EQUIVARIANT DEGREE FOR ABELIAN ACTIONS. PART III: ORTHOGONAL MAPS

Jorge Ize - Alfonso Vignoli

Abstract

The main goal of this paper is to define an equivariant degree theory for orthogonal maps. We apply our degree to study of bifurcations and existence of solutions of equivariant nonlinear problems.

Introduction

This paper represents the third part of the study of the equivariant degree for abelian actions and constitutes another development of the theory given in [11]-[14]. Here we study orthogonal equivariant maps, in particular gradients and Hamiltonians, using the results of [13] and [14].

The basic setting is the following: let Γ be a compact abelian group acting linearly and via isometries on the finite dimensional space V. Let Ω be an open, bounded, invariant subset of V and $\Phi: \bar{\Omega} \rightarrow \mathbb{R}$ a C^{1}-invariant map, such that its gradient is non-zero on $\partial \Omega$.

Now, if $\Gamma=T^{n} \times \mathbb{Z}_{m_{1}} \times \ldots \times \mathbb{Z}_{m_{s}}$, with the torus T^{n} generated by $\left(\varphi_{1}, \ldots, \varphi_{n}\right)$, $\varphi_{j} \in[0,2 \pi]$, it is clear, from the fact that $\Phi(\gamma x)=\Phi(x)$, for all $\gamma \in \Gamma$, that

[^0]$F(x) \equiv \nabla \Phi(x)$ is equivariant, i.e., $F(\gamma x)=\gamma F(x)$ and that if
$$
A_{j} x=\left.\frac{\partial}{\partial \varphi_{j}}(\gamma x)\right|_{\gamma=\mathrm{Id}}
$$
one has
$$
F(x) \cdot A_{j} x=0, \quad j=1, \ldots, n
$$

Hence, $\nabla \Phi(x)$ is an orthogonal map, i.e. a Γ-equivariant map which satisfies these n orthogonality conditions.

The main goal of this paper is to define an equivariant degree theory for such maps, i.e. defined on invariant sets and with equivariant orthogonal homotopies.

In [3], Dancer has defined a Fuller-like degree, i.e. a rational, for gradient S^{1}-maps, using the restriction on the range of $\nabla \Phi(x)$ and a genericity argument. In [11] and [12] the case of an S^{1}-orthogonal map was studied with the S^{1}-degree of $F(x)+\lambda A x$ on the set $[-1,1] \times \Omega$, a rational in the first paper and a sequence of integers in the second. In these papers one had to assume that $F^{\Gamma}(x) \neq 0$ on Ω^{Γ}.

This last assumption was removed by Rybicki in [18] with the degree developed in [4] and [8] applied to $\widetilde{F}(x)+\lambda A x$, where $\widetilde{F}(x)$ is a "normal map". Finally, Gęba, in [7], has defined a degree of Γ-gradients, for a general (nonnecessarily abelian) Γ : the idea is to approximate the gradient by a gradient "normal" map and define, in this generic case, indices on the different isotropy subspaces via Poincaré sections, in a spirit similar to [3]. For an abelian Γ, our degree will coincide with Gęba's and will "classify" all possible degrees for orthogonal maps.

In the present paper we shall follow the suggestion, given in [10], to study for a general Γ, the problem

$$
F(x)+\sum_{1}^{n} \lambda_{j} A_{j} x=0
$$

In fact, by taking the scalar product of this equation with $F(x)$, one has $F(x)=0$ and $\sum_{1}^{n} \lambda_{j} A_{j} x=0$. Thus, if the $A_{j} x$ are linearly independent, one gets $\lambda_{j}=0$ and one can use the Γ-degree of the above map on $I^{n} \times \Omega$. Of course this simple idea will not work if the $A_{j} x$ are not linearly independent. Thus, one needs to work up on the isotropy subspaces, with the right number of linearly independent vector fields and modifying the map $F(x)$ along the way.

Section 1 is devoted to the construction of the degree, first for gradients and then for orthogonal maps. As in [11], one "suspends" the map in order to get a fixed reference framework, \prod_{∇}^{Γ} and \prod_{\perp}^{Γ} respectively, for maps which are Γ gradients on $I \times B$ or Γ-orthogonal from $I \times B$ into $\mathbb{R} \times V$. Here B is a large ball, centered at the origin and containing Ω. The associated map will be non-zero on
$\partial(I \times B)$ and its Γ-homotopy class will be the Γ-degree. The set \prod_{\perp}^{Γ} is a group and the degree will have all the properties of a degree.

Section 2 constitutes our main result, i.e. that \prod_{\perp}^{Γ} is a product of as many \mathbb{Z} as there are isotropy subgroups of Γ. In Section 3 we extend the degree to infinite dimensions and compare it to the "normal map" approach. We also study the reduction of the symmetry and products. In Section 4 we compute the index of an isolated orbit and, in Section 5, we study bifurcation. Finally, Section 6 treats Hamiltonians.

In this paper we shall use freely the results of [13] and [14] but we shall recall the appropriate version of them as we proceed.

1. Construction of the degree

In this section we shall construct the equivariant degree, first for gradient maps and then for orthogonal maps.
(A) Gradient maps. Let $\Phi: \bar{\Omega} \rightarrow \mathbb{R}$ be a C^{1}-function such that $\Phi(\gamma x)=$ $\Phi(x)$ for all γ in $\Gamma \cong T^{n} \times \mathbb{Z}_{m_{1}} \times \ldots \times \mathbb{Z}_{m_{s}}$ and with $F(x) \equiv \nabla \Phi(x)$, nonzero on $\partial \Omega$. As noted in the introduction one has that $F(\gamma x)=\gamma F(x)$ and $F(x) \cdot A_{j} x=0$.

Let $B=B(0, R)$ be a large ball containing Ω. From the Dugundji-Gleason lemma, [11, p. 439], Φ has an invariant extension $\widetilde{\Phi}(x): B \rightarrow \mathbb{R}$. By using mollifiers, one may assume that $\widetilde{\Phi}$ is C^{1} and that $\nabla \widetilde{\Phi}(x)=\widetilde{F}(x)$ is arbitrarily close to $F(x)$. In fact, if $\varphi(\rho): \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is decreasing, C^{∞}, with values A for $\rho<\varepsilon_{0}$ and 0 for $\rho \geq 1$, where A is such that $\int_{V} \varphi(|x|) d x=1$, then $\widetilde{\Phi}_{\varepsilon}(x)=\varepsilon^{-N} \int_{V} \varphi(|y-x| / \varepsilon) \widetilde{\Phi}(y) d y$, where $\operatorname{dim} V=N$, is C^{∞} and invariant (since $|y-\gamma x|=\left|\gamma^{T} y-x\right|$ and γ is an isometry). Furthermore, since $\widetilde{\Phi}_{\varepsilon}(x)=$ $\int_{V} \varphi(|z|) \widetilde{\Phi}(x+\varepsilon z) d z, \widetilde{\Phi}_{\varepsilon}$ approximates uniformly $\widetilde{\Phi}$ in B and its gradient $\widetilde{F}_{\varepsilon}$ does approximate F on $\bar{\Omega}_{\varepsilon_{0}} \equiv\left\{x \in \Omega: \operatorname{dist}(x, \partial \Omega) \geq \varepsilon_{0}\right\}$, for $\varepsilon<\varepsilon_{0}$. Since F is non-zero on $\partial \Omega$, one may choose ε_{0} such that $F(x) \neq 0$ on $\bar{\Omega} \backslash \Omega_{\varepsilon_{0}}$ and replace Ω by $\Omega_{\varepsilon_{0}}$.

As in [11], the next step is to construct an invariant neighbourhood N of $\partial \Omega$, on which $\widetilde{F}(x)$ is non-zero, and an invariant C^{1}-function φ, from B into $[0,1]$, such that φ is 0 on $\bar{\Omega}$ and 1 outside $\Omega \cup N$: if N is an ε_{1}-neighbourhood, let N_{1} and N_{2} be $\varepsilon_{1} / 3$ and $2 \varepsilon_{1} / 3$ neighbourhoods of $\partial \Omega$. One may choose φ_{1} to have values 0 in $\Omega \cup N_{1}$ and 1 outside $\Omega \cup N_{2}$. By taking mollifiers φ_{ε}, then one will have the required properties for $\varepsilon<\varepsilon_{1}$.

Let next $0<\varepsilon$ be such that $4 \varepsilon|\nabla \varphi(x)| \leq|\widetilde{F}(x)|$, for all $x \in N$, and for $t \in[0,1]$ define

$$
\widehat{\Phi}(t, x)=\varepsilon\left(t^{2}+t(2 \varphi(x)-1)\right)+\widetilde{\Phi}(x)
$$

Then, $\nabla \widehat{\Phi}=(\varepsilon(2 t+2 \varphi(x)-1), \widetilde{F}(x)+2 \varepsilon t \nabla \varphi(x))^{T}$ and its zeros are such that $F(x)=0$ for $x \in \Omega$ and $t=1 / 2$.

It is clear that if one has a gradient Γ-homotopy on $\partial \Omega$, the corresponding gradients $\widetilde{\Phi}$ will be Γ-homotopic as maps from $\partial(I \times B)$ into $\mathbb{R} \times V \backslash\{0\}$. Hence, if \prod_{∇}^{Γ} is the set of Γ-homotopy gradients from $S^{V} \cong \partial(I \times B)$ into $\mathbb{R} \times V \backslash\{0\}$, one may define

$$
\operatorname{deg}{ }_{\nabla}^{\Gamma}(\Phi ; \Omega) \equiv[\nabla \widetilde{\Phi}]_{\nabla} \in \prod_{\nabla}^{\Gamma}
$$

(B) Orthogonal maps. The construction for orthogonal maps follows similar lines: let $F: \Omega \rightarrow V$ be a Γ-equivariant map, with F non-zero on $\partial \Omega$ and $F(x) \cdot A_{j} x=0, j=1, \ldots, n$.

Choose B as above and let $\widetilde{F}_{0}(x)$ be any equivariant extension of F to B. Since \widetilde{F}_{0} is not necessarily orthogonal to $A_{j} x$, we shall use the Gram-Schmidt orthogonalization in the following form: let

$$
\begin{aligned}
& \widetilde{A}_{1}(x)= \begin{cases}A_{1} x /\left\|A_{1} x\right\| & \text { if } A_{1} x \neq 0 \\
0 & \text { if } A_{1} x=0\end{cases} \\
& \widehat{A}_{j}(x)=A_{j} x-\sum_{1}^{j-1}\left(A_{j} x, \widetilde{A}_{i}(x)\right) \widetilde{A}_{i}(x)
\end{aligned}
$$

and

$$
\widetilde{A}_{j}(x)= \begin{cases}\widehat{A}_{j}(x) /\left\|\widehat{A}_{j}(x)\right\| & \text { if } \widehat{A}_{j}(x) \neq 0, \\ 0 & \text { if } \widehat{A}_{j}(x)=0\end{cases}
$$

Clearly the $\widetilde{A}_{j}(x)$ are orthogonal and $\widehat{A}_{j}(x)=0$ if and only if $A_{j} x$ is a linear combination of $A_{1} x, \ldots, A_{j-1} x$. Furthermore, since Γ is abelian, A_{j} is Γ-equivariant as well as $\widetilde{A}_{j}(x)$ and $\widehat{A}_{j}(\lambda x)=\lambda \widehat{A}_{j}(x)$, for λ in \mathbb{R}. All these facts can be easily proved by induction. Recall also that, if T^{n} acts on a complex coordinate z as $\exp \left(i \sum N_{j} \varphi_{j}\right)$, then $A_{j} z=i N_{j} z$. Let

$$
\widetilde{F}(x)=\widetilde{F}_{0}(x)-\sum_{1}^{n}\left(\widetilde{F}_{0}(x), \widetilde{A}_{j}(x)\right) \widetilde{A}_{j}(x) .
$$

Lemma 1.1.
(a) $\widetilde{F}(x)$ is an orthogonal Γ-extension of $F(x)$,
(b) $\widetilde{F}(x)$ is continuous.

Proof. By construction $\widetilde{F}(x)$ is orthogonal to $\widetilde{A}_{j}(x)$ for all j and hence to all $A_{j} x$, which are linear combinations of them. Furthermore, if x is in $\bar{\Omega}$, then $\widetilde{F}_{0}(x)=F(x)$ is orthogonal to all $A_{j} x$, hence to all $\widetilde{A}_{j}(x)$, and $\widetilde{F}(x)=F(x)$.

Thus, the more delicate part is the continuity of $\left(\widetilde{F}_{0}(x), \widetilde{A}_{j}(x)\right) \widetilde{A}_{j}(x)$. Let x_{n} be a sequence converging to x_{0} such that $\widehat{A}_{j}\left(x_{n}\right)$ is non-zero and converges to 0 (the other cases are trivial). Then, since $\widetilde{A}_{j}\left(x_{n}\right)$ has norm 1 , there is a
subsequence such that $\widetilde{A}_{j}\left(x_{n}\right)$ converges to some v, with norm 1 , and the above expression converges to $\left(\widetilde{F}_{0}\left(x_{0}\right), v\right) v$.

