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THE BORSUK–ULAM PROPERTY FOR CYCLIC GROUPS

Marek Izydorek — Wacław Marzantowicz

Abstract. An orthogonal representation V of a group G is said to have the
Borsuk–Ulam property if the existence of an equivariant map f : S(W )→
S(V ) from a sphere of representation W into a sphere of representation

V implies that dim W ≤ dim V . It is known that a sufficient condition
for V to have the Borsuk–Ulam property is the nontriviality of its Euler

class e(V ) ∈ H∗(BG;R). Our purpose is to show that e(V ) 6= 0 is also

necessary if G is a cyclic group of odd and double odd order. For a finite
group G with periodic cohomology an estimate for G-category of a G-space

X is also derived.

1. The Euler class of cohomology sphere

Let V be an n-dimensional orthogonal representation of a compact Lie group
G. Assume that V is R-orientable, i.e. the vector bundle V ⊂ EG×G V → BG
is orientable over a ring R, or equivalently, the action of G on Hn−1(S(V );R) ∼=
Hn−1(S(V );Z) ⊗ R is trivial, where S(V ) stands for a unit sphere in V (see
[14], [15]).
By the Euler class of V over R, denoted e(V ), we call the Euler class of

the vector bundle EG ×G V → BG in H∗(BG;R). It is then an element
of Hn(BG;R).

Definition 1.1. We say that V has the Borsuk–Ulam property if whenever
there is a G-equivariant map f : S(W )→ S(V ), W an orthogonal representation
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of G, then dimW ≤ dimV . Otherwise, we say that V does not have the Borsuk–
Ulam property.

It is shown in [13] that if V is R-orientable and e(V ) 6= 0 then V has the
Borsuk–Ulam property. We will study the converse problem, that of whether the
condition e(V ) = 0 implies that V does not have the Borsuk–Ulam property.
Suppose thatG is a nontrivial, compact, connected Lie group and putR = Q.

Then

e(V ) 6= 0⇔ V T = {0},
where T ⊂ G is the maximal torus of G. Moreover, e(V ) is equal to the multiple
of all weights of V (see [10], or [13] for more details). In general, even in the
case when G is finite it is difficult to derive e(V ). However, there exists a simple
formula for e(V ) if G has periodic cohomology, in particular, if G is a finite cyclic
group Ck of order k.
Assume that G = Ck, and choose R = Zk, the ring of integers modulo k. It is

well known (cf. [5], [17]), that Hi(Ck;Zk) = Zk, 0 ≤ i <∞, and a periodicity is
given by multiplication by the element u = e(V 1) ∈ H2(Ck,Zk), where V 1 is the
standard linear complex representation of Ck given by the embedding Ck ⊂ S1

(the generator g ∈ Ck is identified with exp(2π
√
−1k−1) ∈ S1). Denote by V i,

1 ≤ i ≤ k/2, the i-th tensor power of V 1 (over C) and by V 0 the 1-dimensional
(real) trivial representation of G. If k = 2m, then for i = m = k/2, we denote
by V mR a 1-dimensional real representation of Ck given by the epimorphism
Ck → C2 ' {−1, 1} = O(1).
We shall use the following

Fact 1.2. Every real orthogonal representation of Ck is of the form:

V =
⊕
liV
i, 0 ≤ i ≤ (k − 1)/2, if k is odd,

V =
⊕
liV
i ⊕ lmV mR , 0 ≤ i ≤ m− 1, if k = 2m.

Moreover, for k = 2m, k 6= 2, V is orientable if and only if V =
⊕m
i=0 liV

i, where
V m := 2V mR . Every representation V = l0V

0 ⊕ l1V 1R of C2 is Z2-orientable.

