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MORSE HOMOLOGY
AND DEGENERATE MORSE INEQUALITITIES

Mei-Yue Jiang

Abstract. Based on Morse homology of Morse functions, we give a new

proof of the Morse–Bott inequalities for functions with non-degenerate crit-
ical manifolds. A proof of the Morse inequalities for functions with isolated

critical points as developed by Gromoll–Meyer is also presented with the

same method.

Introduction

Let M be an n-dimensional smooth closed manifold, i.e. M is compact
and without boundary and let f be a Morse function on M , i.e. f is smooth and
each critical point of f is nondegenerate. Point x ∈ M is called a critical point
of f if df(x) = 0. It is called nondegenerate if at the local coordinate (x1, . . . , xn)
at x, the Hessian (∂2f/∂xi∂xj) is nondegenerate. The number i(x) of negative
eigenvalues of (∂2f/∂xi∂xj) counted with multiplicity is called Morse index of x.
The classical Morse theory relates numbers of critical points of a Morse function f

to the topology of M . More precisely, let mk = #{x | df(x) = 0, i(x) = k}, bk

be the kth Betti number of M . The Morse polynomial of f and the Poincaré
polynomial of M are defined by M(t, f) =

∑
mktk and P (t,M) =

∑
bktk, re-

spectively. With these notions, the Morse inequalities can be written in the
following form.

1991 Mathematics Subject Classification. Primary 58F05, 58F22.

Key words and phrases. Morse–Bott inequalities, Gromoll–Meyer theory.
Supported by NNSF of China and Ministry of Education of China.

c©1999 Juliusz Schauder Center for Nonlinear Studies

147



148 M.-Y. Jiang

Theorem 0.1. Let M be a closed manifold and f be a smooth Morse function
on M . Then there is a polynomial Q(t) with nonnegative integer as its coefficients
such that

M(t, f) = P (t,M) + (1 + t)Q(t).

In particular, this implies

mk ≥ βk, k = 1, . . . , n,

m0 −m1 + . . . + (−1)nmn = b0 − b1 + . . . + (−1)nbn = χ(M).

There are many ways to prove this theorem, a standard reference is [17].
There is a proof based on the connecting trajectories of gradient flow of f between
critical points of f . It can be described as follows. We fix a Riemannian metric
on M and consider the gradient flow of f

(0.1) u′(s) + f ′(u) = 0.

It is well known that each solution u of (0.1) satisfies
∫∞
−∞ |u′(s)|2 ds < ∞ and

both of the following limits lims→−∞ u(s) = x1 and lims→∞ u(s) = x2 exist for
some critical points x1, x2 of f . For fixed critical points x1, x2 of f , let

M(x1, x2) = {u satisfies (0.1) lim
s→−∞

u(s) = x1 and lim
s→∞

u(s) = x2}.

It is well known that for generic f (or generic metric g on M), M(x1, x2) is
a smooth manifold with a coherent orientation, and dimM(x1, x2) = i(x2) −
i(x1). M(x1, x2) is translation invariant, i.e. if u ∈ M(x1, x2), then for any
s ∈ R, u(s+ · ) ∈M(x1, x2). Hence dimM(x1, x2) = 1 if i(x2)− i(x1) = 1, thus
M(x1, x2)/R is of dimension 0. It can be shown that in this case, M(x1, x2)/R
is compact, so it is a finite set. We denote by n(x1, x2) the algebraic number
of this set according to the coherent orientation. Having these data, one can
construct the Morse complex as follows. Let

K(f) = {x ∈ M, df(x) = 0}, Ck(f) =
⊕

x∈K(f),
i(x)=k

Z〈x〉,

∂k : Ck(f) → Ck−1(f), ∂k〈x〉 =
∑

y∈K(f),
i(y)=k−1

n(y, x)〈y〉.

Set (C(f), ∂) =
⊕n

k=1(Ck(f), ∂k), then ∂k−1 ◦ ∂k = 0, hence (C(f), ∂) is a com-
plex. Following [21], we call this complex Morse complex and its homology
the Morse homology. A detail proof of the following theorem can be found
in [21].
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Theorem 0.2. Let f ∈ C2(M) be a Morse function such that the Morse
homology of f is well defined. Then, for each integer k, Hk(C(f), ∂) = Hk(M, Z).