Now, since $\widehat{A}_{j}\left(x_{0}\right)=0$, then $A_{j} x_{0}=\sum_{1}^{j-1} \lambda_{i} A_{i} x_{0}$, i.e. x_{0} belongs to $\operatorname{ker}\left(A_{j}-\sum_{1}^{j-1} \lambda_{i} A_{i}\right) \equiv V_{1}$. But V_{1} is invariant under Γ and in fact $V_{1}=V^{T}$, where T is the torus $\left(-\lambda_{1} \varphi, \ldots,-\lambda_{j-1} \varphi, \varphi, 0, \ldots, 0\right)$. Hence, from the equivariance, $\widetilde{F}_{0}\left(x_{0}\right)$ belongs to V_{1} and one will have proved the continuity if one shows that v is in $V_{2}=V_{1}^{\perp}$.

Assume first that j is the first index for which $\widetilde{A}_{j}\left(x_{0}\right)=0$ and write any x in V as $x_{1}+x_{2}$, with x_{i} in V_{i}. Since \widetilde{A}_{i} is equivariant, one has that $\widehat{A}_{i}\left(x_{1}\right)$ is in V_{1} and, since $A_{j} x_{1}$ is a linear combination of $A_{1} x_{1}, \ldots, A_{j-1} x_{1}$, one has $\widehat{A}_{j}\left(x_{1}\right)=0$. Now

$$
\begin{aligned}
& \left(\widehat{A}_{k} x\right)_{1}-\widehat{A}_{k}\left(x_{1}\right)=-\sum_{1}^{k-1}\left(A_{k} x_{1}, \widetilde{A}_{i}(x)_{1}\right)\left(\widetilde{A}_{i}(x)_{1}-\widetilde{A}_{i}\left(x_{1}\right)\right) \\
& \quad-\sum_{1}^{k-1}\left(A_{k} x_{2}, \widetilde{A}_{i}(x)_{2}\right) \widetilde{A}_{i}(x)_{1}-\sum_{1}^{k-1}\left(A_{k} x_{1}, \widetilde{A}_{i}(x)_{1}-\widetilde{A}_{i}\left(x_{1}\right)\right) \widetilde{A}_{i}\left(x_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|\left(\widetilde{A}_{k} x\right)_{1}-\widetilde{A}_{k}\left(x_{1}\right)\right\| \leq & \left\|\widehat{A}_{k}(x)_{2}\right\|^{2} /\left\|\widehat{A}_{k}(x)\right\|^{2} \\
& +2\left\|\left(\widehat{A}_{k} x\right)_{1}-\widehat{A}_{k}\left(x_{1}\right)\right\| /\left\|\widehat{A}_{k}\left(x_{1}\right)\right\|,
\end{aligned}
$$

where one uses $\left||a|^{-1}-|b|^{-1}\right|=|(b+a, b-a)| /|a||b|(|a|+|b|) \leq|b-a| /|a||b|$.
From the fact that $\left\|\widetilde{A}_{k}(x)_{2}\right\| \leq C\left\|x_{2}\right\|$, it is easy to prove by induction that $\left\|\left(\widehat{A}_{k} x\right)_{1}-\widehat{A}_{k}\left(x_{1}\right)\right\|,\left\|\left(\widetilde{A}_{k} x\right)_{1}-\widetilde{A}_{k}\left(x_{1}\right)\right\| \leq C_{k}\left\|x_{2}\right\|^{2}$, where C_{k} depends on $\left\|\widehat{A}_{l}(x)\right\|^{-1}$ and $\left\|\widehat{A}_{l}\left(x_{1}\right)\right\|^{-1}$ for $l<k$. Again by induction, these norms are close to those for x_{0}, hence non-zero. Hence, $\left\|\left(\widehat{A}_{j} x\right)_{1}\right\| \leq C_{j}\left\|x_{2}\right\|^{2}$ and $\left(\widehat{A}_{j} x\right)_{2}=$ $A_{j} x_{2}-\sum_{i=1}^{j-1} \lambda_{i} A_{i} x_{2}+0\left(\left\|x_{2}\right\|^{2}\right)$, when x tends to x_{0}. In this case, if for some subsequence, one has that $x_{2} /\left\|x_{2}\right\|$ converges to X_{2}, then $\widetilde{A}_{j}(x)$ converges to $v=w_{2} /\left\|w_{2}\right\|$, with $w_{2}=A_{j} X_{2}-\sum_{1}^{j-1} \lambda_{i} A_{i} X_{2}$, which is non-zero by definition of V_{1}.

If $\widehat{A}_{j}\left(x_{0}\right)$ is not the first zero vector, let

$$
\widehat{A}_{j}(x)=A_{j} x-\sum_{1}\left(A_{j} x, \widetilde{A}_{i}(x)\right) \widetilde{A}_{i}(x)-\sum_{2}\left(A_{j} x, \widetilde{A}_{i}(x)\right) \widetilde{A}_{i}(x),
$$

where the first sum corresponds to i with $\widetilde{A}_{i}\left(x_{0}\right) \neq 0$ and the second sum to $-\widehat{B}_{2}(x)$, with $\widetilde{A}_{i}\left(x_{0}\right)=0$. Then, $\widehat{A}_{j}(x)=\widehat{B}_{1}(x)+\widehat{B}_{2}(x)$, with $\widehat{B}_{1}(x)$ orthogonal to $\widehat{B}_{2}(x)$.

By induction one has that $\widehat{B}_{2}(x)$ goes to 0 and, from the previous argument, $\widehat{B}_{1}(x)$ goes also to 0 , when x goes to x_{0}. Note that x_{0} belongs to $\operatorname{ker}\left(A_{j}-\right.$ $\left.\sum_{i=1} \lambda_{i}^{j} A_{i}\right)$ and, for each i in the second sum, to $\operatorname{ker}\left(A_{i}-\sum \lambda_{i}^{k} A_{k}\right)$, that is x_{0}
is in the fixed point subspace of a $(n+1)$-torus, T, where n is the cardinality of the second sum.

Now if, for subsequences, $\widehat{B}_{1}(x) /\left\|\widehat{B}_{1}(x)\right\|$ goes to $u_{1}, \widetilde{A}_{i}(x)$ to w_{i}, for i in the second sum, $\left\|\widehat{B}_{1}(x)\right\| /\left\|\widehat{A}_{j}(x)\right\|$ to $\alpha_{1}, \alpha_{i}(x) /\left\|\widehat{A}_{j}(x)\right\|$ to β_{i}, with $\alpha_{i}(x)=$ $\left(A_{j} x, \widetilde{A}_{i}(x)\right)$ which, by induction, goes to 0 , then $\widetilde{A}_{j}(x)$ goes to $\alpha_{1} u_{1}+\sum_{2} \beta_{i} w_{i}$, with $\alpha_{1}^{2}+\sum \beta_{i}^{2}=1$. From the above argument, one has that u_{1} is orthogonal to $\operatorname{ker}\left(A_{j}-\sum_{1} \lambda_{1}^{j} A_{i}\right)$ and w_{i} to $\operatorname{ker}\left(A_{i}-\sum \lambda_{i}^{k} A_{k}\right)$. Hence v is orthogonal to V^{T}, proving the lemma.

Note that the above lemma can be used in order to prove that if a Γ-map F is such that $F(x)$ is not a linear combination of the $A_{j} x$, for any x in $\partial \Omega$, then F is Γ-homotopic on $\partial \Omega$ to an orthogonal map $F(x)-\sum\left(F(x), \widetilde{A}_{j}(x)\right) \widetilde{A}_{j}(x)$ via a linear deformation: if it is zero, then $F(x)$ is a linear combination of the $\widetilde{A}_{j}(x)$ and hence of the $A_{j} x$. The lemma shows that the resulting map is continuous.

The rest of the construction of the degree is then easy: let N be an invariant neighbourhood of $\partial \Omega$, on which $\widetilde{F}(x)$ is non-zero, and let $\varphi(x)$ be an invariant partition of unity, with value 0 in $\bar{\Omega}$ and 1 in the complement of $\Omega \cup N$, then

$$
\widehat{F}(t, x)=(2 t+2 \varphi(x)-1, \widetilde{F}(x))
$$

is non-zero an $\partial(I \times B)$ and is an orthogonal Γ-map on $I \times B$.
Furthermore, it is clear that if F and G are homotopic on $\partial \Omega$, via an orthogonal Γ-map, then $\widehat{F}(t, x)$ and $\widehat{G}(t, x)$ are homotopic via an orthogonal Γ-map. Hence, one may define

$$
\operatorname{deg}_{\perp}(F ; \Omega) \equiv[\widehat{F}]_{\perp},
$$

where $[\widehat{F}]_{\perp}$ is the homotopy class of \widehat{F} in \prod_{\perp}^{Γ}, the set of all Γ-homotopy classes of orthogonal Γ-maps from $\partial(I \times B)$ into $\mathbb{R} \times V \backslash\{0\}$.

As in [11, Proposition 2.1], the class of \widehat{F} is independent of the construction, i.e. of φ, N and \widetilde{F}. Furthermore, if Ω is a ball, one may take a radial extension (hence non-zero on $B \backslash \Omega$) and one has $[\widehat{F}]_{\perp}=\sum_{0}[F]_{\perp}$, the suspension of $[F]_{\perp}$. We shall prove later on that \sum_{0} is an isomorphism.

Another important fact is that the Equivariant Borsuk homotopy extension theorem, [11, p. 439], is valid for orthogonal Γ-maps.

Lemma 1.2. \prod_{\perp}^{Γ} is an abelian group.
Proof. It is enough to check that the arguments given in [11, Propositions A. 1 and A.4] are still valid. In particular, by using the equivariant Borsuk theorem, one may deform any F in \prod_{\perp}^{Γ} to a map with values $(1,0)$ for $t=0$ or 1. This enables one to define the sum in \prod_{\perp}^{Γ}.

Theorem 1. $\operatorname{deg}_{\perp}$ has all the properties of a degree, i.e., non-triviality, additivity, excision, and the Hopf property (if Ω is a ball and F has a zero degree then there is a non-zero orthogonal Γ-extension).

Proof. It is enough to go over the proofs of [11]. The fact that the suspension is an isomorphism gives the additivity without suspension.

One has then the following situation:
where the first map consists in taking a gradient Γ-map as an orthogonal one and \prod_{*} is the morphism given by forgetting the orthogonality. From [13] the last group is a product of \mathbb{Z}, one for each isotropy subgroup H with $T^{n}<H$. Furthermore, it is also $\prod_{S^{V^{1}}}^{\Gamma}\left(S^{V^{1}}\right)$, where $V^{1}=V^{T^{n}}$ and $[F]=\left[F^{T^{n}}, Z\right]$, where Z is in the orthogonal complement of V^{1} (see [13, Corollary 5.1]). Now, since $A_{j}^{T}+A_{j}=0$ (by differentiating the equality $(\gamma x, \gamma y)=(x, y)$), the map $\left(F^{T^{n}}(x), Z\right)$ is an orthogonal map. Hence \prod_{*} is onto.

Note that Parusiński has proved that, if $\Gamma=\{e\}$, the map \perp_{*} is one to one and onto, see [17]. This could lead to the conjecture that, in general, \perp_{*} is also one to one and onto.

Remark 1. If one has $F(\lambda, x): \mathbb{R}^{k} \times V \rightarrow V, \Gamma$-orthogonal to $A_{j} x$, or $\Phi(\lambda, x): \mathbb{R}^{k} \times V \rightarrow \mathbb{R}, \Gamma$-invariant, such that on the boundary of a bounded, open and invariant subset Ω of $\mathbb{R}^{k} \times V$, one has $F(\lambda, x) \neq 0$, or $\nabla_{x} \Phi(\lambda, x) \neq 0$, then one may perform the same constructions and define two Γ-degrees, $\operatorname{deg}{ }_{\nabla}^{\Gamma}(\Phi ; \Omega)$ in $\prod_{\nabla}^{\Gamma}\left(S^{\mathbb{R}^{k} \times V}, S^{V}\right)$ and $\operatorname{deg}{ }_{\perp}^{\Gamma}(\Phi ; \Omega)$ in $\prod_{\perp}^{\Gamma}\left(S^{\mathbb{R}^{k} \times V}, S^{V}\right)$. This last set will be an abelian group and one will have a degree with the usual properties (additivity here will be up to one suspension). One may also define the maps \perp_{*} and \prod_{*} into $\prod_{S^{\mathbb{R}^{k} \times V}}^{\Gamma}\left(S^{V}\right)$, which has been studied in [13].