Since e(V ⊕W ) = e(V ) · e(W ) and e(V i) = i · e(V 1) = i · u ∈ H2(Ck;Zk)
(cf. [13] and [16]), we get e(V ) =

∏
ili · ur, for V =

⊕
liV
i, 0 ≤ i ≤ [k/2] and

r =
∑
li. The last means that e(V ) 6= 0 if and only if the integer

h(V ) =
∏
ili , 0 ≤ i ≤ [k/2],

(with the convention 00 = 1, 0r = 0 for r > 0) is not divisible by k. In particular
e(V ) = 0 if l0 6= 0. Our main theorems state that for cyclic groups of odd and
double odd order e(V ) is the only obstruction for V to have the Borsuk–Ulam
property.
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Theorem 1.3. Let V be Zk-orientable, orthogonal representation of the
group G = Ck, with k being an odd number. Then V has the Borsuk–Ulam
property if and only if e(V ) 6= 0.

Proof. It is sufficient to show that if e(V ) = 0 then there exist an or-
thogonal representation W satisfying dimW > dimV , and a G-equivariant map
f : S(W )→ S(V ).
We assume that V G = {0}, otherwise S(W ) can be mapped into a point.

Let V be of dimension n. Consider the vector bundle ξ = EG ×G V over BG.
We claim that if e(V ) = 0 then the sphere bundle S(ξ) = EG ×G S(V ) of ξ
restricted to the (n+1)-skeleton BG(n+1) of BG has a nonzero section. Indeed,
πi(S(V )) = 0 if i < n − 1, and therefore S(ξ)|BG(n−1) admits a section since all
obstructions are in zero groups Hi+1(BG;πi(S(V ))), i ≤ n − 2. Furthermore,
by its geometric interpretation e(V ) is the only obstruction to extending such a
section over the n-skeleton of BG. This yields that there is a section on BG(n),
since e(V ) = 0.
Moreover, since V is Zk-orientable and k 6= 2 the dimension of V is even.

This implies Hn+1(BG;πn(S(V ))) = 0, because either n = 2 and π2(S1) = 0
or n ≥ 4 and Hn+1(BG;πn(S(V ))) = Hn+1(BG;Z2) = 0. Thus the section
can be extended over BG(n+1). Since G acts freely on EG the sections of the
fibration EG(n+1) ×G S(V ) are in one-to-one correspondence with G-mappings
from EGn+1 to S(V ) (cf. [4]). Hence, there is a G-map f : EG(n+1) → S(V ).
Put W = (n/2 + 1)V 1 so that, W is a representation of Ck of (real) dimension
n+ 2. Let φ : S(W )→ EG be a G-map into the universal space. Note that EG
and S(V ) are G-CW complexes, thus φ can be replaced, up to a G-homotopy,
by a G-cellular map φ : S(W ) → EG(n+1), and the composition fφ gives the
required map. The proof is complete. �

Theorem 1.4. Let G = Ck be a cyclic group of order k = 2 · odd. Let V be
an orthogonal, Zk-orientable representation of G. Then V has the Borsuk–Ulam
property if and only if e(V ) 6= 0.

We begin with the following

Proposition 1.5. Let V be a Zk-orientable, orthogonal representation of
a cyclic group Ck (k 6= 2) such that h(V ) ≡ 0 (mod 2k). Then V does not have
the Borsuk–Ulam property.
More precisely, for any cyclic group G = Ck and V =

⊕
miV

i there exists
a G-equivariant map f : S((r + 1)V 1)→ S(V ), for r =

∑
mi provided

∏
imi is

divisible by 2k.

Proof. Denote by W 1 the standard linear (complex) representation of C2k
and by W i its i-th tensor power (over C). Let W be an orthogonal represen-
tation of C2k defined as a direct sum

⊕
miW

i where mi are taken from the
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splitting of V . Obviously, h(W ) = h(V ) and e(W ) = 0, since 2k divides h(W ).
Consequently, there exists a C2k-equivariant map

f̃ : S(rW 1) ∗ C2k → S(W ), r =
∑
mi,

where A ∗ B denotes the join of A and B (cf. [16]). For a fixed generator g
of C2k we denote by f̃s the restriction of f̃ to the space S(rW 1) ∗ {gs, gs+1}
which is homeomorphic to a 2r-dimensional sphere. Since W is Zk-orientable,
f̃s represents the same element in the homotopy group π2r(S2r−1) ∼= Z2 for every
s = 0, . . . , 2k − 1. Now, the map

f : S(rW 1) ∗ {g0, g2, . . . , g2k−2} → S(W )

given by the restriction of f̃ can be considered as a Ck-equivariant map

h : S(rV 1) ∗ Ck → S(V )

with an action of Ck induced by the standard inclusion Ck ⊂ C2k. Let γ be a fixed
generator of Ck and fs be the restriction of f to the space S(rV