The Morse inequalities are simple consequences of this theorem. Morse the-
ory from this point of view plays a crucial role in the Floer theory. Floer used
this method to construct his infinite dimensional version of Morse theory, now
known as Floer homology theory in symplectic geometry and gauge theory. They
are very important tools in symplectic geometry and low dimensional topology,
see [12]–[14]. Another approach to prove the Morse inequalities which is closely
related to the above method was proposed by Witten in [22] based on a de-
formation of the De Rham complex. In fact, Witten’s paper was one of main
motivations for the Floer’s theory.

Followings are some generalizations of the Morse theory: Morse–Bott theory
for non-degenerate critical manifolds [3], Gromoll–Meyer theory for isolated crit-
ical points [16], Morse theory for manifold with boundary, and Morse–Novikov
theory for multi-valued functions [18], [19]. Proofs using the Witten’s method
for Morse–Bott inequalities, for Morse inequalities with boundary, for Morse–
Novikov theory for multi-valued functions and its equivariant version have been
given in [2], [5], [6], [9], respectively. The aim of this paper is to give a proof for
Morse–Bott inequalities, Gromoll–Meyer theory and Morse theory for manifold
with boundary using Theorem 0.2 and a perturbation technique. The key points
that we will use are relative and local versions of the Morse homology, we use
them to construct a filtration of the Morse complex. The proof is finished by
spectral sequence from algebraic topology. In [1], one can find a proof of Morse–
Bott inequalities and equivariant Morse inequalities by connecting trajectories
method without perturbation. Our approach here is simpler.

1. Morse–Bott inequalities

Definition 1.1. Let f be a smooth function on M . A submanifold N ⊂ M

is called a non-degenerate critical submanifold of f if

(1) for all x ∈ N , df(x) = 0,
(2) (∂2f/∂xi∂xj) is non-degenerate along the normal bundle of N in M .

The number of negative eigenvalues of (∂2f/∂xi∂xj)(x), x ∈ N along the nor-
mal bundle of N is called the Morse index at x, denote it by i(x). We assume
that N is connected, thus i(x) is a constant for x ∈ N , it is called the Morse
index of critical manifold N . We denote i(N) = i(x), x ∈ N . Following are the
well known Morse–Bott inequalities.

Theorem 1.2. Let f be a smooth function on a closed manifold M , K(f) =
{x ∈ M, df(x) = 0}. Assume that K(f) =

⋃
Nj and each Nj is a non-

degenerate critical manifold. Then there is a polynomial Q(t) with a non-negative
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integer as its coefficients such that∑
Nj⊂K(f)

P (t, Nj)ti(Nj) = P (t,M) + (1 + t)Q(t).

The aim of this section is to present a proof of this theorem using the connect-
ing trajectories of gradient flow. It is based on Theorem 0.2 and a perturbation
of function f . Let c1 < c2 < · · · < cl be the critical values of f , that is for each ci,
there is an x ∈ K(f), f(x) = ci. We fix an ε0 such that 0 < ε0 < minj(cj+1−cj).
Set bj = cj + ε0/2, 1 ≤ j ≤ l, b0 = c1 − ε0/2. For any ε > 0, take a g ∈ C2(M)
satisfying the conditions of Theorem 0.2 and ‖g − f‖C2(M) ≤ ε/2. It is easy to
see, for small ε,

dg(x) 6= 0 if g(x) = bj , 1 ≤ j ≤ l.

Let (C(g), ∂) be the Morse complex of g. For j = 1, . . . , l, we set

Ck(g, bj) =
⊕

x∈K(g)
g(x)<bj

i(x)=k

Z〈x〉, Cj(g) =
⊕

k

Ck(g, bj),

then (Cj(g), ∂) is a subcomplex of (C(g), ∂), i.e. ∂ : Cj(g) → Cj(g) and

(C1(g), ∂) ⊂ (C2(g), ∂) ⊂ . . . ⊂ (Cl(g), ∂) = (C(g), ∂),

form a filtration of (C(g), ∂). Let (
⊕

k Ck(g, bj)/Ck(g, bj−1), ∂) be the reduced
relative complex. The following lemma is easy to prove.

