EXISTENCE OF MANY SIGN-CHANGING NONRADIAL SOLUTIONS FOR SEMILINEAR ELLIPTIC PROBLEMS ON THIN ANNULI

ALFONSO CASTRO — MARCEL B. FINAN

Abstract. We study the existence of many nonradial sign-changing solutions of a superlinear Dirichlet boundary value problem in an annulus in \mathbb{R}^N. We use Nehari-type variational method and group invariance techniques to prove that the critical points of an action functional on some spaces of invariant functions in $H^{1,2}_0(\Omega_\epsilon)$, where Ω_ϵ is an annulus in \mathbb{R}^N of width ϵ, are weak solutions (which in our case are also classical solutions) to our problem. Our result generalizes an earlier result of Castro et al. (See [4])

1. Introduction

In this article we discuss the existence of many sign-changing nonradial solutions of semilinear elliptic equations on an annulus in \mathbb{R}^N, $N \geq 2$:

$$\Omega_\epsilon := \{ x \in \mathbb{R}^N : 1 - \epsilon < |x| < \epsilon \},$$

where $\epsilon > 0$.

We consider the Dirichlet boundary value problem

\begin{equation}
\begin{cases}
\Delta u + f(u) = 0 & \text{in } \Omega_\epsilon, \\
u = 0 & \text{on } \partial \Omega_\epsilon,
\end{cases}
\end{equation}

1991 Mathematics Subject Classification. 35J20, 35J25, 35J60.

Key words and phrases. Dirichlet’s problem, superlinear, subcritical, sign-changing nonradial solution, group action, symmetric criticality lemma, variational method.

©1999 Juliusz Schauder Center for Nonlinear Studies

273
where the non-linearity \(f \) is of class \(C^1(\mathbb{R}) \) and satisfies the following assumptions:

(A1) \(f(0) = 0 \) and \(f'(0) < \lambda_1 \), where \(\lambda_1 \) is the smallest eigenvalue of \(-\Delta\) with zero Dirichlet boundary condition in \(\Omega_\varepsilon \).

(A2) \(f'(u) > f(u)/u \) for all \(u \neq 0 \).

(A3) (Superlinearity)
\[
\lim_{|u| \to \infty} \frac{f(u)}{u} = \infty.
\]

(A4) (Subcritical growth) There exist constants \(p \in (1, (N + 2)/(N - 2)) \) and \(C > 0 \) such that
\[
|f'(u)| \leq C(|u|^{p-1} + 1) \quad \text{for all} \quad u \in \mathbb{R}.
\]

(A5) There exist constants \(m \in (0, 1) \) and \(\rho \) such that
\[
uf(u) \geq \frac{2}{m} F(u) > 0,
\]
where \(|u| > \rho \) and \(F(u) = \int_0^u f(s) \, ds \).

If \(N = 2 \), then \(p \in (1, \infty) \). A typical nonlinearity is the function \(f(t) = t^3 \), although our results are not restricted to an odd nonlinearity.

We note that the condition \(f'(0) < \lambda_1 \) is necessary for the existence of sign-changing solutions (see [2]).

In [11], Wang proved that, over a smooth bounded domain, problem (1.1) has a positive solution, a negative solution, and a third solution with no information about its sign. In [2], Castro et al. proved the existence of a third solution that changes sign exactly once. Later in [4], they established the existence of a nonradial sign-changing solution when the underlying domain is an annulus in \(\mathbb{R}^N \). Furthermore, if the annulus is two dimensional they proved that (1.1) has many sign-changing nonradial solutions. The purpose of this paper is to extend their result to higher dimensions.

Our main result is the following

Theorem 1.1. Assume \(f \) satisfies (A1)-(A5). Then for each positive integer \(k \) there exists \(\varepsilon_1(k) > 0 \) such that if \(0 < \varepsilon < \varepsilon_1(k) \) then (1.1) has \(k \) sign-changing nonradial solutions.

