e. the vector bundle $V \subset E G \times_{G} V \rightarrow B G$ is orientable over a ring \mathcal{R}, or equivalently, the action of G on $H^{n-1}(S(V) ; \mathcal{R}) \cong$ $H^{n-1}(S(V) ; \mathbb{Z}) \otimes \mathcal{R}$ is trivial, where $S(V)$ stands for a unit sphere in V (see [14], [15]).

By the Euler class of V over \mathcal{R}, denoted $\mathbf{e}(V)$, we call the Euler class of the vector bundle $E G \times_{G} V \rightarrow B G$ in $H^{*}(B G ; \mathcal{R})$. It is then an element of $H^{n}(B G ; \mathcal{R})$.

Definition 1.1. We say that V has the Borsuk-Ulam property if whenever there is a G-equivariant map $f: S(W) \rightarrow S(V), W$ an orthogonal representation

[^0]of G, then $\operatorname{dim} W \leq \operatorname{dim} V$. Otherwise, we say that V does not have the BorsukUlam property.

It is shown in [13] that if V is \mathcal{R}-orientable and $\mathbf{e}(V) \neq 0$ then V has the Borsuk-Ulam property. We will study the converse problem, that of whether the condition $\mathbf{e}(V)=0$ implies that V does not have the Borsuk-Ulam property.

Suppose that G is a nontrivial, compact, connected Lie group and put $\mathcal{R}=\mathbb{Q}$. Then

$$
\mathbf{e}(V) \neq 0 \Leftrightarrow V^{T}=\{0\},
$$

where $T \subset G$ is the maximal torus of G. Moreover, $\mathbf{e}(V)$ is equal to the multiple of all weights of V (see [10], or [13] for more details). In general, even in the case when G is finite it is difficult to derive $\mathbf{e}(V)$. However, there exists a simple formula for $\mathbf{e}(V)$ if G has periodic cohomology, in particular, if G is a finite cyclic group C_{k} of order k.

Assume that $G=C_{k}$, and choose $\mathcal{R}=\mathbb{Z}_{k}$, the ring of integers modulo k. It is well known (cf. [5], [17]), that $H^{i}\left(C_{k} ; \mathbb{Z}_{k}\right)=\mathbb{Z}_{k}, 0 \leq i<\infty$, and a periodicity is given by multiplication by the element $u=\mathbf{e}\left(V^{1}\right) \in H^{2}\left(C_{k}, \mathbb{Z}_{k}\right)$, where V^{1} is the standard linear complex representation of C_{k} given by the embedding $C_{k} \subset S^{1}$ (the generator $g \in C_{k}$ is identified with $\exp \left(2 \pi \sqrt{-1} k^{-1}\right) \in S^{1}$). Denote by V^{i}, $1 \leq i \leq k / 2$, the i-th tensor power of V^{1} (over \mathbb{C}) and by V^{0} the 1-dimensional (real) trivial representation of G. If $k=2 m$, then for $i=m=k / 2$, we denote by $V_{\mathbb{R}}^{m}$ a 1-dimensional real representation of C_{k} given by the epimorphism $C_{k} \rightarrow C_{2} \simeq\{-1,1\}=O(1)$.

We shall use the following
FACT 1.2. Every real orthogonal representation of C_{k} is of the form:

$$
\begin{array}{lll}
V=\bigoplus l_{i} V^{i}, & 0 \leq i \leq(k-1) / 2, & \text { if } k \text { is odd }, \\
V=\bigoplus l_{i} V^{i} \oplus l_{m} V_{\mathbb{R}}^{m}, & 0 \leq i \leq m-1, & \text { if } k=2 m
\end{array}
$$

Moreover, for $k=2 m, k \neq 2$, V is orientable if and only if $V=\bigoplus_{i=0}^{m} l_{i} V^{i}$, where $V^{m}:=2 V_{\mathbb{R}}^{m}$. Every representation $V=l_{0} V^{0} \oplus l_{1} V_{\mathbb{R}}^{1}$ of C_{2} is \mathbb{Z}_{2}-orientable.