Lemma 1.3. For 1 ≤ j ≤ l, let

Ck(g, bj−1, bj) =
⊕

x∈K(g)
i(x)=k

bj−1<g(x)<bj

Z〈x〉,

∂′ : Ck(g, bj−1, bj) → Ck−1(g, bj−1, bj),

∂′〈x〉 =
∑

y∈K(g)
i(y)=k−1

bj−1<g(y)<bj

n(y, x)〈y〉.

Then ∂′ ◦ ∂′ = 0 and( ⊕
k

Ck(g, bj+1)
Ck(g, bj)

, ∂

)
∼=

( ⊕
k

Ck(g, bj , bj+1), ∂′
)

.

In what follows we denote

(C(g, bj−1, bj), ∂) =
( ⊕

k

Ck(g, bj−1, bj), ∂′
)

=
( ⊕

k

Ck(g, bj)
Ck(g, bj−1)

, ∂

)
.

We will use the following filtration

0 ⊂ (C1(g), ∂) ⊂ . . . ⊂ (Cl(g), ∂) = (C(g), ∂),
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of (C(g), ∂) to compute the Morse homology of H∗(C(g), ∂) by spectral sequence
theory. For our purpose, we only need the homology of first and second term of
this filtration. For the spectral sequence theory of a filtration of a complex, we
refer to [4]. From the short exact sequence of complex

0 →
⊕

j

(Cj(g), ∂) i−→
⊕

j

(Cj+1(g) ∂)
j−→

⊕
j

(C(g, bj , bj+1), ∂) −→ 0,

we have the following long exact sequence

· · · → Hk+1(A) i1−→ Hk+1(A)
j1−→ Hk+1(B) k1−→ Hk(A) −→ · · ·

of homology groups with A =
⊕

j(Cj(g), ∂), B =
⊕

j(C(g, bj , bj+1), ∂). We write
the above exact sequence simply as

H(A) i1−→ H(A)
j1−→ H(B) k1−→ H(A).

Let E1 = H(B), δ1 = j1 ◦ k1 : H(B) → H(B), this is a boundary operator, hence
we have the homology E2 = H(E1, δ1) and a boundary operator δ2 : H(E2) →
H(E2) and so on. Continuing this process, by spectral sequence theory, we
conclude, after finite steps,

H∗(M) = H∗(C(g), ∂) = H∗(Em, δm) = H∗(Em+1, δm+1).

The following proposition is a relative version of Morse homology which is fun-
damental to our proof.

Proposition 1.4. For small ε > 0, 0 ≤ j ≤ l − 1,

H∗(C(g, bj , bj+1), ∂) =
⊕

N⊂K(f)|f(x)=cj

x∈N

H∗−i(N)(N),

hence

E1 = H∗(B) =
⊕

N⊂K(f)

H∗−i(N)(N),

∑
dim Hk(C(g, bj , bj+1), ∂)tk =

∑
N⊂K(f)|f(x)=cj

x∈N

P (t,N)ti(N).

Remark. In fact, following the proof in next sectiom, we can show

H∗(C(g, bj , bj+1), ∂) = H∗(fbj+1 , fbj
),

with fb = {x ∈ M | f(x) ≤ b}, we will not use this fact later.
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Lemma 1.5. Let X0
∂0−→ X1

∂1−→ · · · ∂n−1−→ Xn be a complex, i.e. ∂k◦∂k−1 =
0, H∗(X) be the homology. Then there is a polynomial Q(t) with non-negative
integer as its coefficients such that∑

dim Xit
i =

∑
dim Hi(X)ti + (1 + t)Q(t).

Proof. It is an easy exercise in linear algebra. �

With Proposition 1.4 in hand, now we can prove Theorem 2.2.

Proof of Theorem 1.2. Repeatedly use Lemma 1.5, there are polynomials
Qj(t), its coefficients are nonnegative integers, j = 1, . . . , m− 1 such that∑

N⊂K(f)

P (t, N)ti(N) =
∑

N⊂K(f)

dim Hi(N)ti+i(N)

=
∑

i

dim Hi(E1, δ1)ti

=
∑

i

dim Hi(E2, δ2)ti + (1 + t)Q1(t)

=
∑

i

dim Hi(E3, δ3)ti + (1 + t)(Q1(t) + Q2(t))

= · · ·

=
∑

i

dim Hi(Em, δm)ti + (1 + t)(Q1(t) . . . + Qm−1(t))

=
∑

i

dim Hi(C(g), ∂)ti + (1 + t)(Q1(t) . . . + Qm−1(t)).