In our context, by a solution to (1.1) we mean a function \(u \in H^{1,2}_0(\Omega_\varepsilon) \) that satisfies

\[
\int_{\Omega_\varepsilon} (\nabla u \cdot \nabla v - vf(u)) \, dx = 0,
\]
for all \(v \in C_0^\infty(\Omega_\varepsilon) \), where \(H^{1,2}_0(\Omega_\varepsilon) \) is the Sobolev space with inner product \(\langle u, v \rangle = \int_{\Omega_\varepsilon} \nabla u \cdot \nabla v \, dx \) (see [1]). Note that (1.2) is obtained by multiplying the
equation in (1.1) by \(v \) and integrating by parts. So classical solutions of (1.1) (that is, the ones which are in \(C^2(\Omega_\varepsilon) \cap C(\overline{\Omega_\varepsilon}) \)) are also weak solutions. By the assumptions on \(f \) and the regularity theory for elliptic boundary value problems (see [7]), a weak solution of (1.1) is also a classical solution.

The left-hand side of (1.2) is just the Fréchet derivative of the functional

\[
J(u) = \int_{\Omega_\varepsilon} \left\{ \frac{1}{2} |\nabla u|^2 - F(u) \right\} \, dx
\]

defined on \(H^{1,2}_0(\Omega_\varepsilon) \). Note that \(J \in C^2(H^{1,2}_0(\Omega_\varepsilon), \mathbb{R}) \) (see [10]). Moreover, \(u \) is a solution to (1.1) if and only if \(u \) is a critical point of \(J \).

Instead of looking for sign-changing critical points of the functional \(J \) on \(H^{1,2}_0(\Omega_\varepsilon) \), we look for them on a subset of a submanifold of invariant functions in \(H^{1,2}_0(\Omega_\varepsilon) \).

Our main tools for proving existence and multiplicity results consist of an idea in [8] and [9] and critical point theory, i.e., we consider the functional \(J \) defined above and the functional

\[
\gamma(u) = \int_{\Omega_\varepsilon} (|\nabla u|^2 - uf(u)) \, dx.
\]

For a positive integer \(k \), we define

\[
H(\varepsilon, k) := \text{Fix}(G(k))
\]

\[
= \{ v \in H^{1,2}_0(\Omega_\varepsilon) : v(gx, Ty) = v(x, y), \text{ for all } (g, T) \in G(k) \}
\]

\[
= \{ v \in H^{1,2}_0(\Omega_\varepsilon) : v(x, y) = u(x, |y|), \text{ for some } u \text{ which satisfies } u(gx, |y|) = u(x, |y|) \text{ for all } g \in G_k \},
\]

where \(G(k) = G_k \times O(N - 2) \), \(O(j) \) denotes the group of \(j \times j \) orthogonal matrices, and

\[
G_k := \left\{ g \in O(2) : \begin{align*}
g(x_1, x_2) &= \left(x_1 \cos \frac{2\pi l}{k} + x_2 \sin \frac{2\pi l}{k}, -x_1 \sin \frac{2\pi l}{k} + x_2 \cos \frac{2\pi l}{k} \right), \\ (x_1, x_2) &\in \mathbb{R}^2, \ l \in \mathbb{Z} \end{align*} \right\}.
\]

Note that \(H(\varepsilon, k) \) can be regarded as the class of functions that are periodic of period \(2\pi/k \) in the \(\theta \) variable, where \((r, \theta) \) are the polar coordinate of \(x = (x_1, x_2) \), and that depend on \(|y| \), where \(y = (x_3, \ldots, x_N) \).

Also, we consider the Nehari manifold

\[
S(\varepsilon, k) = \{ v \in H(\varepsilon, k) \setminus \{0\} : \gamma(v) = 0 \}.
\]
Of particular interest is the subset of $S(\varepsilon, k)$ given by
\[S^1(\varepsilon, k) = \{ v \in S(\varepsilon, k) : v_+, v_- \in S(\varepsilon, k) \}, \]
where $v_+(x) = \max \{ v(x), 0 \}$ and $v_-(x) = \min \{ v(x), 0 \}$ are the positive and negative parts of v respectively.