Since $\mathbf{e}(V \oplus W)=\mathbf{e}(V) \cdot \mathbf{e}(W)$ and $\mathbf{e}\left(V^{i}\right)=i \cdot \mathbf{e}\left(V^{1}\right)=i \cdot u \in H^{2}\left(C_{k} ; \mathbb{Z}_{k}\right)$ (cf. [13] and [16]), we get $\mathbf{e}(V)=\prod i^{l_{i}} \cdot u^{r}$, for $V=\bigoplus l_{i} V^{i}, 0 \leq i \leq[k / 2]$ and $r=\sum l_{i}$. The last means that $\mathbf{e}(V) \neq 0$ if and only if the integer

$$
\mathbf{h}(V)=\prod i^{l_{i}}, \quad 0 \leq i \leq[k / 2],
$$

(with the convention $0^{0}=1,0^{r}=0$ for $r>0$) is not divisible by k. In particular $\mathbf{e}(V)=0$ if $l_{0} \neq 0$. Our main theorems state that for cyclic groups of odd and double odd order $\mathbf{e}(V)$ is the only obstruction for V to have the Borsuk-Ulam property.

Theorem 1.3. Let V be \mathbb{Z}_{k}-orientable, orthogonal representation of the group $G=C_{k}$, with k being an odd number. Then V has the Borsuk-Ulam property if and only if $\mathbf{e}(V) \neq 0$.

Proof. It is sufficient to show that if $\mathbf{e}(V)=0$ then there exist an orthogonal representation W satisfying $\operatorname{dim} W>\operatorname{dim} V$, and a G-equivariant map $f: S(W) \rightarrow S(V)$.

We assume that $V^{G}=\{0\}$, otherwise $S(W)$ can be mapped into a point. Let V be of dimension n. Consider the vector bundle $\xi=E G \times{ }_{G} V$ over $B G$. We claim that if $\mathbf{e}(V)=0$ then the sphere bundle $S(\xi)=E G \times_{G} S(V)$ of ξ restricted to the $(n+1)$-skeleton $B G^{(n+1)}$ of $B G$ has a nonzero section. Indeed, $\pi_{i}(S(V))=0$ if $i<n-1$, and therefore $S(\xi)_{\mid B G^{(n-1)}}$ admits a section since all obstructions are in zero groups $H^{i+1}\left(B G ; \pi_{i}(S(V))\right), i \leq n-2$. Furthermore, by its geometric interpretation $\mathbf{e}(V)$ is the only obstruction to extending such a section over the n-skeleton of $B G$. This yields that there is a section on $B G^{(n)}$, since $\mathbf{e}(V)=0$.

Moreover, since V is \mathbb{Z}_{k}-orientable and $k \neq 2$ the dimension of V is even. This implies $H^{n+1}\left(B G ; \pi_{n}(S(V))\right)=0$, because either $n=2$ and $\pi_{2}\left(S^{1}\right)=0$ or $n \geq 4$ and $H^{n+1}\left(B G ; \pi_{n}(S(V))\right)=H^{n+1}\left(B G ; \mathbb{Z}_{2}\right)=0$. Thus the section can be extended over $B G^{(n+1)}$. Since G acts freely on $E G$ the sections of the fibration $E G^{(n+1)} \times{ }_{G} S(V)$ are in one-to-one correspondence with G-mappings from $E G^{n+1}$ to $S(V)$ (cf. [4]). Hence, there is a G-map $f: E G^{(n+1)} \rightarrow S(V)$. Put $W=(n / 2+1) V^{1}$ so that, W is a representation of C_{k} of (real) dimension $n+2$. Let $\phi: S(W) \rightarrow E G$ be a G-map into the universal space. Note that $E G$ and $S(V)$ are G - $C W$ complexes, thus ϕ can be replaced, up to a G-homotopy, by a G-cellular map $\bar{\phi}: S(W) \rightarrow E G^{(n+1)}$, and the composition $f \bar{\phi}$ gives the required map. The proof is complete.

Theorem 1.4. Let $G=C_{k}$ be a cyclic group of order $k=2 \cdot$ odd. Let V be an orthogonal, \mathbb{Z}_{k}-orientable representation of G. Then V has the Borsuk-Ulam property if and only if $\mathbf{e}(V) \neq 0$.