1) ∗ {γs, γs+1}.
Note, that the map fs represents the sum of homotopy classes of maps f̃2s and
f̃2s+1 in the group π2r(S2r−1). Since π2r(S2r−1) = Z2 and f̃2s is homotopic
to f̃2s+1, fs is homotopically trivial. This gives us an extension of the map f to
a Ck-equivariant map

f : S((r + 1)V 1)→ S(V ),
and the proof is complete. �

Corollary 1.6. Let V be a Zk-orientable, orthogonal representation of Ck,
k 6= 2. If the Euler class e(V ) = 0 then:

(a) the representation V ⊕ V does not have the Borsuk–Ulam property,
(b) the representation V ⊕ V 2t does not have the Borsuk–Ulam property
for t = 0, 1, 2, . . . .

Corollary 1.7. If V =
⊕
miV

i is any Zk-orientable representation of Ck
(k 6= 2) with the Euler class e(V ) equal to zero then the representation V ′ =
mi0V

2i0
⊕
i 6=i0 miV

i, with mi0 6= 0, does not have the Borsuk–Ulam property.

Theorem 1.4 is a direct consequence of the following

Proposition 1.8. Let V =
⊕
miV

i be a representation of a cyclic group
Ck, with k = 2d · odd. Assume there is i0 divisible by 2d with mi0 6= 0. Then
e(V ) = 0 implies V does not have the Borsuk–Ulam property.

Proof. If h(V ) is divisible by 2d+1 then the above result follows directly
from Proposition 1.5. Assume then, that h(V ) is divisible by 2d and is not
divisible by 2d+1. It follows that mi0 = 1. Obviously, V

i0 is isomorphic to V i0+k
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and that is why the summand V i0 can be replaced by V i0+k in the direct sum
V =
⊕
miV

i.
Since k = 2d ·odd and i0 is also of the form 2d ·odd, i0+k is divisible by 2d+1.

Now again by Proposition 1.5 we have the desired result. �

Remark 1.9. It has been proved in [3] that for G = Cp×Cq = Cpq, where p,
q distinct primes, and any orthogonal representation V of G with dimV Cp ≥ 1
and dimV Cq ≥ 1 there exists a G-map f : S(V ) → S(V Cp ⊕ V Cq ). Of course,
that result allows to construct a pair of representations U , W of G = Ck, k =
pq, with UG = WG = {0} and dimU > dimW such that there is a G-map
f : S(U) → S(W ). Nevertheless, our result gives a necessary and sufficient
condition.

Problem 1.10. For which group G and representation V the condition
e(V ) = 0 implies that V does not have the Borsuk–Ulam property?

2. An estimate of equivariant category

Closely related to the problem of equivariant mapping into spheres is the
computation of equivariant category, catG(X), of a G-space X (cf. [6]–[8], [12]).
This is by definition the smallest natural number m (or ∞) such that there
exists a covering of X consisting of m G-invariant open subsets U1, . . . ,Um each
of which can be equivariantly deformed to an orbit Gxi inside X.
Let X be a G-space. We say that an orbit type (G/H) = (G/Gx), x ∈ X, is

minimal in X if there is no y ∈ X such that H ⊂ Gy and H 6= Gy. By α = α(X)
we denote the number of connected components of

⋃
X(H)/G =

⋃
X(H)/G,

where (H) runs over all minimal orbit types of X (cf. [12, Definition 1.2]).

Proposition 2.1. Let G be a finite group, {e} 6= H ⊂ G its subgroup.
Suppose that X is a connected G-space and α = α(X) is taken with respect to
the action of H on X. Then

catG(X) ≥
1
α
catH(X).

Proof. Let {Ui}m1 , m = catG(X), be a G-covering of X with catG(U i, X)
= 1. We shall have established the proposition if we prove that

catH(U i, X) = catH(G/Gxi , X) ≤ α.