2. Main theorem

The following constitutes the main abstract result of the paper. Its proof will be by modifying the original map on subspaces with orbits of increasing dimension: in fact, if $\Gamma_{x}=H$ with $\operatorname{dim} \Gamma / H=k$, then the orbit Γx is a k dimensional manifold with tangent space at x generated by k of the $A_{j} x$.

Theorem 2.

(1) $\prod_{\perp}^{\Gamma} \cong \mathbb{Z} \times \mathbb{Z} \times \ldots \times \mathbb{Z}$, with one \mathbb{Z} for each isotropy subgroup of Γ.
(2) $[\widehat{F}]_{\perp}=\sum_{H} d_{H}\left[F_{H}\right]_{\perp}$, with explicit generators F_{H}. If $d_{H} \neq 0$, then \widehat{F} has a zero in V^{H}.
(3) Any sequence of d_{H} is the degree of some orthogonal Γ-map defined on Ω, provided d_{H} is taken to be 0 if Ω^{H} is empty.

Proof. Let F be an orthogonal Γ-map, from B into V, which is non-zero on ∂B (in order to make lighter the writing, $I \times B$ is denoted by B).

Step 1. As indicated above, $\left[F^{T^{n}}\right]$, as an element of $\prod_{S^{V^{1}}}^{\Gamma}\left(S^{V^{1}}\right)$, is $\sum_{T^{n}<H} d_{H}\left[F_{H}\right]$. Note that $A_{j} x=0$ on $V^{1}=V^{T^{n}}$. Hence, $\left[F_{1}\right]_{\perp} \equiv[F]_{\perp}-$ $\left[F^{T^{n}}, Z\right]_{\perp}$ has a non-zero orthogonal Γ-extension to $B^{T^{n}}$. Thus, $F_{1}(X, Z)=$ $\left(F_{1}^{T^{n}}(X, Z), F_{\perp}(X, Z)\right)$, with $F_{1}(X, 0) \neq 0$ and $F_{\perp}(X, Z)$ is orthogonal to $A_{j} Z$.

Step 2. Recall that the action of T^{n} on the k th coordinate of Z is of the form $\exp i\left(\sum n_{k}^{j} \varphi_{j}\right)$. Assume, without loss of generality, that $n_{1}^{1} \neq 0$ and let $\lambda_{j} \equiv n_{1}^{j} / n_{1}^{1}$ for $j=2, \ldots, n$. Let

$$
V_{1}=V^{T^{n}} \times\left\{z_{k}: n_{k}^{1} \neq 0 \text { and } n_{k}^{j}=\lambda_{j} n_{k}^{1}, j \geq 2\right\}
$$

Then, on V_{1}, one has $A_{j} x=\lambda_{j} A_{1} x$ and $V_{1}=V^{T_{1}}$, where T_{1} is the $(n-1)$-torus $\left(-\sum_{2}^{n} \lambda_{j} \varphi_{j}, \varphi_{2}, \ldots, \varphi_{n}\right)$. Let B_{1} be the ball $B^{V_{1}}$, then, the map $F_{1}(x)+\lambda A_{1} x$ is non-zero on $\partial\left(I \times B_{1}\right)$, where λ is in $I=[-1,1]$, since $F_{1}(X, 0) \neq 0$ and, from the fact that F_{1} is orthogonal to $A_{1} x$, a zero of the above map is such that $F_{1}(x)=0$ and $\lambda A_{1} x=0$. That is, if $Z \neq 0$, then $\lambda=0$, since $A_{1} z_{k}=i n_{k}^{1} z_{k}$. We are assuming here that $n_{1}^{1}>0$. If not one changes $\lambda A_{1} x$ to $-\lambda A_{1} x$. Thus, $F_{1}(x)+\lambda A_{1} x$ defines an element of $\prod_{S^{V_{1} \times \mathbb{R}}}^{\Gamma}\left(S^{V_{1}}\right) \cong A \times \mathbb{Z} \times \ldots \times \mathbb{Z}$, see [13, Corollary 5.1], where $A=\prod_{S^{\mathbb{R} \times V^{1}}}^{\Gamma}\left(S^{V^{1}}\right)$ and there is one \mathbb{Z} for each isotropy subgroup H of Γ acting on V_{1}, with $\operatorname{dim} \Gamma / H=1$. Since $F_{1}^{T^{n}} \neq 0$, one has that $\left[F_{1}+\lambda A_{1} z\right]=0+\sum d_{H}\left[\widetilde{F}_{H}\right]$. Here $T_{1} \leq H<T^{n}$ and \widetilde{F}_{H} is the following map [13, p. 394]:

$$
\begin{aligned}
\widetilde{F}_{H}(\lambda, x)= & \widetilde{F}_{H}\left(\lambda, t, X_{0}, y_{j}, u_{j}, z_{1}, \ldots, z_{j}, \ldots\right) \\
= & \left(2 t+1-2 \prod\left|x_{j}\right|\left|z_{1}\right|^{\alpha},\left|z_{1}\right| X_{0},\left(Q_{j}-1\right) y_{j}\left|z_{1}\right|,\right. \\
& \left.\left|z_{1}\right|\left(P_{j}-1\right) u_{j},\left|z_{1}\right|((2 t-1) \eta+i \lambda) z_{1}, \ldots,\left|z_{1}\right|\left(R_{j}-1\right) z_{j}, \ldots\right),
\end{aligned}
$$

where $\Gamma / H=\left(\Gamma / H_{1}\right) \ldots\left(\widetilde{H}_{j-1} / \widetilde{H}_{j}\right) \ldots$, with $\widetilde{H}_{j}=H_{1} \cap \ldots \cap H_{j}, H_{j}$ the isotropy subgroup of x_{j}, the j th coordinate. Here X_{0} is in $V^{T^{n}}, \Gamma / H_{j} \cong \mathbb{Z}_{2}$ for $y_{j}, \Gamma / H_{j} \cong \mathbb{Z}_{m}$ for u_{j} and $\Gamma / H_{j} \cong S^{1}$ for z_{j}. If $k_{j}=\left|\widetilde{H}_{j-1} / \widetilde{H}_{j}\right|$, then k_{j} is finite, except for z_{1}. The product in the first component is only for those k_{j} which are strictly bigger than 1. $Q_{j}=y_{j}^{2}$ if $k_{j}=2$ and $Q_{j}=2$ if $k_{j}=1 . P_{j}$ is an invariant monomial of $x_{1}, \ldots, x_{j}=u_{j}$, with exponent k_{j} in u_{j} if $k_{j}>1$ and $P_{j}=2$ if $k_{j}=1$. The same definition holds for R_{j} (for instance if $\Gamma=S^{1}$ and n_{1} is the largest common divisor of all n_{j}, then $k_{j}=1$). For other cases see [12]. The exponent α is chosen in such a way that when $Q_{j}=P_{j}=R_{j}=1$ and hence $\left|z_{j}\right|=\left|z_{1}\right|^{q_{j}}$, for some q_{j}, then $\alpha+\sum q_{j} \neq 0$. This implies that the zeros of F_{H} are for $\lambda=0, t=1 / 2,\left|x_{j}\right|=\left|z_{1}\right|=1$ if $k_{j}>1$ and that one has, for $z_{1}=1$, exactly Πk_{j} zeros and exactly one in the fundamental cell for V^{H} : $\mathcal{C}_{H} \equiv\left\{x_{j}, 0 \leq\left|x_{j}\right|<R, 0 \leq \operatorname{Arg} x_{j}<2 \pi / k_{j}\right\}$. Each zero, for z_{1} in \mathbb{R}^{+}, has
index 1: $\eta= \pm 1$ is chosen in such a way that, given the basic orientation, this index is 1 .

Let

$$
F_{H}(x)=\widetilde{F}_{H}(0, x)-\left(\widetilde{F}_{H}(0, x), \widetilde{A}_{1}(x)\right) \widetilde{A}_{1}(x)
$$

By construction F_{H} is an orthogonal Γ-map, with z_{1}-component $\left|z_{1}\right|(2 t-1-$ $\left.i \alpha(x) n_{1}^{1}\right) z_{1}$ and the same first component as \widetilde{F}_{H}. Thus, the zeros of F_{H} are those of \widetilde{F}_{H} and F_{H} defines an element of \prod_{\perp}^{Γ}. Furthermore, $\widetilde{F}_{H}(\lambda, x)$ is Γ-homotopic to $F_{H}(x)+\lambda A_{1} x$: deform $\lambda-\alpha$ in the z_{j}-component to 0 and then α in the z_{1}-component to 0 and n_{1}^{1} to 1 . Note that $F_{H}(x)+\lambda A_{1} x$ is zero only if $\lambda=0$ and $F_{H}(x)=0$, since F_{H} is orthogonal to $A_{j} x$. Hence, $F_{H}(x)+\lambda A_{1} x$ can be taken as generators of $\prod_{S^{\mathbb{R} \times V_{1}}}^{\Gamma}\left(S^{V_{1}}\right)$.

Complementing F_{H} by the identity of V_{1}^{\perp}, one has that

$$
\left[F_{2}\right]_{\perp} \equiv\left[F_{1}\right]_{\perp}-\sum_{T_{1} \leq H<T^{n}} d_{H}\left[F_{H}\right]_{\perp}
$$

is orthogonal to $A_{j} x$ and $F_{2}(x)+\lambda A_{1} x$, on $\partial\left(I \times B_{1}\right) \cup B^{T^{n}}$, is Γ-extendable to a non-zero Γ-map $F(\lambda, x)$ on $I \times B_{1}$.

We claim that this fact implies that $F_{2}(x)$ itself has a non-zero orthogonal Γ-extension to B_{1}, i.e., that $\left[F_{2}\right]_{\perp}=0$.

The proof of the claim follows the lines of [13, Theorem 3.1], by working on V_{1}^{H}, for H in decreasing order. Thus, if H is maximal (hence any $K>H$ must contain T^{n}), one may extend $\left[F_{2}^{\prime}\right]_{\perp}=\left[F_{1}\right]_{\perp}-d_{H}\left[F_{H}\right]_{\perp}$ in such a way that the resulting orthogonal map is non-zero on $\partial \mathcal{C}_{H}$: this is true on V^{K}, for $K>H$, since there F_{1}^{K} is non-zero, and by a dimension argument, since $\operatorname{dim} \partial \mathcal{C}_{H}=$ $\operatorname{dim} V^{H}-2$, as in [14, Lemma 4.1]. Thus, one may assume that $F_{2}^{\prime}(x)+\lambda A_{1} x$ is non-zero on $\partial\left(I \times \mathcal{C}_{H}\right)$ and has a zero degree with respect to $I \times \mathcal{C}_{H}$ (this is the obstruction degree which characterizes $\left.\left[F_{2}^{\prime}+\lambda A_{1} x\right]_{\Gamma}\right)$.

Now, in \mathcal{C}_{H} one has the component z_{1} in \mathbb{R}^{+}and, since $F_{2}^{\prime}(x) \neq 0$ for $z_{1}=0$, one may compute this obstruction degree on the ball $A \equiv I \times \mathcal{C}_{H} \cap$ $\left\{z_{1}>\varepsilon\right\}$, for some small ε. If $F_{2}^{\prime}=\left(f_{1}, f_{2}, F_{\perp}\right)$, where $f_{1}+i f_{2}$ corresponds to the z_{1}-component, one may perform on ∂A the homotopy $F_{2}^{\prime}(x)+\lambda\left(\tau A_{1} x+(1-\right.$ $\tau) A_{1} z_{1}$): in fact, taking the scalar product with $F_{2}^{\prime}(x)$, one has $\left|F_{2}^{\prime}\right|^{2}+\lambda(1-$ $\tau)\left(F_{2}^{\prime}, A_{1} z_{1}\right)=0$ at a zero of the homotopy, that is, from the orthogonality: $\left|F_{2}^{\prime}\right|^{2}-\lambda(1-\tau)\left(F_{\perp}, A_{1} y\right)=\left|F_{2}^{\prime}\right|^{2}+\lambda^{2} \tau(1-\tau)\left|A_{1} y\right|^{2}$ on a zero. Hence, $F_{2}^{\prime}(x)=0$, $\lambda A_{1} z_{1}=0$ and, since $z_{1}>\varepsilon, \lambda=0$; that is, the zeros are inside A. The resulting map $\left(f_{1}, f_{2}+\lambda n_{1}^{1} z_{1}, F_{\perp}\right)$ is linearly deformable on ∂A, to $\left(f_{1}, \lambda, F_{\perp}\right)$, since from the orthogonality one has $f_{2} z_{1}=-\left(F_{\perp}, A_{1} y\right)$, assuming $n_{1}^{1}>0$. From the product theorem, one obtains that $\operatorname{deg}\left(f_{1}, F_{\perp} ; \mathcal{C}_{H} \cap\left\{z_{1} \geq \varepsilon\right\}\right)=0$, i.e., $\left(f_{1}, F_{\perp}\right)$ has a non-zero extension, $\left(\widetilde{f}_{1}, \widetilde{F}_{\perp}\right)$, to $\mathcal{C}_{H} \cap\left\{z_{1} \geq \varepsilon\right\}$. Defining, on
this set, $\widetilde{f}_{2}=-\left(\widetilde{F}_{\perp}, A_{1} y\right) / z_{1}$, one obtains a non-zero orthogonal extension $\widetilde{F}_{2}^{\prime}(x)$ of $F_{2}^{\prime}(x)$, first on \mathcal{C}_{H} and then, by the action of the group Γ, on V_{1}^{H}.