We begin with the following
Proposition 1.5. Let V be a \mathbb{Z}_{k}-orientable, orthogonal representation of a cyclic group $C_{k}(k \neq 2)$ such that $\mathbf{h}(V) \equiv 0(\bmod 2 k)$. Then V does not have the Borsuk-Ulam property.

More precisely, for any cyclic group $G=C_{k}$ and $V=\bigoplus m_{i} V^{i}$ there exists a G-equivariant map $f: S\left((r+1) V^{1}\right) \rightarrow S(V)$, for $r=\sum m_{i}$ provided $\prod i^{m_{i}}$ is divisible by $2 k$.

Proof. Denote by W^{1} the standard linear (complex) representation of $C_{2 k}$ and by W^{i} its i-th tensor power (over \mathbb{C}). Let W be an orthogonal representation of $C_{2 k}$ defined as a direct sum $\bigoplus m_{i} W^{i}$ where m_{i} are taken from the
splitting of V. Obviously, $\mathbf{h}(W)=\mathbf{h}(V)$ and $\mathbf{e}(W)=0$, since $2 k$ divides $\mathbf{h}(W)$. Consequently, there exists a $C_{2 k}$-equivariant map

$$
\tilde{f}: S\left(r W^{1}\right) * C_{2 k} \rightarrow S(W), \quad r=\sum m_{i}
$$

where $A * B$ denotes the join of A and B (cf. [16]). For a fixed generator g of $C_{2 k}$ we denote by \widetilde{f}_{s} the restriction of \widetilde{f} to the space $S\left(r W^{1}\right) *\left\{g^{s}, g^{s+1}\right\}$ which is homeomorphic to a $2 r$-dimensional sphere. Since W is \mathbb{Z}_{k}-orientable, \widetilde{f}_{s} represents the same element in the homotopy group $\pi_{2 r}\left(S^{2 r-1}\right) \cong \mathbb{Z}_{2}$ for every $s=0, \ldots, 2 k-1$. Now, the map

$$
\bar{f}: S\left(r W^{1}\right) *\left\{g^{0}, g^{2}, \ldots, g^{2 k-2}\right\} \rightarrow S(W)
$$

given by the restriction of \tilde{f} can be considered as a C_{k}-equivariant map

$$
h: S\left(r V^{1}\right) * C_{k} \rightarrow S(V)
$$

with an action of C_{k} induced by the standard inclusion $C_{k} \subset C_{2 k}$. Let γ be a fixed generator of C_{k} and \bar{f}_{s} be the restriction of \bar{f} to the space $S\left(r V^{1}\right) *\left\{\gamma^{s}, \gamma^{s+1}\right\}$. Note, that the map \bar{f}_{s} represents the sum of homotopy classes of maps $\widetilde{f}_{2 s}$ and $\widetilde{f}_{2 s+1}$ in the group $\pi_{2 r}\left(S^{2 r-1}\right)$. Since $\pi_{2 r}\left(S^{2 r-1}\right)=\mathbb{Z}_{2}$ and $\widetilde{f}_{2 s}$ is homotopic to $\widetilde{f}_{2 s+1}, \bar{f}_{s}$ is homotopically trivial. This gives us an extension of the map \bar{f} to a C_{k}-equivariant map

$$
f: S\left((r+1) V^{1}\right) \rightarrow S(V)
$$

and the proof is complete.
Corollary 1.6. Let V be a \mathbb{Z}_{k}-orientable, orthogonal representation of C_{k}, $k \neq 2$. If the Euler class $\mathbf{e}(V)=0$ then:
(a) the representation $V \oplus V$ does not have the Borsuk-Ulam property,
(b) the representation $V \oplus V^{2 t}$ does not have the Borsuk-Ulam property for $t=0,1,2, \ldots$.

Corollary 1.7. If $V=\bigoplus m_{i} V^{i}$ is any \mathbb{Z}_{k}-orientable representation of C_{k} $(k \neq 2)$ with the Euler class $\mathbf{e}(V)$ equal to zero then the representation $V^{\prime}=$ $m_{i_{0}} V^{2 i_{0}} \bigoplus_{i \neq i_{0}} m_{i} V^{i}$, with $m_{i_{0}} \neq 0$, does not have the Borsuk-Ulam property.