If X is a G-ANR then this follows from Theorem 1.10 of [12].
In the general case, since G is a finite group

Gxi =
ni⋃
j=1

Hxi,j '
ni⋃
j=1

H/Hi,j
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as an H-space. Let us choose a point x∗β , 1 ≤ β ≤ α, in every connected com-
ponent of X(H)/G. By Lemma 1.11 of [12], the inclusion ιi,j : H/Hi,j ⊂ X
is H-homotopic to a H-equivariant map φi,j : H/Hi,j → H/Hxβ , for some
1 ≤ β(i, j) ≤ α, which proves the required inequality and consequently Proposi-
tion 2.1 �

Lemma 2.2. Let p be a prime number. Suppose that X is a (n− 1)-dimen-
sional cohomology sphere over Z, n ≥ 2. Assume that a p-group G acts on X
without fixed points. Then for every minimal orbit type (H) the set X(H)/G is
connected.

Proof. Since (H) is minimal X(H)/G = X(H)/G = XH/N(H) (cf. [4]).
It is sufficient to prove that XH is connected. From P. Smith theorem (cf. [4])
it follows that

XH 'Zp S
n1−1, n1 ≤ n.

Let {e} ⊂ H1 ⊂ . . . ⊂ H ⊂ H ⊂ . . . ⊂ G be a resolving tower of G with factors
isomorphic to Cp. Since H is minimal, XG = ∅ and H 6= H, we obtain

∅ = XH = (XH)N(H,H) = (XH)Cp .

This leads to a contradiction if XH = XH 'Zp S
0 and p is odd. If p = 2, then

N(H,H) = Z2 has to permute two connected components of XH = XH 'Z2 S
0.

Indeed, any such component XH0 'Z2 ∗, and (XH0 )
C2 'Z2 ∗ by the Smith theory,

which shows thatXH is nonempty ifN(H,H) preserves a componentXH0 ofX
H .

This proves that X(H)/G is connected. �

The following proposition is an immediate consequence of Proposition 2.1
and Lemma 2.2.

Proposition 2.3. Let Gp be a p-subgroup of a finite group G and X be
a G-space which is an (n − 1)-cohomology sphere over Zp. Let αp be a number
of distinct minimal orbit types of the action of Gp on X. Suppose that XGp = ∅.
Then

catG(X) ≥
1
αp
catGp(X).

In particular, catG(X) ≥ catH(X) if H is a cyclic p-group.

Combining the above with the main result of [2] we get the following gener-
alization of Bartsch’s result.

Theorem 2.4. Let G be a finite group with periodic cohomology such that its
2-Sylow group is cyclic. Suppose that X = S(V ) is the sphere of a Z-orientable
orthogonal representation of G of dimension n. Assume that XH = ∅ for some
p-subgroup H ⊂ G. Then

catG(X) ≥ n/pr−1 where |H| = pr.



The Borsuk–Ulam Property 71

In particular, if e(V ) 6= 0 in Hn(G;Z) ∼= Z/|G|Z, then

catG(X) ≥ n/pr−1

for every divisor p of |G|, pr = |Gp|, such that e(V ) 6≡ 0(mod pr).

Proof. By Theorem IV.9.7 of [5], G has periodic cohomology if and only
if every its Sylow p-subgroup is cyclic (if p is odd), or cyclic and generalized
quaternionic if p = 2. For H = Cp

r

the condition V H = {0} implies catH(X) ≥
n/pr−1, by the main result of [2]. By Lemma 2.3 αH = 1, and consequently
catG(X) ≥ n/pr−1 as follows from Proposition 2.3 . This shows the first part of
statement.
If e(V ) 6≡ 0 (mod pr) then e(V )p = resGH(e(V )), with H = Gp is also differ-

ent from 0 (cf. [5], [9], [17]), and consequently V H = {0}, which reduces it to
the first part of Theorem. �

Problem 2.5. Does e(V ) 6= 0 (in H∗(G;Z)) imply that catG(S(V )) ≥
dimV for an orthogonal representation V of G?
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