For a general H, one assumes by induction that $\left[F_{2}^{\prime}\right]_{\perp}=\left[F_{1}\right]_{\perp}-\sum_{K \leq H}$ $d_{K}\left[F_{K}\right]_{\perp}$ has been extended, as a non-zero orthogonal map to all V_{1}^{K}, for $K<H$, that is, together with a dimension argument, one has a non-zero map on $\partial \mathcal{C}_{H}$, in particular for the corresponding $z_{1}=0$. Then, one repeats the above argument in order to obtain a non-zero orthogonal extension of F_{2}^{\prime} on V_{1}^{H}.

Step 3. On V_{1}^{\perp} consider the first coordinate z_{k} with $n_{k}^{1} \neq 0$ and repeat the above construction in order to get $\widetilde{V}_{1}=V^{\widetilde{T}_{1}}$. Clearly $\widetilde{V}_{1} \cap V_{1}=V^{T^{n}}$ and one obtains a non-zero orthogonal extension on \widetilde{V}_{1} of $F^{T^{n}}$. Since the generators for F_{2} are trivial on V_{1}^{\perp}, one obtains a compatible extension. One repeats this construction until all coordinates with $n_{k}^{1} \neq 0$ are exhausted and then with $V_{2}=V^{T^{n}} \times\left\{z_{k}: n_{k}^{1}=0, n_{k}^{2} \neq 0\right.$ and $\left.n_{k}^{j}=\lambda_{j} n_{k}^{2}, j>2 ; \lambda_{j}=n_{k_{0}}^{j} / n_{k_{0}}^{2}\right\}$, and so on.

Hence, if H is such that $\operatorname{dim} \Gamma / H=1$ one has one z_{1} with $\operatorname{dim} \Gamma / H_{1}=1$ and $\left|H_{1} / H\right|<\infty$, one has an extension $\left[F_{2}\right]_{\perp}$ of $[F]_{\perp}-\sum_{\operatorname{dim} \Gamma / H=1} d_{H}\left[F_{H}\right]_{\perp}$, which is orthogonal and non-zero on $\bigcup_{\operatorname{dim} \Gamma / H=1} V^{H}$.

Step 4. The next stage is for two-dimensional Weyl groups. Assume

$$
\operatorname{det}\left(\begin{array}{ll}
n_{1}^{1} & n_{1}^{2} \\
n_{2}^{1} & n_{2}^{2}
\end{array}\right)=\operatorname{det} A \neq 0
$$

and define, for $j \geq 3, \lambda_{1}^{j}$ and λ_{2}^{j} by

$$
\binom{n_{1}^{j}}{n_{2}^{j}}=A\binom{\lambda_{1}^{j}}{\lambda_{2}^{j}} .
$$

Let $V_{2}=\left\{z_{k}: n_{k}^{j}=\lambda_{1}^{j} n_{k}^{1}+\lambda_{2}^{j} n_{k}^{2}, j \geq 2\right\}$.
Then, on V_{2}, one has $A_{j} x=\lambda_{1}^{j} A_{1} x+\lambda_{2}^{j} A_{2} x$ for $j \geq 3$ and $V_{2}=V^{T_{2}}$, where T_{2} is the $(n-2)$-torus $\left(-\sum \lambda_{1}^{j} \varphi_{j},-\sum \lambda_{2}^{j} \varphi_{j}, \varphi_{3}, \ldots, \varphi_{n}\right)$. In particular any isotropy subgroup H for V_{2} has $\operatorname{dim} \Gamma / H \leq 2$. The action of T^{n} on z_{k} is $\exp i\left(n_{k}^{1} \psi_{1}+n_{k}^{2} \psi_{2}\right)$, where $\psi_{1}=\varphi_{1}+\sum \lambda_{1}^{j} \varphi_{j}, \psi_{2}=\varphi_{2}+\sum \lambda_{2}^{j} \varphi_{j}$.

Consider the map $F_{2}(x)+\lambda_{1} A_{1} x+\lambda_{2} A_{2} x, \lambda_{1}, \lambda_{2} \in I=[-1,1]$, where $F_{2}(x) \neq 0$ if $\operatorname{dim} \Gamma / \Gamma_{x} \leq 1$ and F_{2} is an orthogonal Γ-extension of $F(x)$. Hence, a zero of this map will give a zero of F_{2} and hence $\lambda_{1}=\lambda_{2}=0$: it is clear that $A_{j} x$ is tangent to the orbit Γx, here at most two dimensional, and that $F_{2}(x) \neq 0$ if Γx is one-dimensional. Hence, on zeros of $F_{2}, A_{1} x$ and $A_{2} x$ are linearly independent. We are assuming here that $\operatorname{det} A>0$. If this is not the case, one changes $\lambda_{1} A_{1} x$ to $-\lambda_{1} A_{1} x$.

Thus, $\left[F_{2}(x)+\lambda_{1} A_{1} x+\lambda_{2} A_{2} x\right]_{\Gamma}$ is an element of $\prod_{S^{\mathbb{R}^{2} \times V_{2}}}^{\Gamma}\left(S^{V_{2}}\right)$, the group of all Γ-homotopy classes of maps from $\partial\left(I^{2} \times B_{2}\right)$ into $V_{2} \backslash\{0\}$, where B_{2} is the ball $B^{V_{2}}$. Now this group is $A \times \mathbb{Z} \times \ldots \times \mathbb{Z}$, with A corresponding to isotropy subgroups H on V_{2} with $\operatorname{dim} \Gamma / H \leq 1$ and there is one \mathbb{Z} for each H
with $\operatorname{dim} \Gamma / H=2$, see [13, Theorem 5.1]. Then, $\left[F_{2}(x)+\lambda_{1} A_{1} x+\lambda_{2} A_{2} x\right]_{\Gamma}=$ $0+\sum d_{H}\left[\widetilde{F}_{H}\right]_{\Gamma}$, where $T_{2} \leq H$ and $\operatorname{dim} \Gamma / H=2 . \widetilde{F}_{H}$ is the following map:

$$
\begin{aligned}
\widetilde{F}_{H}(\lambda, x)= & \left(2 t+1-2 \prod\left|x_{j}\right|\left|z_{1}\right|^{\alpha}\left|z_{2}\right|,\left|z_{1} z_{2}\right| X_{0},\left|z_{1} z_{2}\right|\left(Q_{j}-1\right) y_{j}\right. \\
& \left|z_{1} z_{2}\right|\left(P_{j}-1\right) u_{j},\left|z_{1} z_{2}\right|\left(i\left(n_{1}^{1} \lambda_{1}+n_{1}^{2} \lambda_{2}\right)+\left(\left|z_{2}\right|^{2}-1\right)\right) z_{1} \\
& \left.\left|z_{1} z_{2}\right|\left(i\left(n_{2}^{1} \lambda_{1}+n_{2}^{2} \lambda_{2}\right)+\eta(2 t-1)\right) z_{2},\left|z_{1} z_{2}\right|\left(R_{j}-1\right) z_{j}, \ldots\right)
\end{aligned}
$$

where $x_{j}, X_{0}, y_{j}, u_{j}, Q_{j}, P_{j}, R_{j}$ are as in the first step. The exponent α has the role of fixing the zeros at $\left|x_{j}\right|=1=\left|z_{1}\right|=\left|z_{2}\right|, t=1 / 2, \lambda_{1}=\lambda_{2}=0$. The factor $\left|z_{1} z_{2}\right|$ is such that $\widetilde{F}_{H}=(2 t+1,0)$ if z_{1} or z_{2} is 0 . For z_{1} and z_{2} real and positive the index of each zero is equal to $\eta \operatorname{Sign} \operatorname{det} A$, that is \widetilde{F}_{H} can be taken as generator, by the appropriate choice of η. Let

$$
F_{H}(x)=\widetilde{F}_{H}(0, x)-\left(\widetilde{F}_{H}(0, x), \widetilde{A}_{1}(x)\right) \widetilde{A}_{1}(x)-\left(\widetilde{F}_{H}(0, x), \widetilde{A}_{2}(x)\right) \widetilde{A}_{2}(x)
$$

By construction F_{H} is an orthogonal Γ-map. Writing $F_{H}(x)=\widetilde{F}_{H}(0, x)-$ $\alpha\left|z_{1} z_{2}\right| A_{1} x-\beta\left|z_{1} z_{2}\right| A_{2} x$, one sees easily that the zeros of F_{H} are those of $\widetilde{F}_{H}(0, x)$ and that one has for them $\alpha=\beta=0$. Furthermore, as a Γ-map, $F_{H}(x)+\lambda_{1} A_{1} x+$ $\lambda_{2} A_{2} x$ is linearly deformable to $\widetilde{F}_{H}(0, x)+\lambda_{1} A_{1} x+\lambda_{2} A_{2} x$ (the zeros are for $\lambda_{1}=\tau \alpha\left|z_{1} z_{2}\right|, \lambda_{2}=\tau \beta\left|z_{1} z_{2}\right|$ and $\widetilde{F}_{H}(0, x)=0$ for which $\left.\alpha=\beta=0\right)$. Then, this last map is deformable to $\widetilde{F}_{H}(\lambda, x)=\widetilde{F}_{H}(0, x)+\left|z_{1} z_{2}\right|\left(\lambda_{1} A_{1} Z+\lambda_{2} A_{2} Z\right)$, with $Z^{T}=\left(z_{1}, z_{2}\right)$. This means that one may take $F_{H}(x)+\lambda_{1} A_{1} x+\lambda_{2} A_{2} x$ as the generator in $\prod_{S^{\mathbb{R}^{2} \times V_{2}}}^{\Gamma}\left(S^{V_{2}}\right)$. Let then

$$
\left[F_{3}\right]_{\perp} \equiv\left[F_{2}\right]_{\perp}-\sum_{T_{2} \leq H, \operatorname{dim} \Gamma / H=2} d_{H}\left[F_{H}\right]_{\perp}
$$

then F_{3} is an orthogonal Γ-map and $F_{3}(x)+\lambda_{1} A_{1} x+\lambda_{2} A_{2} x$, on $\partial\left(I^{2} \times B_{2}\right)$ $\bigcup_{\operatorname{dim} \Gamma / H \leq 1} V^{H}$ is Γ-extendable to a non-zero map $F(\lambda, x)$ on $I^{2} \times B_{2}$.