By Theorem 0.2, H∗(C(g), ∂) = H∗(M), therefore∑
N⊂K(f)

P (t, N)ti(N) = P (t, M) + (1 + t)Q(t),

with Q(t) = Q1(t) + . . . + Qm−1(t). This ends the proof. �

The remaining of this section is devoted to the proof of Proposition 1.4.

Lemma 1.6. Let g be a Morse function on M satisfying the following con-
ditions:

(1) |f − g| < ε for small ε,
(2) M(x, y) is a manifold for any x, y ∈ K(g) with bj < g(x), g(y) < bj+1.

Then H∗(C(g, bj−1, bj), ∂) is well defined, and for any such functions g1 and g2,

H∗(C(g1, bj−1, bj), ∂) ∼= H∗(C(g2, bj−1, bj), ∂).

The proof is similar to that of the Morse homology and is independent
of choices of the Morse functions, see [21], we omit it here. The key point
in the lemma is that we only make assumptions on critical points located in set
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{x | bj < f(x) < bj=1}, thus we can deform the function g in order to compute
the homology. For simplicity of notation, we fix a critical value cj of f , and set

c = cj , a = bj , b = bj+1, Kc(f) = {x ∈ K(f) | f(x) = c} =
⋃
k

Nk.

We construct a function g as follows. Let ε > 0 be a constant to be fixed later,
ρk(x) be the distance function from x to Nk which is defined in a neighbourhood
of Nk, and let η0 be a small positive number such that η0 < mini 6=j dist(Ni, Nj)/4.
For each k, we take a cut off function

ηk(x) =

{
1 if ρk(x) ≤ η0,

0 if ρk(x) ≥ 2η0,

and a Morse function fk(x) on Nk satisfying the conditions of Theorem 0.2 for
manifold Nk. Finally, set

(1.1) gε(x) = f(x) + ε ·
∑

k

ηk(x)fk(Pkx),

with Pk being the projection from a neighbourhood of Nk to Nk. The following
lemmas characterize the critical points of gε in set {x | a < gε(x) < b} and
connecting orbits of those critical points of the gradient flow of gε.

Lemma 1.7. There is an ε1 > 0 such that for 0 < ε < ε1, gε is a Morse
function and

K(gε, a, b) = {x ∈ K(gε) | a < gε(x) < b} =
⋃
k

{x ∈ Nk | dfk(x) = 0},

and i(gε, x) = i(Nk) + i(fk, x) if x ∈ Nk, dfk(x) = 0, where i(fk, x) is the Morse
index of fk on Nk.

Proof. First, there is a d0 > 0 such that

|df(x)| ≥ d0 if for each k, ρk(x) ≥ η0.

So for small ε, we have

(1.2) |dgε(x)| ≥ d0/2 if, for each k, ρk(x) ≥ η0.

If ρk1(x) < η0, then ηk1(x) ≡ 1, ηk(x) ≡ 0, k 6= k1. Hence

gε(x) = f(x) + εfk1(Pk1x).

By Morse lemma, we can assume gε(x) = (q(x1)x2, x2)/2 + εfk1(Pk1x), where
x = (x1, x2), x1 ∈ Nk1 , x2 is the coordinate of the fiber of normal bundle
of Nk1 , qx1(x2) is a nondegenerate quadratic form in x2. ∂gε/∂x2(x) = 0 implies
x2 = 0, and ∂gε/∂x1(x) = 0 implies dfk1(x1) = 0. The index formula follows
from definition immediately. �
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Lemma 1.8. There is an ε2 > 0 such that, for 0 < ε < ε2, x, y ∈ K(gε, a, b),
we have

(1) If x, y ∈ Nk, and γ(t) is a solution of

(1.3) γ̇(t) = −g′ε(γ(t)), lim
t→−∞

γ(t) = x, lim
t→∞

γ(t) = y,

then ρk(γ(t)) ≤ η0.

(2) If x ∈ Nk1 , y ∈ Nk2 , and k1 6= k2, then there is no solution γ(t) of (1.3).