Similarly, we define
\[H(\varepsilon, \infty) := \{ v \in H^1_0(\Omega_\varepsilon) : v(gx, T y) = v(x, y), \]
\[\text{for all } (g, T) \in O(2) \times O(N - 2) \} \]
the manifold
\[S(\varepsilon, \infty) = \{ v \in H(\varepsilon, \infty) \setminus \{ 0 \} : \gamma(v) = 0 \}, \]
and the set
\[S^1(\varepsilon, \infty) = \{ v \in S(\varepsilon, \infty) : v_+, v_- \in S(\varepsilon, \infty) \}. \]

Note that if $u \in H(\varepsilon, \infty)$ then u is θ-independent.

We consider the following numbers associated with the above sets
\[j_k^\varepsilon = \inf \limits_{v \in S^1(\varepsilon, k)} J(v), \quad j_\infty^\varepsilon = \inf \limits_{v \in S^1(\varepsilon, \infty)} J(v). \]
We will obtain many sign-changing nonradial solutions to (1.1) by establishing the following properties:

(i) j_k^ε is achieved by some $u_{\varepsilon, k} \in S^1(\varepsilon, k)$ and $u_{\varepsilon, k}$ is a critical point of J on $H(\varepsilon, k)$.

(ii) $u_{\varepsilon, k}$ is a critical point of J on $H^1_0(\Omega_\varepsilon)$.

(iii) $j_k^\varepsilon < j_\infty^\varepsilon$ for $k \geq 1$ and $0 < \varepsilon < \varepsilon_1(k)$.

(iv) $j_k^\varepsilon < j_n^\varepsilon$ whenever $j_n^\varepsilon < j_\infty^\varepsilon$.

Note that assertion (ii) is related to the symmetric criticality principle: if $u_{\varepsilon, k}$ is a critical point of J on $H(\varepsilon, k)$, then $u_{\varepsilon, k}$ is a critical point of J on $H^1_0(\Omega_\varepsilon)$ (see [12]).

The paper is organized as follows: in Section 2, we discuss assertions (i), (iii), and (iv). In Section 3, we prove Theorem 1.1.

2. Existence results

Assertion (i) of the previous paragraph is a direct consequence of the following theorem

Theorem 2.1. For each positive integer $k = 1, 2, \ldots$ and $\varepsilon > 0$ there exists a minimizer $u_{\varepsilon, k}$ of j_k^ε which changes sign. Moreover, $u_{\varepsilon, k}$ is a critical point of J on $H(\varepsilon, k)$.

Proof. This follows from a recent result of Castro, Cossio, and Neuberger [2]. □
As for assertion (iii) we have

Theorem 2.2. For a positive integer \(k \), there exists \(\varepsilon_1(k) > 0 \) such that if \(0 < \varepsilon < \varepsilon_1(k) \) then \(j_k^c < j_\infty^c \). Thus, \(u_{\varepsilon,k} \) is \(\theta \)-dependent.

Proof. A proof of this theorem can be found in [6]. □

The following lemma, which establishes assertion (iv), shows that if \(k \) divides \(n \) and \(j_k^\pm < j_\infty^\pm \) then \(j_k^\pm < j_k^\pm \).

Lemma 2.3. Let \(f \) satisfies (A1)–(A5). For \(n = 2, 3, \ldots, k = 1, 2, \ldots \), if \(j_k^\pm n < j_k^\pm \) then \(j_k^\pm n < j_k^\pm \).

Proof. Fix \(k \) and \(n \). For \(\varepsilon > 0 \), Theorem 2.1 guarantees the existence of a sign-changing minimizer \(u \) of \(J \) on \(S^1(\varepsilon, kn) \). According to Theorem 2.1 and assertion (ii), \(u \) is a solution to (1.1). Furthermore, invoking Theorem 2.2 with \(0 < \varepsilon < \varepsilon_1^k \), we know that \(u \) is \(\theta \)-dependent. Now, by the regularity theory of elliptic equations we know that \(u \) is a \(C^2 \) function. Let \(x = (r, \theta) \) be the polar coordinate of \(x \in \mathbb{R}^2 \) and write \(u(r, \theta, |y|) \). Then

\[
\int_{\Omega_\varepsilon} |\nabla u|^2 \, dx \, dy = \int_{(r,|y|)}^{2\pi} (u^2 + \frac{1}{r^2} u^2_\theta + |\nabla_y u|^2) \, r \, dr \, d\theta \, dy
\]

and

\[
\int_{\Omega_\varepsilon} F(u) \, dx \, dy = \int_{(r,|y|)}^{2\pi} F(u) \, r \, dr \, d\theta \, dy.
\]