As before, we claim that this implies that $\left[F_{3}\right]_{\perp}=0$: one proceeds on isotropy subspaces of increasing dimension by considering on the fundamental cell \mathcal{C}_{H} an orthogonal map F_{3}^{\prime} which, by induction and dimension arguments, is nonzero on $\partial \mathcal{C}_{H}$. In particular $F_{3}^{\prime}(x) \neq 0$ for $0 \leq z_{1} \leq \varepsilon$ or $0 \leq z_{2} \leq \varepsilon$, and the obstruction degree d_{H} is the degree of $F_{3}^{\prime}(x)+\lambda_{1} A_{1} x+\lambda_{2} A_{2} x$ on the ball $\mathcal{A}=I^{2} \times \mathcal{C}_{H} \cap\left\{z_{1}, z_{2} \geq \varepsilon\right\}$. If $F_{3}^{\prime}(x)=\left(f_{1}+i f_{2}, g_{1}+i g_{2}, F_{\perp}\right)=\left(F, F_{\perp}\right)$, then one may deform linearly $F_{3}^{\prime}(x)+\lambda_{1} A_{1} x+\lambda_{2} A_{2} x$ to $F_{3}^{\prime}(x)+\lambda_{1} A_{1} Z+$ $\lambda_{2} A_{2} Z$, with $Z^{T}=\left(z_{1}, z_{2}\right)$: by taking the scalar product one obtains, on a zero of the homotopy $\left|F_{3}^{\prime}\right|^{2}+(1-\tau)\left(\lambda_{1}\left(F, A_{1} Z\right)+\lambda_{2}\left(F, A_{2} Z\right)\right)=0$. But, by the orthogonality, $\left(F, A_{i} Z\right)=-\left(F_{\perp}, A_{i} Y\right)$ and, on a zero, $F_{\perp}=-\tau\left(\lambda_{1} A_{1} Y+\right.$ $\lambda_{2} A_{2} Y$, hence $\left|F_{3}^{\prime}\right|^{2}+\tau(1-\tau)\left(\lambda_{1}^{2}\left|A_{1} Y\right|^{2}+2 \lambda_{1} \lambda_{2}\left(A_{1} Y, A_{2} Y\right)+\lambda_{2}^{2}\left|A_{2} Y\right|^{2}\right)=0$, which implies, since the quadratic form is non-negative, $F_{3}^{\prime}(x)=0, \lambda_{1} A_{1} Z+$ $\lambda_{2} A_{2} Z=0$ which implies $\lambda_{1}=\lambda_{2}=0$, since on \mathcal{A} the vectors $A_{1} Z$ and $A_{2} Z$
are linearly independent and the zeros of the deformation are inside \mathcal{A}. The resulting map

$$
\left(f_{1}, g_{1}, A\binom{\lambda_{1} z_{1}}{\lambda_{2} z_{2}}+\binom{f_{2}}{g_{2}}, F_{\perp}\right)
$$

is linearly deformable to

$$
\left(f_{1}, g_{1}, A\binom{\lambda_{1}}{\lambda_{2}}, F_{\perp}\right)
$$

since from the orthogonality

$$
A\binom{z_{1} f_{2}}{z_{2} g_{2}}=-\binom{\left(F_{\perp}, A_{1} Y\right)}{\left(F_{\perp}, A_{2} Y\right)}
$$

and a zero of F_{\perp} on \mathcal{A}, will give $f_{2}=g_{2}=0$.
This last map is a product and since the extension degree is 0 one has that $\left(f_{1}, g_{1}, F_{\perp}\right)$ has degree equal to 0 on $\mathcal{C}_{H} \cap\left\{z_{1}, z_{2}>\varepsilon\right\}$ and therefore a non-zero extension $\left(\widetilde{f}_{1}, \widetilde{g}_{1}, \widetilde{F}_{\perp}\right)$ to this set. Defining \widetilde{f}_{2} and \widetilde{g}_{2} on this set via

$$
A\binom{z_{1} \widetilde{f}_{2}}{z_{2} \widetilde{g}_{2}}=-\binom{\left(\widetilde{F}_{\perp}, A_{1} Y\right)}{\left(\widetilde{F}_{\perp}, A_{2} Y\right)}
$$

one obtains a non-zero orthogonal extension $\widetilde{F}_{3}^{\prime}(x)$ of $F_{3}^{\prime}(x)$ first on \mathcal{C}_{H} and then, by the action of the group Γ, on V_{2}^{H}.

The rest of the proof in then clear: exhaust all isotropy subgroups H with $\operatorname{dim} \Gamma / H=2$ and then go on to higher dimensional Weyl groups.

Now, if $[F]_{\perp}=\sum d_{H}\left[F_{H}\right]_{\perp}$, then $\left[F^{K}\right]_{\perp}=\sum d_{H}\left[F_{H}^{K}\right]_{\perp}$ and, in fact, the sum reduces to those $H \geq K$, since $F_{H}^{K} \neq 0$ if K is not a subgroup of H, in which case $V^{H} \cap V^{K}$ is a strict subspace of V^{H} : there is at least one $x_{j}=0$ and the first component of F_{H}^{K} is non-zero. For $K \leq H$, it is easy to see that F_{H}^{K} is the generator for the group $\prod_{\perp}^{\Gamma}\left(S^{K}, V^{K} \backslash\{0\}\right)$. Hence, if $F^{K} \neq 0$ one has $d_{H}=0$, for all $K \leq H$.

In order to complete the proof of the theorem, it remains to prove (3). Let H be an isotropy subgroup such that $\Omega^{H} \neq \phi$ and $\operatorname{dim} \Gamma / H=l$. Assume that one has the components z_{1}, \ldots, z_{l} such that the matrix A, with $A_{i j}=n_{i}^{j}, 1 \leq i$, $j \leq l$, is non singular. For $j=l+1, \ldots, n$ one defines $\lambda_{1}^{j}, \ldots, \lambda_{l}^{j}$ via

$$
\left(\begin{array}{c}
n_{1}^{j} \\
\vdots \\
n_{l}^{j}
\end{array}\right)=A\left(\begin{array}{c}
\lambda_{1}^{j} \\
\vdots \\
\lambda_{l}^{j}
\end{array}\right)
$$

and $V_{l}=\left\{z_{k}: n_{k}^{j}=\sum_{1}^{l} \lambda_{s}^{j} n_{k}^{s}, j>l\right\}$. If $\operatorname{dim} V_{l}=N$ and one writes the action of T^{n} on V_{l}, in matricial form as $\sum_{1}^{n} n_{k}^{j} \varphi_{j}$, for $k=1, \ldots, N$, let C be the $N \times l$
matrix, with $C_{i j}=n_{i}^{j}$, (A corresponds to the first l rows of C), then one has

$$
C\left(\begin{array}{c}
\varphi_{1} \\
\vdots \\
\varphi_{l}
\end{array}\right)+C\left(\begin{array}{c}
\lambda_{1}^{l+1} \\
\vdots \\
\lambda_{l}^{l+1}
\end{array}\right) \varphi_{l+1}+\ldots+C\left(\begin{array}{c}
\lambda_{1}^{n} \\
\vdots \\
\lambda_{l}^{n}
\end{array}\right) \varphi_{n}=C\left(\begin{array}{c}
\psi_{1} \\
\vdots \\
\psi_{l}
\end{array}\right)
$$

where $\psi_{j}=\varphi_{j}+\sum_{l+1}^{n} \lambda_{j}^{i} \varphi_{i}$ gives a new parametrization of T^{n} (the action of $\psi_{l+1}, \ldots, \psi_{n}$ on V_{l} is trivial) and $V_{l}=V^{T_{l}}$, where T_{l} is the $(n-l)$-torus given by $\psi_{j}, j=l+1, \ldots, n$.

Now, if $\operatorname{dim} V^{\Gamma} \geq 1$, let the point $\left(x_{0}^{0}, \widetilde{X}_{0}^{0}, y_{j}^{0}, u_{j}^{0}, z_{j}^{0}\right)$ be in Ω^{H}, where $\left(x_{0}^{0}, \widetilde{X}_{0}^{0}\right)$ is in V^{Γ} (by translation we shall assume it to be $\left.(0,0)\right)$ and $\left(y_{j}, u_{j}\right)$ is in $V^{T^{n}}$. By perturbing a little one may assume that $y_{j}^{0}, u_{j}^{0}, z_{j}^{0}$ are non-zero provided they are components of V^{H}. Let $x_{j}^{\prime}=x_{j} /\left|x_{j}^{0}\right|$ for these components and $x_{0}^{\prime}=x_{0} / R$, where $\Omega \subset B_{R}$. Let

$$
\begin{aligned}
f_{0}(x)= & \left(x_{0}^{\prime}-2\left(a \prod\left|x_{j}^{\prime}\right|\left|z_{1}^{\prime}\right|^{\alpha}-1\right), a \widetilde{X}_{0}, a\left(Q_{j}-1\right) y_{j}, a\left(P_{j}-1\right) u_{j}\right. \\
& \left.a\left(\left|z_{2}^{\prime}\right|-1\right) z_{1}, \ldots, a\left(\left|z_{l}^{\prime}\right|-1\right) z_{l-1}, a x_{0}^{\prime} z_{l}, a\left(R_{j}-1\right) z_{j}, \ldots\right)
\end{aligned}
$$

with $a=\left|z_{1}^{\prime}\right| \ldots\left|z_{l}^{\prime}\right|$, where Q_{j}, P_{j}, R_{j} are as above but with the variables $y_{j}^{\prime}, u_{j}^{\prime}, z_{j}^{\prime}$, so that the only zeros of $f_{0}(x)$ in Ω (hence with $\left|x_{0}^{\prime}\right|<1$) are for $\left(x_{0}, \widetilde{X}_{0}\right)=(0,0),\left|y_{j}^{\prime}\right|=\left|u_{j}^{\prime}\right|=\left|z_{j}^{\prime}\right|=1$, hence on the orbit of the chosen point. If one adds to the z_{j}-component for $j=1, \ldots, l$, the term $i \lambda_{j} z_{j}$, one obtains a Γ-map $f_{0}(\lambda, x)$ which has a single component, corresponding to H in $\operatorname{deg}_{\Gamma}\left(f_{0}(\lambda, x) ; I^{l} \times \Omega\right): 1$ or d if for some j one replaces P_{j} or R_{j} by P_{j}^{d} or R_{j}^{d} (conjugates for negative d): see [13, p. 411].

Since A is invertible, it is clear that $f_{0}(\lambda, x)$ is Γ-homotopic to $f_{0}(x)+$ $\sum_{1}^{j=l} \lambda_{j} A_{j} x$, with zeros at the above orbit and $\lambda=0$: in fact, A, if $\operatorname{det} A>0$, is deformable to I and, if $\operatorname{det} A<0$, changing λ_{1} to $-\lambda_{1}$, one still has a generator. Replace a by a function of $\left|z_{1}^{\prime}\right|, \ldots,\left|z_{l}^{\prime}\right|$ with value 0 if some $\left|z_{j}^{\prime}\right|<\varepsilon$ and value 1 if all $\left|z_{j}^{\prime}\right|>2 \varepsilon$. Then $f_{0}(x)=(2 t+2,0)$ if some $\left|z_{j}^{\prime}\right|<\varepsilon$.

Choose $\lambda_{j}(x)$ such that $\left(f_{0}(x)+\sum_{1}^{l} \lambda_{j} A_{j} x, A_{k} x\right)=0$, for $k=1, \ldots, l$: if all $\left|z_{j}^{\prime}\right|>\varepsilon$, the $A_{j} x$ are linearly independent, hence the matrix $\left(A_{j} x, A_{k} x\right)$ is invertible. If some $\left|z_{j}^{\prime}\right|<\varepsilon$, then $\left(f_{0}(x), A_{k} x\right)=0$ and the only solution is $\lambda=0$. The map $f_{0}(x)+\sum_{1}^{l} \lambda_{j}(x) A_{j} x$ is an orthogonal Γ-map, with zeros in Ω at the orbit of the original point (there $\lambda_{j}(x)=0$) and with orthogonal degree non-trivial only at $d_{H}=1$ (or d).

If $l=0$, there are no z_{i}^{\prime} and one follows the same construction with y_{i} and u_{i}.

If $\operatorname{dim} V^{\Gamma}=0$, then one has to take Ω with $\Omega^{\Gamma}=\phi$ and, for V^{H}, the map

$$
\begin{aligned}
f_{0}(\lambda, x)= & \left(\left(\left|z_{2}^{\prime}\right| Q_{j}-1\right)_{j}\right),\left(\left|z_{2}^{\prime}\right| P_{j}-1\right) u_{j},\left(i \lambda_{1}+\left|z_{2}^{\prime}\right|-1\right) z_{1}, \ldots \\
& \left(i \lambda_{l-1}+\left|z_{l}^{\prime}\right|-1\right) z_{l-1},\left(i \lambda_{l} / R+2 i \sum\left(\left|x_{j}^{\prime}\right|-1\right)^{2}\right. \\
& \left.\left.\left.+\left|z_{1}^{\prime}\right|-1\right)^{d}\right) z_{l},\left(\left|z_{l}^{\prime}\right| R_{j}-1\right) z_{j}, \ldots\right)
\end{aligned}
$$

see [13, p. 411]: if $f_{0}(\lambda, x)=0$ and $z_{l}=0$ then $y_{j}=u_{j}=z_{j}=0$, that is $x=0$, which is not in Ω. While if $z_{l} \neq 0$, then $\left|z_{j}^{\prime}\right|=1,\left|y_{j}^{\prime}\right|=\left|u_{j}^{\prime}\right|=1$ and $\lambda=0$. As above $f_{0}(\lambda, x)$ is Γ-homotopic on $I^{l} \times \Omega$ to $f_{0}(0, x)+\sum_{1}^{l} \lambda_{j} A_{j} x$ (if $\operatorname{det} A>0$, if not change λ_{1} to $-\lambda_{1}$), and one may choose $\lambda_{j}(x)$ such that $f_{0}(\lambda(x), x)$ is an orthogonal Γ-map: replace $\left|z_{l}^{\prime}\right|$ by a and $\sum\left(\left|x_{j}^{\prime}\right|-1\right)^{2}$ by $a \sum\left(\left|x_{j}^{\prime}\right|-1\right)^{2}$, where a is as above and ε such that the ball $B(0,2 \varepsilon)$ is not in Ω. Then $f_{0}(0, x)$ is orthogonal to $A_{j} x$ whenever $\left|z_{j}^{\prime}\right|<\varepsilon$ for some j and $\lambda_{i}(x)=1$ there.