Proof. (1) Assume that the conclusion is not true, then there is a sequence
εl → 0 as l → ∞, and for each l, we have a solution γl(t) of (1.3), and tl ∈ R
such that η0 ≤ ρk(γ(tl)) ≤ 2η0. Since (1.3) is translation invariant and M is
compact, we can assume that tl = 0 for each l and γl(tl) = xl → x0 as l → ∞.
Then γl → γ C2

loc(R), where γ(t) is the solution of

γ̇(t) = −f ′(γ(t)), γ(0) = x0.

Since df(x0) 6= 0, γ(t) is not a constant solution, hence there are x1, y1 ∈ K(f)
such that

lim
t→−∞

γ(t) = x1, lim
t→∞

γ(t) = y1,

with
f(x1) ≥ f(x) and f(y1) ≤ f(y).

Therefore
0 < f(y1)− f(x1) ≤ f(y)− f(x).

This is impossible since f(x) = f(y) and x 6= y.
(2) Assume that there is a solution γ(t) of (1.3) such that x ∈ Nk1 , y ∈ Nk2 .

Let T1 = max{t | ρk1(γ(t)) ≤ η0}, T2 = min{t | ρk2(γ(t)) ≤ η0}, then

gε(x)− gε(y) = −
∫ ∞

−∞

dgε(γ(t))
dt

dt = −
∫ ∞

−∞
(g′ε(γ(t)), γ̇(t)) dt

≥
∫ T2

T1

|g′ε(γ(t))|2 dt ≥ d0
2

4
(T2 − T1).

On the other hand,

C(T2 − T1) ≥
∫ T2

T1

|γ′(t)| dt ≥ η0,

where C = max |f ′(x)|+ 1. Hence

(1.4) gε(x)− gε(y) ≥ d2
0

4C
η0,

which is independent of ε. Since f(x) = f(y), we have

gε(x)− gε(y) = ε · (fk1(x)− fk2(y)),

contradicting (1.4). �
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Remark. Above arguments in fact prove the following stronger result: as-
sume same condition as in (1), then

lim
ε→0

max
t∈R

ρk(γ(t)) = 0,

uniformly for solution γ(t) of (1.3).

Lemma 1.9. Let x, y ∈ Nk and γ(t) be a solution of (1.3), then for small ε,
we have ρk(γ(t)) ≡ 0, hence γ(t) is a solution of

γ̇(t) = −εf ′k(γ(t)), lim
t→−∞

γ(t) = x, lim
t→∞

γ(t) = y.

This lemma can be considered as a finite dimensional version of Lemma 5.2
in [15], the proof is similar.

Proof. By Lemma 1.8, we know that if 0 < ε < ε2, then for any solution
γ(t) of (1.3), we have ρk(γ(t)) ≤ η0, t ∈ R. By the Morse lemma, we can assume
that

gε(x) =
1
2
(q(x1)x2, x2) + εfk(Pkx),

q(x1) is a symmetric matrix. Set γ(t) = (x1(t), x2(t)) and h(t) = |x2(γ(t))|2, we
claim that for ε small, there is a constant c > 0 such that

(1.5) ḧ(t) ≥ c · h(t), t ∈ R.

Indeed, we have

(1.6) ḧ(t) =
d

dt
〈x2(t), ẋ2(t)〉 = |ẋ2(t)|2 + 〈x2(t), ẍ2(t)〉.

Since −γ̇(t) = g′ε(γ(t)), we have

−ẋ1(t) =
1
2
(q′(x1)x2, x2) + εf ′(x1) + o(|x2|),

−ẋ2(t) = q(x1)x2 + o(|x2|),
−ẍ2(t) = q(x1)ẋ2(t) + q′(x1)ẋ1x2 + o(1)ẋ2.

Substituting this into (1.6), noting that maxt |x2(t)| → 0 as ε → 0, we have

ḧ(t) ≥ 2|q(x1)x2|2 − ε max |f ′j(x1)||x2|2 + o(|x2|2) ≥ c · h(t),

if ε is small. As limt→−∞ h(t) = limt→∞ h(t) = 0, there is a t0 ∈ R such that
h(t0) = maxt∈R h(t), hence ḧ(t0) ≤ 0. By (1.5), we conclude that 0 ≤ h(t0) =
maxt h(t) ≤ 0, that is h(t) ≡ 0. �

Proof of Proposition 1.4. Let gε be defined by (1.1). By Lemmas 1.7–
1.9, for small ε, H∗(C(gε, bj−1, bj), ∂) is well defined. Lemma 1.6 implies

H∗(C(g, bj−1, bj), ∂) ∼= H∗(C(gε, bj−1, bj), ∂).
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Now we compute H∗(C(gε, bj−1, bj), ∂). For x, y ∈ K(gε, bj−1, bj), by Lemma 1.9,
either

M(x, y) = {γ | γ̇ = −εf ′k(γ)} if x, y ∈ K(fk),

or
M(x, y) = ∅ if x ∈ K(fk), y ∈ K(fk1), k 6= k1.