Theorem 1.4 is a direct consequence of the following
Proposition 1.8. Let $V=\bigoplus m_{i} V^{i}$ be a representation of a cyclic group C_{k}, with $k=2^{d}$. odd. Assume there is i_{0} divisible by 2^{d} with $m_{i_{0}} \neq 0$. Then $\mathbf{e}(V)=0$ implies V does not have the Borsuk-Ulam property.

Proof. If $\mathbf{h}(V)$ is divisible by 2^{d+1} then the above result follows directly from Proposition 1.5. Assume then, that $\mathbf{h}(V)$ is divisible by 2^{d} and is not divisible by 2^{d+1}. It follows that $m_{i_{0}}=1$. Obviously, $V^{i_{0}}$ is isomorphic to $V^{i_{0}+k}$
and that is why the summand $V^{i_{0}}$ can be replaced by $V^{i_{0}+k}$ in the direct sum $V=\bigoplus m_{i} V^{i}$.

Since $k=2^{d}$. odd and i_{0} is also of the form 2^{d}. odd, $i_{0}+k$ is divisible by 2^{d+1}. Now again by Proposition 1.5 we have the desired result.

Remark 1.9. It has been proved in [3] that for $G=C_{p} \times C_{q}=C_{p q}$, where p, q distinct primes, and any orthogonal representation V of G with $\operatorname{dim} V^{C_{p}} \geq 1$ and $\operatorname{dim} V^{C_{q}} \geq 1$ there exists a G-map $f: S(V) \rightarrow S\left(V^{C_{p}} \oplus V^{C_{q}}\right)$. Of course, that result allows to construct a pair of representations U, W of $G=C_{k}, k=$ $p q$, with $U^{G}=W^{G}=\{0\}$ and $\operatorname{dim} U>\operatorname{dim} W$ such that there is a G-map $f: S(U) \rightarrow S(W)$. Nevertheless, our result gives a necessary and sufficient condition.

Problem 1.10. For which group G and representation V the condition $\mathbf{e}(V)=0$ implies that V does not have the Borsuk-Ulam property?

2. An estimate of equivariant category

Closely related to the problem of equivariant mapping into spheres is the computation of equivariant category, $\operatorname{cat}_{G}(X)$, of a G-space X (cf. [6]-[8], [12]). This is by definition the smallest natural number m (or ∞) such that there exists a covering of X consisting of $m G$-invariant open subsets $\mathcal{U}_{1}, \ldots, \mathcal{U}_{m}$ each of which can be equivariantly deformed to an orbit $G x_{i}$ inside X.

Let X be a G-space. We say that an orbit type $(G / H)=\left(G / G_{x}\right), x \in X$, is minimal in X if there is no $y \in X$ such that $H \subset G_{y}$ and $H \neq G_{y}$. By $\alpha=\alpha(X)$ we denote the number of connected components of $\bigcup X^{(H)} / G=\bigcup X_{(H)} / G$, where (H) runs over all minimal orbit types of X (cf. [12, Definition 1.2]).

Proposition 2.1. Let G be a finite group, $\{e\} \neq H \subset G$ its subgroup. Suppose that X is a connected G-space and $\alpha=\alpha(X)$ is taken with respect to the action of H on X. Then

$$
\operatorname{cat}_{G}(X) \geq \frac{1}{\alpha} \operatorname{cat}_{H}(X)
$$

Proof. Let $\left\{\mathcal{U}_{i}\right\}_{1}^{m}, m=\operatorname{cat}_{G}(X)$, be a G-covering of X with $\operatorname{cat}_{G}\left(\overline{\mathcal{U}}_{i}, X\right)$ $=1$. We shall have established the proposition if we prove that

$$
\operatorname{cat}_{H}\left(\overline{\mathcal{U}}_{i}, X\right)=\operatorname{cat}_{H}\left(G / G_{x_{i}}, X\right) \leq \alpha
$$