The resulting map has orthogonal degree equal to d for H and 0 otherwise.
For any sequence d_{H} one either follows the construction of [13, p. 386], to get maps F^{H} as above with degree d_{H} and a map F such that

$$
\operatorname{deg}_{\perp}(F ; \Omega)=\sum \operatorname{deg}_{\perp}\left(F^{H} ; \Omega^{H} \backslash \bigcup_{K>H} \Omega^{K}\right)
$$

or one uses the argument of [12, p. 73]: if $\operatorname{dim} V^{\Gamma} \geq 1$, take as many $0=x_{0}^{0}<$ $x_{1}<\ldots<x_{N}$ with $N=\sum\left|d_{H}\right|$ and $x_{j}-x_{j-1}=4 \varepsilon$. Take f_{j} the above map, where x_{0}^{\prime} is changed to $x_{0}^{\prime}-x_{j}$, then if φ_{j} has value 1 if $\left|x_{0}^{\prime}-x_{j}\right|<\varepsilon$ and 0 if $\left|x_{0}^{\prime}-x_{j}\right|>2 \varepsilon$, define $f(x)$ as $\left(\varphi_{j} f_{j}(x)+\left(1-\varphi_{j}\right)(1,0)\right)$ for $\left|x_{0}^{\prime}-x_{j}\right| \leq 2 \varepsilon$ and $(1,0)$ outside. If $\operatorname{dim} V^{\Gamma}=0$, one follows the construction of [12, p. 74].

REmark 2. For the case of parameters, one should follow the same lines in order to compute $\prod_{\perp}^{\Gamma}\left(S^{\mathbb{R}^{k} \times V}, S^{V}\right)$: If $F(\mu, x)$ is an element of this group, then $F^{T^{n}}$ belongs to $\prod_{S^{k} \times V}^{\Gamma}\left(S^{V}\right)$ and $\left[F_{1}\right]_{\perp}=[F]_{\perp}-\left[F^{T^{n}}, Z\right]_{\perp}$ has a nonzero orthogonal Γ-extension to $B^{T^{n}}$ and, on $\mathbb{R}^{k} \times V_{1}$, the map $F_{1}(\mu, x)+\lambda A_{1} x$ defines an element of $\prod_{S^{k} k+1}^{\Gamma} \times V_{1}\left(S^{V_{1}}\right)$. However, the generators of this last group are not explicit, except for the case $k=1$. Hence, it is not clear that these generators can be written as $F_{H}(\mu, x)+\lambda A_{1} x$. Then, the extension on $\partial \mathcal{C}_{H}$ meets obstructions on the walls of the fundamental cell (the dimension argument doesn't work anymore) and the suspension (which replaces the product theorem) is not an isomorphism if $\operatorname{dim} V^{H}$ is too low. Thus, we shall not pursue this study here, except in the special case of bifurcation.

3. Operations

In this section we study the relationship with the normal map approach,the extension to infinite dimension, the reduction of the group and products.
3.1. Normal maps. As in [11] and [13], this construction, together with the index computations, will enable to relate our degree to Rybicki's in [18] and Gęba's in [7]. It will turn out that they coincide, if $\Gamma=S^{1}$ in the first case and if Γ is abelian in the second case.

Let H be an isotropy subgroup and define $\psi:\left(V^{H}\right)^{\perp} \rightarrow[0,1]$, be such that $\psi\left(x_{\perp}\right)$ is 1 if $\left|x_{\perp}\right|<\varepsilon$ and 0 if $\left|x_{\perp}\right|>2 \varepsilon$. If $F(x)=\left(F^{H}\left(x_{H}, x_{\perp}\right), F_{\perp}\left(x_{H}, x_{\perp}\right)\right)$ is an element of \prod_{\perp}^{Γ} or it is non-zero on $\partial \Omega$, then $F(x)$ is orthogonally Γ-homotopic to the map $\left(F^{H}\left(x_{H},(1-\psi) x_{\perp}\right),(1-\psi) F_{\perp}\left(X_{H},(1-\psi) x_{\perp}\right)+\psi x_{\perp}\right)$, since $A_{j} x$ is orthogonal to x_{\perp} and to $F(x)$. Since $F_{\perp}\left(x_{H}, 0\right)=0$ and $F^{H}\left(x_{H}, 0\right)$ is non-zero on $\partial \Omega^{H}$, one chooses ε so small that $F^{H}\left(x_{H}, x_{\perp}\right) \neq 0$ for $\left|x_{\perp}\right|<2 \varepsilon$.

In the case of a gradient, if $F(x)=\nabla \Phi(x)$, let

$$
\widetilde{\Phi}(x)=\psi\left(x_{\perp}\right)\left(\Phi\left(x_{H}\right)+\left|x_{\perp}\right|^{2} / 2\right)+\left(1-\psi\left(x_{\perp}\right)\right) \Phi\left(x_{H}, x_{\perp}\right) .
$$

Then $\nabla \widetilde{\Phi}(x)=\left(F^{H}(x)+\psi\left(F^{H}\left(x_{H}\right)-F^{H}(x)\right),(1-\psi) F_{\perp}(x)+\psi x_{\perp}+\left(\Phi\left(x_{H}\right)-\right.\right.$ $\left.\left.\Phi(x)+\left|x_{\perp}\right|^{2} / 2\right) \nabla \psi\right)$.

If $\left|x_{\perp}\right|>2 \varepsilon$, then $\nabla \widetilde{\Phi}(x)=F(x)$ while if $\left|x_{\perp}\right|<\varepsilon$, one has $\nabla \widetilde{\Phi}(x)=$ $\left(F^{H}\left(x_{H}\right), x_{\perp}\right)$. If on $\partial \Omega^{H}$ one has that $\left|F^{H}\left(x_{H}\right)\right|>\eta$, one chooses ε so small that on $\partial \Omega^{H} \times\left\{x_{\perp}:\left|x_{\perp}\right| \leq 2 \varepsilon\right\}$, one has $\left|F^{H}(x)-F^{H}\left(x_{H}\right)\right|<\eta / 2$. Thus, $\nabla \Phi$ is Γ-homotopic to $\nabla \widetilde{\Phi}$.

Working in stages, as in [13, Theorem 5.4], one gets that F is orthogonally Γ-homotopic to F_{N}, where $F_{N}\left(x_{H}, x_{\perp}\right)=\left(F_{N}^{H}\left(x_{H}\right), x_{\perp}\right)$ for any H provided $\left|x_{\perp}\right|<\varepsilon$, i.e. a normal map. Similarly, for the case of gradients, $\nabla \Phi$ is Γ homotopic to $\nabla \Phi_{N}$.

In [18] and [7], the authors use this homotopy to reduce the definition of the degree to that of a normal map and a direct sum on all isotropy subgroups. For each such subgroup the index is then defined in a generic situation, via Poincaré sections. As pointed out in the Introduction, our approach classifies all possible degrees.
3.2. Extension to infinite dimension. If $F(x)=x-K(x)$, or $\Phi(x)=$ $|x|^{2} / 2-\Psi(x)$, with K compact and Γ-orthogonal to $A_{j} x$, or $\nabla \Psi(x)$ compact, then the extension of the degree to this case requires, following the classical approximation by finite-dimensional maps K_{N}, that these maps can be taken to be Γ-orthogonal and that the suspension by any representation V_{0} is one to one. Since K is compact and $F(x) \neq 0$ on $\partial \Omega$, one has a uniform approximation of K on $\partial \Omega$ by K_{N}, so that the degree of $x-K(x)$ will be that of $x-K_{N}(x)$: the averaging on the compact group Γ and the orthogonalization of Lemma 1.1 (restricted to the finite dimensional subspace) will give a small perturbation. On the other hand, the suspension by V_{0} is one to one on the generators of \prod_{\perp}^{Γ} and an orthogonal map, as well as a gradient. Hence, from [13, Theorem 9.1] one may take the direct limit of these groups.

Theorem 3.1. In the above situation, both degrees are well defined for infinite dimensional spaces and compact maps, or gradients. The degree for orthogonal maps has the same properties listed in Theorem 2, except that any map has almost all d_{H} 's equal to 0 .
3.3. Reduction of the group. Let $\Gamma_{0}<\Gamma$, with $\Gamma_{0} \cong T^{n_{0}} \times \ldots$ Let

$$
P_{\perp}: \prod_{\perp}^{\Gamma} \longrightarrow \prod_{\perp}^{\Gamma_{0}}
$$

be the restriction morphism.
According to [14, Lemma 6.1], any isotropy subgroup H_{0} of Γ_{0} is of the form $H_{0}=H \cap \Gamma_{0}$, where H is an isotropy subgroup of Γ. Furthermore, there is a minimal $\underline{H} \leq H$, such that $H_{0}=\underline{H} \cap \Gamma_{0}$ and $V^{H_{0}}=V \underline{H}$. One also has that $\operatorname{dim} \Gamma_{0} / H_{0}=k_{0} \leq \operatorname{dim} \Gamma / H=k$ and, in case of equality, if $\widetilde{H}_{0}^{0}>H_{0}$ and $\widetilde{H}_{0}>H$ are the maximal isotropy subgroups with $\operatorname{dim} \Gamma_{0} / \widetilde{H}_{0}^{0}=\operatorname{dim} \Gamma / \widetilde{H}_{0}=k$, then $\left|\widetilde{H}_{0}^{0} / H_{0}\right|$ divides $\left|\widetilde{H}^{0} / H\right|$ and

$$
P_{*}\left[F_{H}+\sum_{1}^{k} \lambda_{i} A_{i} x\right]_{\Gamma}=\left|\widetilde{H}_{0} / H\right| /\left|\widetilde{H}_{0}^{0} / H_{0}\right|\left[F_{H_{0}}+\sum_{1}^{k} \lambda_{i} A_{i} x\right]_{\Gamma_{0}}
$$

(see [14, Proposition 6.1]), where P_{*} is the restriction morphism

$$
\prod_{S^{\mathbb{R}^{k} \times V}}^{\Gamma}\left(S^{V}\right) \longrightarrow \prod_{S^{\mathbb{R}^{k} \times V}}^{\Gamma_{0}}\left(S^{V}\right)
$$

Here we shall prove:
Theorem 3.2.

$$
P_{\perp}\left(\sum_{H<\Gamma} d_{H}\left[F_{H}\right]_{\perp}\right)=\sum_{H_{0}<\Gamma_{0}}\left(\sum_{1} d_{H} \frac{\left|\widetilde{H}_{0} / H\right|}{\left|\widetilde{H}_{0}^{0} / H_{0}\right|}\right)\left[F_{H_{0}}\right]_{\perp},
$$

where the sum \sum_{1} is over all H with $H_{0}=H \cap \Gamma_{0}$ and $\operatorname{dim} \Gamma / H=\operatorname{dim} \Gamma_{0} / H_{0}$. In particular $P_{\perp}\left(\left[F_{H}\right]_{\perp}\right)=0$ if $k_{0}<k$.

Proof. From the proof of Theorem 2, it is clear that one may take the generators for the parametrized problem as $F_{H}+\sum \lambda_{i} A_{i} x$. If $k=k_{0}$, then one has $A_{1} x, \ldots, A_{k} x$ linearly independent for x with $\Gamma_{x}=H$ and $\Gamma_{0 x}=H_{0}$, hence one may take these generators, for which [14, Proposition 6.1], applies and one has part of the answer.

Note that if $k_{0}<k$, for some H, then, since $\underline{H}<H$, one has $\operatorname{dim} \Gamma / \underline{H} \geq$ $\operatorname{dim} \Gamma / H$ and, since $V \underline{H}=V^{H_{0}}$, the only possibility is that $n_{0}<n$ and the action of $T^{n_{0}}$ on $V \underline{\underline{H}}$ reduces the number of linearly independent $A_{j} x$ from k to k_{0}. Assume then that $A_{1} x, \ldots, A_{k_{0}} x$ correspond to Γ_{0} and are linearly independent if $\Gamma_{0 x}=H_{0}$, while $A_{1} x, \ldots, A_{k} x$ correspond to Γ and are linearly independent if $\Gamma_{x}=H$ (and a fortiori if $\left.\Gamma_{x}=\underline{H}\right)$. Consider the map $F_{H}(x)+\widetilde{A}_{k_{0}+1}(x)$ on $V^{H_{0}}$. By construction, it is orthogonal to $A_{j} x, j=1, \ldots, k_{0}$ and its zeros
are such that $F_{H}(x)=\left(F_{H}^{H}\left(x_{H}\right), Z\right)=0$ and $A_{k_{0}+1} x$ is a linear combination of $A_{1} x, \ldots, A_{k_{0}} x$. But then, $Z=0, x_{H}$ has isotropy H, by construction of F_{H}, and $A_{1} x_{H}, \ldots, A_{k} x_{H}$ are linearly independent. Hence, the map has no zeros, but $P_{\perp}\left[F_{H}\right]_{\perp}=\left[F_{H}+\widetilde{A}_{k_{0}+1}(x)\right]_{\perp}=0$.
3.4. Products. Let V_{1}, V_{2} be two Γ-representations, $\Omega=\Omega_{1} \times \Omega_{2}$ be an open, bounded invariant product, $f_{i}\left(x_{i}\right)$ be orthogonal Γ-maps, which are nonzero on $\partial \Omega_{i}, i=1,2$. As in [14, Lemma 6.2], it is easy to see that, if F_{i} are the maps constructed in $\prod_{\perp}^{\Gamma}\left(V_{i}\right)$, then

$$
\left[F_{1}, F_{2}\right]_{\perp}=\sum_{0} \operatorname{deg}{ }_{\perp}\left(\left(f_{1}, f_{2}\right) ; \Omega_{1} \times \Omega_{2}\right)
$$

where \sum_{0} is a trivial suspension. Furthermore, [14, Lemma 6.3], any isotropy subgroup H for the product is of the form $H=H_{1} \cap H_{2}$, where, as before, there are minimal \underline{H}_{i} with $V_{i}^{H}=V_{i}^{\underline{H}_{i}}$. If $k_{i}=\operatorname{dim} \Gamma / H_{i}, k=\operatorname{dim} \Gamma / H$, then $k_{i} \leq k \leq k_{1}+k_{2}$.