Let C(εfk, Nk, ∂k) be the Morse complex of εfk on Nk, then we have

H∗(C(gε, bj−1, bj), ∂) ∼=
⊕

Nk⊂K(fcj
)

H∗−i(Nk)(C(εfk, Nk, ∂))

=
⊕

Nk⊂K(fcj
)

H∗−i(Nk)(Nk),

this is Proposition 1.4. �

2. The Gromoll–Meyer theory

In this section, we deal with Morse theory for functions with isolated critical
points as developed by Gromoll and Meyer [16]. First we recall some definitions.
Let f ∈ C2(M), x ∈ M be a critical point of f which is isolated, that is there
is a neighbourhood U of x in M such that x is the only critical point of f in U .
Clearly a non-degenerate critical point is isolated. In order to describe the local
behavior of an isolated critical point of f , we need the notion of Gromoll–Meyer
pair. Let γ(t, x0) be the solution of

(2.1) γ̇(t) = −f ′(γ(t)), γ(0) = x0.

Definition 2.1. Let f ∈ C2(M) and x ∈ M be an isolated critical point
of f . A pair of subsets (W,W−) is called a (G-M) pair of x if the following
conditions hold:

(1) W is a closed neighbourhood of x with the mean value property w.r.t.
γ(t, x), that is, if there are t1, t2 ∈ R, t1 < t2, γ(t1, x), γ(t2, x) ∈ W ,
then γ(t) ∈ W for t ∈ (t1, t2).

(2) W− is an exit set of W , i.e. for all x0 ∈ W and all t1 > 0 such that if
γ(t1, x0) /∈ W , then there exists t0 ∈ [0, t1) satisfying γ([0, t0), x0) ⊂ W

and γ(t0, x0) ∈ W−.
(3) W− is closed and is a union of a finite number of submanifolds that are

transversal to the flow γ.

Let (W,W−) be a (G-M) pair of x, the homology groups H∗(W,W−) are
called the critical groups of x. For an isolated critical point x of f , there always
exists a (G-M) pair (W,W−) and H∗(W,W−) is independent of the choices of (G-
M) pairs (W,W−), denote it by C∗(f, x), see [7]. Let mi(f, x) = rankC∗(f, x),
it is called Morse-type number of x, and P (t, f, x) =

∑
i mi(t, x)ti.
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Theorem 2.2. Let M be a closed manifold and f ∈ C2(M) such that each
critical point of f is isolated. Then there exists a polynomial Q(t) with non-
negative integer as its coefficients such that∑

x∈M
df(x)=0

P (t, f, x) = P (t,M) + (1 + t)Q(t).

Remark. There is a Gromoll–Meyer theory for C1 function and for func-
tionals defined in infinite dimensional manifolds, see [7].

The proof of the theorem is similar to that of Theorem 1.2. Let c1 < c2 <

. . . < cl be the critical values of f . Fix an ε0 such that 0 < ε0 < minj(cj+1− cj).
Set bj = cj + ε0/2, j = 1, . . . , l and b0 = c1 − ε/2. For any ε > 0, we take
a Morse function g satisfying the conditions of Theorem 0.2 and ‖f − g‖C2 ≤ ε.
We define sequences of complexes (C(g, bj), ∂), (C(g, bj , bj+1), ∂), j = 0, . . . , l−1
as before. Thus we have a filtration

0 ⊂ (C(g, b1), ∂) ⊂ . . . ⊂ (C(g, bl), ∂) = (C(g), ∂).

In order to prove this theorem, we need to replace Proposition 1.4 by the following
proposition. The other parts of the proof are the same as that of Theorem 1.2.
Set Kc(f) = {x ∈ M | df(x) = 0, f(x) = c}.