If X is a G-ANR then this follows from Theorem 1.10 of [12].
In the general case, since G is a finite group

$$
G x_{i}=\bigcup_{j=1}^{n_{i}} H x_{i, j} \simeq \bigcup_{j=1}^{n_{i}} H / H_{i, j}
$$

as an H-space. Let us choose a point $x_{\beta}^{*}, 1 \leq \beta \leq \alpha$, in every connected component of $X_{(H)} / G$. By Lemma 1.11 of [12], the inclusion $\iota_{i, j}: H / H_{i, j} \subset X$ is H-homotopic to a H-equivariant map $\phi_{i, j}: H / H_{i, j} \rightarrow H / H_{x_{\beta}}$, for some $1 \leq \beta(i, j) \leq \alpha$, which proves the required inequality and consequently Proposition 2.1

Lemma 2.2. Let p be a prime number. Suppose that X is a $(n-1)$-dimensional cohomology sphere over $\mathbb{Z}, n \geq 2$. Assume that a p-group G acts on X without fixed points. Then for every minimal orbit type (H) the set $X^{(H)} / G$ is connected.

Proof. Since (H) is minimal $X^{(H)} / G=X_{(H)} / G=X_{H} / N(H)$ (cf. [4]). It is sufficient to prove that X_{H} is connected. From P. Smith theorem (cf. [4]) it follows that

$$
X^{H} \simeq_{\mathbb{Z}_{p}} S^{n_{1}-1}, \quad n_{1} \leq n
$$

Let $\{e\} \subset H_{1} \subset \ldots \subset H \subset \bar{H} \subset \ldots \subset G$ be a resolving tower of G with factors isomorphic to C_{p}. Since H is minimal, $X^{G}=\emptyset$ and $H \neq \bar{H}$, we obtain

$$
\emptyset=X^{\bar{H}}=\left(X^{H}\right)^{N(\bar{H}, H)}=\left(X^{H}\right)^{C_{p}} .
$$

This leads to a contradiction if $X_{H}=X^{H} \simeq_{\mathbb{Z}_{p}} S^{0}$ and p is odd. If $p=2$, then $N(\bar{H}, H)=\mathbb{Z}_{2}$ has to permute two connected components of $X^{H}=X_{H} \simeq_{\mathbb{Z}_{2}} S^{0}$. Indeed, any such component $X_{0}^{H} \simeq_{\mathbb{Z}_{2}} *$, and $\left(X_{0}^{H}\right)^{C_{2}} \simeq_{\mathbb{Z}_{2}} *$ by the Smith theory, which shows that $X^{\bar{H}}$ is nonempty if $N(\bar{H}, H)$ preserves a component X_{0}^{H} of X^{H}. This proves that $X^{(H)} / G$ is connected.

The following proposition is an immediate consequence of Proposition 2.1 and Lemma 2.2.

Proposition 2.3. Let G_{p} be a p-subgroup of a finite group G and X be a G-space which is an $(n-1)$-cohomology sphere over \mathbb{Z}_{p}. Let α_{p} be a number of distinct minimal orbit types of the action of G_{p} on X. Suppose that $X^{G_{p}}=\emptyset$. Then

$$
\operatorname{cat}_{G}(X) \geq \frac{1}{\alpha_{p}} \operatorname{cat}_{G_{p}}(X)
$$

In particular, $\operatorname{cat}_{G}(X) \geq \operatorname{cat}_{H}(X)$ if H is a cyclic p-group.
Combining the above with the main result of [2] we get the following generalization of Bartsch's result.

Theorem 2.4. Let G be a finite group with periodic cohomology such that its 2 -Sylow group is cyclic. Suppose that $X=S(V)$ is the sphere of a \mathbb{Z}-orientable orthogonal representation of G of dimension n. Assume that $X^{H}=\emptyset$ for some p-subgroup $H \subset G$. Then

$$
\operatorname{cat}_{G}(X) \geq n / p^{r-1} \quad \text { where }|H|=p^{r}
$$

In particular, if $\mathbf{e}(V) \neq 0$ in $H^{n}(G ; \mathbb{Z}) \cong \mathbb{Z} /|G| \mathbb{Z}$, then

$$
\operatorname{cat}_{G}(X) \geq n / p^{r-1}
$$

for every divisor p of $|G|, p^{r}=\left|G_{p}\right|$, such that $\mathbf{e}(V) \not \equiv 0\left(\bmod p^{r}\right)$.
Proof. By Theorem IV.9.7 of [5], G has periodic cohomology if and only if every its Sylow p-subgroup is cyclic (if p is odd), or cyclic and generalized quaternionic if $p=2$. For $H=C^{p^{r}}$ the condition $V^{H}=\{0\}{\operatorname{implies~} \operatorname{cat}_{H}(X) \geq}$. n / p^{r-1}, by the main result of [2]. By Lemma $2.3 \alpha_{H}=1$, and consequently $\operatorname{cat}_{G}(X) \geq n / p^{r-1}$ as follows from Proposition 2.3. This shows the first part of statement.