Theorem 3.3. If \widetilde{H}_{j}^{0} is the maximal isotropy subgroup containing H_{j}, $\Gamma / \widetilde{H}_{j}^{0} \cong T^{k_{j}}$, then, if $\left[F_{i}\right]_{\perp}=\sum d_{H}^{i}\left[F_{H}^{i}\right]_{\perp}$, one has

$$
\left[F_{1}, F_{2}\right]_{\perp}=\sum d_{H_{1}} d_{H_{2}} \frac{\left|\widetilde{H}_{1}^{0} / H_{1}\right|\left|\widetilde{H}_{2}^{0} / H_{2}\right|}{\left|\widetilde{H}_{1}^{0} \cap \widetilde{H}_{2}^{0} / H_{1} \cap H_{2}\right|}\left[F_{H_{1} \cap H_{2}}\right]_{\perp}
$$

where the sum is over all H_{1}, H_{2}, with $\operatorname{dim} \Gamma / H_{1}+\operatorname{dim} \Gamma / H_{2}=\operatorname{dim} \Gamma /\left(H_{1} \cap H_{2}\right)$.
Proof. It is clearly enough to compute the class $\left[F_{H_{1}}, F_{H_{2}}\right]_{\perp}$ for the generators. Writing V^{H} as $\left(V_{1}^{H_{1}} \times V_{2}^{H_{2}}\right) \times\left(V_{1}^{H_{1}}\right)^{\perp} \times\left(V_{2}^{H_{2}}\right)^{\perp}$ one has, for the action of

$$
\Gamma / H=\Gamma / H_{1} \times H_{1} / H_{1} \cap H_{2}
$$

k_{1} coordinates of $V_{1}^{H_{1}}, z_{1}, \ldots, z_{k_{1}}$, giving $A_{1} x_{1}, \ldots, A_{k_{1}} x_{1}$ linearly independent, and $k-k_{1}$ coordinates of $V_{2}^{H_{2}}, \widetilde{z}_{1}, \ldots, \widetilde{z}_{k-k_{1}}$ for the action of H_{1} on that space. Note that, given the order chosen in V^{H}, the coordinates of $\left(V_{1}^{H_{1}}\right)^{\perp}$ and of $\left(V_{2}^{H_{2}}\right)^{\perp}$ do not contribute, in a non-trivial way, to the fundamental cell. Now, as in the proof of Theorem 2, one may write the action of T^{n} on $V_{1}^{H_{1}}$ as $C\left(\psi_{1}, \ldots, \psi_{k_{1}}\right)^{T}$, hence $A_{j} x_{1}=0$ for $j>k_{1}$ by changing the parametrization of T^{n} from the φ to the ψ. Assume that $\psi_{k_{1}+1}, \ldots, \psi_{k-k_{1}}$ give $A_{j} x_{2}$ linearly independent for the action of H_{1} on $V_{2}^{H_{2}}$, then, one may suppose, changing the parametrization, that $A_{j} x_{2}=0$ for $j>k$ and that $A_{j} x_{2}, k_{1}<j \leq k$, are linearly independent, (there are also $k_{1}+k_{2}-k$ linearly independent vectors $A_{j} x_{2}$ for $j \leq k_{1}$).

Now, if $k=k_{1}+k_{2}$, then $\left[F_{1}+\sum_{1}^{k_{1}} \lambda_{j} A_{j} x_{1}, F_{2}+\sum_{k_{1}+1}^{k} \lambda_{j} A_{j} x_{2}\right]$ has been computed in [14, Proposition 6.3], giving $\alpha\left[F_{H}+\sum_{1}^{k} \lambda_{j} A_{j} x\right]$ where α is the coefficient of the theorem. On the other hand, if $k<k_{1}+k_{2}$, one has to add to $F_{2}+\sum_{k_{1}+1}^{k} \lambda_{j} A_{j} x_{2}$ the sum $\sum \lambda_{j} A_{j} x_{2}$, for j in a subset J of $k_{1}+k_{2}-k$
elements of $\left\{1, \ldots, k_{1}\right\}$. But, for this second sum, one may deform λ_{j} to 0 and then to a fixed $\varepsilon_{j} \neq 0$, without affecting the class but giving a zero extension degree. In that case, $\left[F_{1}, F_{2}\right]_{\perp}=0$.

Remark 3 (Composition). In [14] we derived a formula for part of the equivariant degree of a composition. In the case of orthogonal maps, it is easy to see that the composition of such maps is not necessarily orthogonal. However, following the case of gradients, one may study the situation of a map $h(x)=D f(x)^{T} g(f(x))$, where g is orthogonal, f is C^{1} and only equivariant (for instance $g(y)=\nabla \Phi(y)$, then $h(x)=\nabla_{x}(\Phi(f(x))$). Then, from the relations $D f(\gamma x) \gamma=\gamma D f(x)$ and $D f(x) A_{j} x=A_{j} f(x)$, (obtained by differentiating $f(\gamma x)=\gamma f(x))$, one has that $h(x)$ is an orthogonal Γ-map.

If $f(\partial \Omega) \subset \partial \Omega_{1}, 0 \notin \partial \Omega_{1}$ and $0 \notin g\left(\partial \Omega_{1}\right)$, one may look at $\operatorname{deg}_{\Gamma}(f ; \Omega)$, $\operatorname{deg}{ }_{\perp}\left(g ; \Omega_{1}\right)$ and $\operatorname{deg}{ }_{\perp}(h ; \Omega)$ provided h is non-zero on $\partial \Omega$ (for instance if $D f(x)$ is invertible on $\partial \Omega)$. In this case, by choosing the neighbourhood N of $\partial \Omega$ such that $N \subset f^{-1}\left(N_{1}\right), N_{1}$ neighbourhood of $\partial \Omega_{1}$ where \widetilde{g} is non-zero, one has, for $F(t, x)=(2 t+2 \varphi(x)-1, \widetilde{f}(x))$ and $G\left(t_{1}, y\right)=\left(t_{1}+2 \psi(y), \widetilde{g}(y)\right)$, with $t_{1} \in[-1,1]$, that

$$
\left[2 t+2 \varphi(x)-1, D \widetilde{f}(x)^{T} \widetilde{g}(\widetilde{f}(x))\right]_{\perp}=\left[D F(t, x)^{T} G(F(t, x))\right]_{\perp}
$$

(one may assume that \tilde{f} is C^{1}).
Note that the presence of $D F(t, x)^{T}$ does not allow to distribute the class of $\left[D F^{T} G o F\right]_{\perp}$ with respect to $[F]_{\Gamma}$ or with respect to $[G]_{\perp}$ except, as done in [14], if $[G]_{\perp}=\sum d_{H}\left[G_{H}\right]_{\perp}$ provided $D F$ is invertible on the boundary of the cylinder. Since for $\operatorname{deg}_{\perp}(h ; \Omega), D F=\left(\begin{array}{cc}2 & (\nabla \varphi)^{T} \\ 0 & D_{x} \tilde{f}(x)\end{array}\right)$, invertibility of $D F$ means that $D \tilde{f}(x)$ is invertible in B, let us consider the following particular case:

Proposition 3. Assume $\Omega=B, f(0)=0, D f(x)$ invertible in $B, g(y) \neq 0$ if $|y| \geq R_{1}$ and $|f(x)| \geq R_{1}$ if $x \in \partial B$. Then

$$
\operatorname{deg}_{\perp}\left((D f)^{T} g(f(x)) ; B\right)=\operatorname{deg}_{\perp}\left(g(y) ; B\left(0, R_{1}\right)\right)
$$

Proof. Since $\Omega=B$ and $\Omega_{1}=B\left(0, R_{1}\right)$, the construction of F and G are not necessary: one may compute directly the class of $h(x)$ and of $g(y)$. Note also that in the non-equivariant case, if the zeros of h are isolated then $D h(x)=(D f)^{T}(x) D g(y) D f(x)$ whenever $g(f(x))=0$. Hence in this case the Brower degree of h is that of g. Note that the invertibility of $D f$ implies that the zeros of f have to be in V^{Γ} and thus 0 is the only zero of $f(x)$.

Now one may deform orthogonally $h(x)$ on ∂B to the following map $D f(x)^{T}$ $|f(x)|^{2} g\left(R_{1} f(x) /|f(x)|\right)$, via $\left(\tau+(1-\tau)|f|^{2}\right) h(x)$ first and then via $|f(x)|^{2} g$. $\left(f(x)\left(\tau+(1-\tau) R_{1} /|f(x)|\right)\right)$. The new map has its only zero at $x=0$. Then, one may deform x on ∂B to εx, for ε small and use the homotopy where $f(\varepsilon x)$ is replaced by $\tau f(\varepsilon x)+(1-\tau) D f(0) \varepsilon x$ and $D f(\varepsilon x)$ by $\tau D f(\varepsilon x)+(1-\tau) D f(0)$:
since $D f(0)$ commutes with any $\gamma \in \Gamma$ (and hence with A_{j}) the deformation is clearly Γ-orthogonal and, for ε small enough, the path from $D f(0)$ to $D f(\varepsilon x)$ consists of invertible matrices, that is the only zero is at $x=0$. Furthermore, in $G L_{\Gamma}(V)$ the matrix $D f(0)$ is deformable to $A \equiv \operatorname{diag}\left(\varepsilon_{\Gamma}, \varepsilon_{Z_{2}}, \ldots, I\right)$, where $\varepsilon_{\Gamma}=\operatorname{diag}\left(\operatorname{Sign} \operatorname{det} D f(0)^{\Gamma}, I\right)$ on $V^{\Gamma}, \varepsilon_{Z_{2}}$ is a similar matrix on $V^{H} \cap\left(V^{\Gamma}\right)^{\perp}$, for each H with $\Gamma / H \cong \mathbb{Z}_{2}$, and the last I is on the other irreducible representations, see [10, Theorem 1.2, p. 407]. Finally, by undoing the above homotopies, one has that $[h]_{\perp}=[A g(A X)]_{\perp}=\sum d_{H}\left[A G_{H}(A x)\right]_{\perp}$. But, from the form of $G_{H}(x)=$ $\left(\cdot, X_{0},\left(y^{2}-1\right) y, \ldots\right)$ one has that $A G_{H}(A x)=G_{H}(x)$.

4. Poincaré sections and index of an isolated orbit

As in [14], we shall study first the following situation: let H be an isotropy subgroup such that $\operatorname{dim} \Gamma / H=k$, then there are complex coordinates z_{1}, \ldots, z_{k} with isotropy $H_{0}>H$ and $\left|H_{0} / H\right|<\infty$. Assume that the orthogonal map F, from B into V, is non-zero on ∂B and on each set given by $z_{j}=0$, for each $j=1, \ldots, k$. If one takes all $\widetilde{H}<H_{0}$ such that $\left|H_{0} / \widetilde{H}\right|<\infty$, then there is a minimal one \underline{H}, an $(n-k)$-torus, [14, p. 377]. Furthermore, if \widetilde{C} is the $N \times n$ matrix with $\widetilde{C}_{i j}=n_{i}^{j}, i=1, \ldots, N=\operatorname{dim} V \underline{H}, j=1, \ldots, n$, then \widetilde{C} has rank k and has an invertible submatrix A, for instance n_{i}^{j} for $i=1, \ldots, k$, $j=1, \ldots, k$ corresponding to z_{1}, \ldots, z_{k} and $\varphi_{1}, \ldots, \varphi_{k}$. Then if $\left(\lambda_{1}^{j}, \ldots, \lambda_{k}^{j}\right)^{T}=$ $A^{-1}\left(n_{1}^{j}, \ldots, n_{k}^{j}\right)^{T}$ for $j>k$, as in the proof of Theorem 2 , the subspace V^{H} is given by those coordinates z_{l} which satisfy $n_{l}^{j}=\sum_{1}^{k} \lambda_{s}^{j} n_{l}^{s}$ for $j>k$ (if, for some j and l, one doesn't have equality then \widetilde{C} would have rank bigger than k). Note that $A_{j} x=\sum_{1}^{k} \lambda_{l} A_{l} x$, for $j>k$ and x in $V \underline{H}$, and $A_{1} x, \ldots, A_{k} x$ are linearly independent if x has its coordinates z_{1}, \ldots, z_{k} non-zero.