Proposition 2.3.

H∗(C(g, bi, bi+1), ∂) =
⊕

x∈Kci

H∗(W (x),W−(x)).

We need several lemmas to finish the proof. In the following, for each
x ∈ K(f), we fix a (G-M) pair (W (x),W−(x)), and we always assume that
the function g satisfies the conditions of Theorem 0.2. First, we have

Lemma 2.4. Let g ∈ C2(M) such that |g − f |C2 < ε, then for small ε,
dg(y) 6= 0, bj−1 < g(y) < bj and y /∈

⋃
x∈Kcj

(f) W (x).

Let g be a function as above.

Lemma 2.5. Let x1, x2 ∈ Kcj (f), x, y ∈ K(g) such that bj−1 < g(x), g(y) <

bj and x ∈ W (x1), y ∈ W (x2). Let γ(t) be a solution of

(2.2) γ̇(t) = −g′(γ(t)), lim
t→−∞

γ(t) = x, lim
t→∞

γ(t) = y.

Then for small ε, we have

(1) γ(t) ∈ W (x1), t ∈ R if x1 = x2.
(2) There is no such γ(t) satisfying (2.2) if x1 6= x2.
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The above two lemmas are similar to Lemma 1.7 and Lemma 1.8, we omit
the proof here. Now for x ∈ Kcj (f), we set

Ck(g, x) =
⊕

y∈W (x), y∈K(g),
i(y)=k

Z〈y〉, C(g, x) =
⊕

k

Ck(g, x),

∂ : Ck(g, x) → Ck−1(g, x), ∂〈y〉 =
∑

z∈K(g), z∈W (x),
i(z)=k−1

n(y, z)〈z〉.

From Lemma 2.5, we get

Lemma 2.6. (C(g, x), ∂) is a complex and

H∗(C(g, bj−1, bj), ∂) ∼=
⊕

x∈Kcj

H∗(C(g, x), ∂)).

Thus in order to prove Proposition 2.3, it suffices to show

Proposition 2.7. For any x ∈ Kcj
(f),

H∗(C(g, x), ∂) = H∗(W (x),W−(x)).

This can be considered as a local version of the Morse homology. Before
the proof, we need the notions of isolated invariant set and isolated neighbour-
hood and its Conley index for the gradient flow γ(t, x), which are generalizations
of an isolated critical point and its (G-M) pair for a function, cf. [11], [20].

Definition 2.8. A set S ⊂ M is called invariant w.r.t. to γ(t, x) if γ(t, S) =
S for every t ∈ R. It is called isolated if there is a neighbourhood N of S such
that

S = I(N) =
⋂
t∈R

γ(t, N).

A Conley index for an isolated invariant set S is a pair of compact sets N− ⊂ N

such that S = I(clN \N−) ⊂ int(N \N−) and

x ∈ N−, γ([0, t], x) ∈ N implies γ(t, x) ∈ N−,

x ∈ N \N− implies ∃t > 0, γ([0, t], x) ∈ N.

For every isolated invariant set S, there is a Conley index (N,N−). Moreover,
the homotopy type of (N/N−) is indepedent of the choices of the index pairs.
Hence H∗(N,N−) is well defined for each S.

Proof of Proposition 2.7. First we fix an x ∈ Kcj
(f) and its (G-M) pair

(W (x),W−(x)). Then for any ε > 0, we take a function g ∈ C2(M) such that g

satisfies conditions of Theorem 0.2 and |f − g|C2 < ε. For small ε, Lemma 2.3,
Lemma 2.4 can be applied. Let γ(t) be the solution of

γ̇(t) = −g′(γ(t)), γ(0) = y.
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Set
S = {y ∈ W (x), γ(t, y) ∈ W (x) for t ∈ R},

then S ⊂ W (x) is an isolated invariant set for γ(t, y). We claim that for small ε,
(W (x),W−(x)) is a Conley index for S. Indeed, we know that {x} is an isolated
invariant set for the gradient flow of f , and (W (x),W−(x)) is a Conley index
for {x}, cf. [8]. By stabilty of Conley index, we conclude that if |f − g|C2 < ε

and ε is small, (W (x),W−(x)) is a Conley index for S. Now we fix such a
function g. Let

Mk = {y ∈ W (x), y ∈ K(g), i(y) = k}, k = 1, . . . , n,

then (M0, . . . Mn) is a Morse decomposition of the invariant set S, that is

∀z ∈ S ∃j1 < j2 such that lim
t→−∞

γ(t, z) ∈ Mj1 , lim
t→∞

γ(t, z) ∈ Mj2 .