If $\mathbf{e}(V) \not \equiv 0\left(\bmod p^{r}\right)$ then $\mathbf{e}(V)_{p}=\operatorname{res}_{H}^{G}(\mathbf{e}(V))$, with $H=G_{p}$ is also different from 0 (cf. [5], [9], [17]), and consequently $V^{H}=\{0\}$, which reduces it to the first part of Theorem.

Problem 2.5. Does $\mathbf{e}(V) \neq 0$ (in $H^{*}(G ; \mathbb{Z})$) imply that $\operatorname{cat}_{G}(S(V)) \geq$ $\operatorname{dim} V$ for an orthogonal representation V of G ?

References

[1] T. Bartsch, Critical orbits of invariant functionals and symmetry breaking, Manuscripta Math. 66 (1989), 129-152.
[2] , On the genus of representation spheres, Comment. Math. Helv. 65 (1990), 85-95.
[3] , Borsuk-Ulam theorems for p-groups and counterexamples for non p-groups, Heidelberg (1989), preprint; Topological Methods for Variational Problems with Symmetries, Lecture Notes in Math., vol. 1560, Springer-Verlag, Berlin, 1993.
[4] G. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972.
[5] K. Brown, Cohomology of Groups, Graduate Texts in Mathematics, vol. 87, SpringerVerlag, 1982.
[6] M. Clapp and D. Puppe, Invariants of the Lusternik-Schnirelman type and the topology of critical sets, Trans. Amer. Math. Soc. 298 (1986), 603-620.
\qquad , Critical point theory with symmetries, J. Reine Angew. Math. 418 (1991), 1-29.
[8] E. FADELL, The equivariant Lusternik-Schnirelman method for invariant functionals and relative cohomological index theory, Topological Methods in Nonlinear Analysis, Sem. Math. Sup., vol. 95, Presses Univ., Montreal, 1985, pp. 41-76.
[9] P. Hilton and S. Stammbach, A course in Homological Algebra, Graduate Texts in Mathematics, vol. 4, Springer-Verlag, 1971.
[10] W. Y. Hsiang, Cohomological Theory of Topological Transformation Groups, SpringerVerlag, 1975.
[11] M. Izydorek and W. Marzantowicz, Equivariant maps between cohomology spheres, Topol. Methods Nonlinear Anal. 5 (1995), 279-290.
[12] W. Marzantowicz, A G-Lusternik-Schnirelman category of space with an action of a compact Lie group, Topology 28 (1989), 403-412.
[13] \qquad , Borsuk-Ulam theorem for any compact Lie group, J. London Math. Soc. (2) 49 (1994), 195-208.
[14] E. Spanier, Algebraic Topology, McGraw-Hill, 1966.
[15] R. Switzer, Algebraic Topology - Homotopy and Homology, Die Grundlehren der math. Wiss., vol. Band 212, Springer-Verlag, 1975.
[16] T. том Dieck, Transformation Groups, de Gruyter Studies in Mathematics, vol. 8, 1987.
[17] E. Weiss, Cohomology of Groups, Academic Press, 1969.

Marek Izydorek
Institute of Mathematics
Technical University of Gdańsk
ul. Narutowicza 11/12
80-952 Gdańsk, POLAND
E-mail address: izydorek@mifgate.pg.gda.pl

WacŁaw Marzantowicz
Faculty of Mathematics and Computer Science
Adam Mickiewicz University of Poznań
ul. Matejki 47/48
60-769 Poznań, POLAND
E-mail address: marzan@math.amu.edu.pl

[^0]: 2000 Mathematics Subject Classification. Primary: 57S17, 55M30; Secondary: 55R25, 55S35.

 Key words and phrases. Equivariant maps, the Euler class, G-category.