Define the function

\[
v(r, \theta, |y|) = u(r, \theta/\theta, |y|), \quad 0 \leq \theta \leq 2\pi.
\]

Since \(u \) is \(\theta \)-dependent and changes sign so does \(v \). Also,

\[
v_{\pm}(r, \theta + 2\pi/k, |y|) = v_{\pm}(r, \theta, |y|).
\]

It follows that \(v_{\pm} \in H(\varepsilon, k) \).

An easy calculation yields the following equalities

\[
\int_{\Omega_\varepsilon} |\nabla v_{\pm}|^2 \, dx \, dy = \int_{(r,|y|)}^{2\pi} \left((u_{\pm})_r^2 r \, dr \, d\theta \, dy + \frac{1}{r^2} (u_{\pm})_{\theta}^2 r \, dr \, d\theta \, dy \right)
\]

and

\[
\int_{\Omega_\varepsilon} F(v_{\pm}) \, dx \, dy = \int_{(r,|y|)}^{2\pi} F(u_{\pm}(r, \theta, |y|)) r \, dr \, d\theta \, dy.
\]

Since \(u \) does not belong to \(S^1(\varepsilon, \infty) \) we have

\[
\int_{(r,|y|)}^{2\pi} (u_{\pm})_{\theta}^2 r \, dr \, d\theta \, dy > 0.
\]
This implies that $\gamma(v_{\pm}) < 0$. That is
\[
\int_{\Omega} |\nabla v_{\pm}|^2 \, dx \, dy < \int_{\Omega} v_{\pm} f(v_{\pm}) \, dx \, dy.
\] (2.1)

Now, by Lemma 2.2 of [2] we can find $0 < \alpha < 1$ and $0 < \beta < 1$ such that $\alpha v_+ \in S(\varepsilon, k)$ and $\beta v_- \in S(\varepsilon, k)$. Let $w = \alpha v_+ + \beta v_- \in S^1(\varepsilon, k)$. Using the fact that $P_\varepsilon(\lambda) = \lambda v f(\lambda v)/2 - F(\lambda v)$ is monotonically increasing for $\lambda > 0$ and the definition of j_k^ε we have
\[
j_k^\varepsilon \leq P_\varepsilon^+(\alpha) + P_\varepsilon^-(\beta) < P_\varepsilon^+(1) + P_\varepsilon^-(1) = J(u) = j_{kn}^\varepsilon.
\]
Putting together all the arguments above we conclude a proof of the lemma. □

3. Proof of Theorem 1.1

Let $k \geq 1$ be an integer. According to Theorem 2.2 there exists $\varepsilon_1(2^k)$ such that if $0 < \varepsilon < \varepsilon_1(2^k)$ then $j_{2^k}^\varepsilon < j_{\infty}^\varepsilon$. Applying Lemma 2.3 to obtain
\[
j_{2^i}^\varepsilon < j_{2^{i+1}}^\varepsilon < \ldots < j_{2^k}^\varepsilon < j_{\infty}^\varepsilon.
\] (3.1)

According to Theorem 2.1 there exists $u_i \in S^1(\varepsilon, 2^i)$, $i = 1, \ldots, k$, such that $j_{2^i}^\varepsilon = J(u_i)$. Moreover, u_i is a solution of (1.1). Also, according to Theorem 2.2, u_i is θ-dependent. Finally, by (3.1), $\{u_i\}_{i=1}^k$ are distinct. The proof of Theorem 1.1 is now complete. □

References

Manuscript received March 17, 1999

ALFONSO CASTRO
Division of Mathematics and Statistics
University of Texas at San Antonio
San Antonio, Texas 78249, USA
E-mail address: castro@math.utsa.edu

MARCEL B. FINAN
Department of Mathematics
University of Texas at Austin
Austin, Texas 78712, USA
E-mail address: mbfinan@math.utexas.edu