Hence there is a sequence of sets N0 ⊂ . . . ⊂ Nn such that (Nj , Nj−1) is a Conley
index for Mj , 1 ≤ j ≤ n, and (Nn, N0) is a Conley index for the invariant set S,
cf. [8], [20]. It is easy to see

Hj(Nj , Nj−1) = Cj(g, x) =
⊕

y∈W (x)
y∈K(g)
i(y)=j

Z〈y〉,

Hk(Nj , Nj−1) = 0, k 6= j.

As in [20], we can show that

∂ : Ck(g, x) → Ck−1(g, x) and ∂′ : Hk(Nk, Nk−1) → Hk−1(Nk−1, Nk−2)

are the same, where ∂′ is the operator in the long exact sequence of the homology
groups of triple (Nk, Nk−1, Nk−2). H∗(W (x),W−(x)) = H∗(C(g, x), ∂) follows
from [20] too. This completes the proof of Proposition 2.7. �

With Proposition 2.3, the proof of Theorem 2.1 can proceed as that of The-
orem 1.2, we omit the details.

3. Manifolds with boundary

Now we consider the case that M is a compact n-dimensional manifold with
smooth boundary ∂M . Let f ∈ C2(M), f̂ = f |∂M∈ C2(∂M), we assume that
both f and f̂ have isolated critical points.

Definition 3.1. A function f ∈ C2(M) is said to satisfy the general bound-
ary condition if

(1) f has no critical points on ∂M ,
(2) f̂ has only isolated critical points.
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Let ∂M− = {x ∈ ∂M | 〈f ′(x), n(x)〉 ≤ 0}, where n(x) is the out nor-
mal of ∂M at x. Let x ∈ K(f) and (W (x),W−(x)) be a (G-M) pair for x,
y ∈ ∂M− ∩ K(f̂) and (W (y),W−(y)) be a (G-M) pair for y, set M(t, x, f) =∑

i rank Hi(W (x),W−(x))ti, M(t, y, f̂) =
∑

i rank Hi(W (y),W−(y))ti. The fol-
lowing are Morse inequalities of manifold with boundary.

Theorem 3.2. Let f ∈ C2(M) satisfy the general boundary condition, then
there is a polynomial Q(t), its coefficients are non-negative intergers such that∑

x∈K(f)

M(t, x, f) +
∑

y∈K
bf
∩∂M−

M(t, y, f̂) = P (t, M) + (1 + t)Q(t).

In the following, we will give a proof of this theorem using the same method.
We assume ∂M− = ∅, the general case can be reduced to this case, cf. [10].
The proof is essentially the same as that of Theorem 2.2, we give a sketch.

Proof. By assumption we have (f ′(x), n(x)) > 0 for x ∈ ∂M . This property
is preserved under small perturbations of f . We take a C2 small perturbation g

of f such that g is a Morse function and

M(x, y) = {γ(t) | γ̇ = −g′(γ), lim
t→−∞

γ(t) = x, lim
t→∞

γ(t) = y},

is a manifold of dimension ind(y) − ind(x). Now we can define Morse complex
(C(g), ∂) as before. Set

S = {x ∈ M, γ(t, x) ∈ M, for all t ∈ R}.

This is an invariant set for the gradient flow γ of g and (M, ∅) is a Conley index
for S. (M0, . . . , Mn) is a Morse decomposition of the invariant set S where

Mk = {y ∈ M, y ∈ K(f), i(y) = k}, k = 1, . . . , n.

The same arguments as in proof of Proposition 2.7 show

H∗(C(g), ∂) = H∗(M).

On the other hand, we have the following filtration

0 ⊂ (C(g, b1), ∂) ⊂ . . . ⊂ (C(g, bl), ∂) = (C(g), ∂)

of (C(g), ∂), which gives a spectral sequence convergent to H∗(C(g), ∂) with the
first term H∗(B) =

⊕
x∈K(f) H∗(W (x),W−(x)). Similar to the proof of Theo-

rem 1.2, we conclude Theorem 3.2. �
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