Proposition 4.1. Let F be as above, then $[F]_{\perp}=\sum_{H_{j}<H_{0}} d_{j}\left[F_{j}\right]_{\perp}$. If $B_{k}^{j} \equiv B^{H_{j}} \cap\left\{z_{1}, \ldots, z_{k} \in \mathbb{R}^{+}\right\}$, then for $H_{i}>\underline{H}$, the corresponding d_{i} are given by the formula

$$
\operatorname{deg}\left(\left(F+\sum_{1}^{k} \lambda_{l} A_{l} x\right)^{H_{i}} ; B_{k}^{i}\right)=\sum_{H_{i}<H_{j}<H_{0}} d_{j}\left|H_{0} / H_{j}\right| .
$$

Proof. If K is not a subgroup of H_{0}, then for some $j, j=1, \ldots, k$, one has that $z_{j}=0$ in V^{K}. Hence, from Theorem 2 , the corresponding d_{K} is 0 . Also, one has that $[F \underline{H}]_{\perp}=\sum d_{j}\left[F_{j}^{\underline{H}}\right]_{\perp}$, where the sum is on those j with $\underline{H}<H_{j}<H_{0}$ (for the others $\left[F^{H_{j}}\right]_{\perp}=0$). From the construction of Theorem 2 and [14, Theorem 2.1], one has the above formula.

Note that the above formula can be arranged as a lower triangular invertible matrix which will yield d_{j} for $\underline{H}<H_{j}<H_{0}$. The other components d_{j}, with $\operatorname{dim} \Gamma / H_{j}>k$, have to be computed in special cases as for an isolated orbit. Note
also that if F comes from the construction of the orthogonal degree for a map f, then, by the product theorem for the ordinary degree of $\left(2 t+2 \varphi(x)-1, \widetilde{f}^{H_{i}}\right)$ on $I \times\left(\Omega^{H_{i}} \cap\left\{z_{1}, \ldots, z_{k} \in \mathbb{R}^{+}\right\}\right)$, one has that:

$$
\operatorname{deg}\left(\left(F+\sum_{1}^{k} \lambda_{l} A_{l} x\right)^{H_{i}} ; B_{k}^{i}\right)=\operatorname{deg}\left(\left(f+\sum_{1}^{l} \lambda_{l} A_{l} x\right)^{H_{i}} ; \Omega_{k}^{i}\right)
$$

where $\Omega_{k}^{i}=\Omega^{H_{i}} \cap\left\{z_{1}, \ldots, z_{k} \in \mathbb{R}^{+}\right\}$.
Let us then consider the case of an isolated orbit: assume that Γx_{0} is an isolated zero-orbit of the orthogonal map f on Ω, with $\Gamma_{x_{0}}=H$ and $\operatorname{dim} \Gamma / H=k$. Then, as above, there are z_{1}, \ldots, z_{k} with isotropy H_{0} and non-zero at x_{0}, with $\left|H_{0} / H\right|<\infty$. As in [14, p. 379], one may choose a neighbourhood Ω of the orbit such that the corresponding $\varphi(x)$ is 1 whenever x has a coordinate $x_{l}=0$ and x_{0} has the same coordinate $x_{l}^{0} \neq 0$. Hence, $(2 t+2 \varphi(x)-1, \widetilde{f}(x))^{K} \neq 0$ for any K which is not a subgroup of H. Thus,

$$
[F]_{\perp}=\operatorname{Index}_{\perp}\left(f ; \Gamma x_{0}\right)=\sum_{H_{j}<H} d_{j}\left[F_{j}\right]_{\perp}
$$

One may assume that $A_{j} x_{0}$ are linearly independent for $j=1, \ldots, k$ and that $z_{j}^{0} \in \mathbb{R}^{+}$, for $j=1, \ldots, k$. Then, from Proposition 4.1, for $H_{j}>\underline{H}$, one may compute d_{j} from

$$
\operatorname{deg}\left(\left(f+\sum_{1}^{k} \lambda_{l} A_{l} x\right)^{H_{i}} ; \Omega_{k}^{i}\right)=\left|H_{0} / H\right| \operatorname{Index}\left(\left(f+\sum_{1}^{k} \lambda_{l} A_{l} x\right)^{H_{i}} ; x_{0}\right)
$$

(see [14]).
Lemma 4.1. Assume that f is C^{1} at x_{0} and let $A \equiv D f\left(x_{0}\right)$, then:
(1) A is H-equivariant and for any $K<H, A^{K}=\operatorname{diag}\left(A^{H}, A_{\perp K}\right)$, with $A^{K}=D f^{K}\left(x_{0}\right)$. For $K<\underline{H}$, then $A^{K}=\operatorname{diag}\left(A^{H}, A_{\perp \underline{H}}, A_{\perp K}^{\prime}\right)$ and $A_{\perp K}^{\prime}$ is self-adjoint as a complex matrix and H-orthogonal.
(2) $A_{j} x_{0}$, for $j=1, \ldots, k$, are in $\operatorname{ker} A$ and are orthogonal to Range A. In particular, if $\operatorname{dim} \operatorname{ker} A=k$, then $A_{\perp K}$ is invertible for any $K<H$, $\left.A\right|_{B_{k}}$ is invertible and Γx_{0} is hyperbolic in the sense of [14, p. 383].

Proof. Since $D f(\gamma x) \gamma=\gamma D f(x)$, then A is H-equivariant and has the block-diagonal structure. In particular, if $K<\underline{H}$, then, since $\underline{H}<T^{n}, A_{\perp K}^{\prime}$ is a complex matrix and $\operatorname{dim} \underline{H} / K \geq 1$. Hence, if $\widetilde{A}_{j} x$ are the generators for the action of H, for $j=k+1, \ldots, n$, then on any irreducible representation of $\left(V^{\underline{H}}\right)^{\perp}$ one has at least one \widetilde{A}_{j} which is invertible.

Note that if one reparametrizes T^{n} by letting $\psi_{j}=\varphi_{j}+\sum_{l+1}^{n} \lambda_{j}^{i} \varphi_{i}$, as in the proof of Theorem 2, then \underline{H} corresponds to $\psi_{1}, \ldots, \psi_{k} \equiv 0,[2 \pi]$ and one may choose $\psi_{k+1}, \ldots, \psi_{n}$ acting trivially on $V \underline{H}$ and \widetilde{A}_{j} corresponds to the derivative with respect to $\psi_{j}, j=k+1, \ldots, n$.

Now, since f is Γ-orthogonal it is also H-orthogonal. If $f^{K}=\left(f \underline{H}, f_{\perp}\right)$, then $f^{K}(x) \cdot \widetilde{A}_{j} x=f_{\perp}(x) \cdot \widetilde{A}_{j} x_{\perp}=0$, for $x=x^{\underline{H}}+x_{\perp}$. Since $f_{\perp}\left(x^{\underline{H}}\right)=0$, one has $\left(D f_{\perp}\left(x^{\underline{H}}\right) x_{\perp}+R\left(x_{\perp}\right)\right) \cdot \widetilde{A}_{j} x_{\perp}=0$, with $R\left(x_{\perp}\right)=o\left(\left|x_{\perp}\right|\right)$. Dividing by $\left|x_{\perp}\right|^{2}$ and taking the limit when x_{\perp} tends to 0 , one has that $D f_{\perp}\left(x^{H}\right) x_{\perp} \cdot \widetilde{A}_{j} x_{\perp}=0$ and, in particular $A_{\perp K}^{\prime}$ is H-orthogonal.

Take K corresponding to an irreducible representation such that $\widetilde{A}_{j} \equiv \widetilde{A}$ is invertible on it. Let $B \equiv A_{\perp K}^{\prime}$, then one has $B \widetilde{A}=\widetilde{A} B$ and $B X \cdot \widetilde{A} X=0$ for any X in that representation. Then, since $B\left(X+X_{0}\right) \cdot \widetilde{A}\left(X+X_{0}\right)=0$, for all X, X_{0}, one has $\widetilde{A}^{T} B+B^{T} \widetilde{A}=0$. But, as we have seen before, $\widetilde{A}^{T}=-\widetilde{A}$, hence $B^{T}=\widetilde{A} B \widetilde{A}^{-1}=B \widetilde{A} \widetilde{A}^{-1}=B$.

Now, since the action of H on X is as S^{1}, B is in fact of the form $\left(\begin{array}{cc}\mathcal{A} & -\mathcal{B} \\ \mathcal{B} & \mathcal{A}\end{array}\right)$ as a real matrix. Then, $B=B^{T}$ implies $\mathcal{A}=\mathcal{A}^{T}$ and $\mathcal{B}=-\mathcal{B}^{T}$, that is $(\mathcal{A}+i \mathcal{B})^{*}=\mathcal{A}+i \mathcal{B}$.

For the second part of the lemma, differentiating with respect to φ_{j} the relation $f\left(\gamma x_{0}\right)=0$ one has $A A_{j} x_{0}=0$. Furthermore, from $f(x) \cdot A_{j} x=0$. one obtains, for all x and x_{0}

$$
D f\left(x_{0}\right) x \cdot A_{j} x_{0}+f\left(x_{0}\right) \cdot A_{j} x=0
$$

In particular, if $f\left(x_{0}\right)=0$, then $A_{j} x_{0}$ is orthogonal to Range A. Also, if $\operatorname{dim} \operatorname{ker} A$ $=k$, since $A_{j} x_{0}$ are independent, then $V=\operatorname{ker} A \oplus$ Range A, the algebraic multiplicity of A is k and $\left.\operatorname{ker} D_{(\lambda, x)}\left(f(x)+\sum \lambda_{j} A_{j} x\right)\right|_{\left(0, x_{0}\right)}$ is generated by $\left(0, A_{j} x_{0}\right)$. Since the other two properties of hyperbolicity are clearly satisfied, one has, from [14, Proposition 3.2], the rest of the lemma.

Theorem 4. Let Γx_{0} be an isolated orbit of dimension k and assume that $\operatorname{dim} \operatorname{ker} D f\left(x_{0}\right)=k$. Then, the orthogonal index of the orbit is well defined and is equal to the product:

$$
\left[F(x) ; x_{0}\right]_{\perp}=i_{\perp}\left(f \underline{\underline{H}}\left(x_{\underline{H}}\right) ; x_{0}\right) i_{\perp}\left(D f_{\perp}\left(x_{0}\right) \bar{X} ; 0\right)
$$

where \underline{H} is the minimal isotropy subgroup contained in H such that $|H / \underline{H}|<\infty$ and $D f_{\perp}\left(x_{0}\right) \bar{X}$ is the linearization on $\left(V^{H}\right)^{\perp}$, which is complex self-adjoint and H-orthogonal. Furthermore,

$$
i_{\perp}(f \underline{H})=d_{H}\left[F_{H}\right]_{\perp}+\sum_{H / H_{i} \cong \mathbb{Z}_{2}} d_{H_{i}}\left[F_{H_{i}}\right]_{\perp}+\sum_{H / \widetilde{H}_{i} \cong \mathbb{Z}_{2} \times \ldots \times \mathbb{Z}_{2}} d_{\widetilde{H}_{i}}\left[F_{\widetilde{H}_{i}}\right]_{\perp}
$$

with $d_{H}=(-1)^{n_{H}}$, where n_{H} is the number of negative eigenvalues of $D f^{H}\left(x_{0}\right)$, $d_{H_{i}}=d_{H}\left((-1)^{n_{H_{i}}}-1\right) / 2$, where $n_{H_{i}}$ is the number of negative eigenvalues of $D f_{\perp}^{H_{i}}\left(x_{0}\right)$ and $d_{\widetilde{H}_{i}}$ is given by d_{H} and $d_{H_{j}}$ by the formula in [14, p. 381]. Also

$$
i_{\perp}\left(D f_{\perp}\left(x_{0}\right) \bar{X}\right)=\left[F_{\Gamma}\right]_{\perp}-\sum n_{i}\left(K_{i}\right)\left[F_{K_{i}}\right]_{\perp}-\sum_{s=2}^{n-k} \prod n_{j}\left(K_{j}\right)\left[F_{\cap K_{j}}\right]_{\perp}
$$

where K_{i} are the irreducible representations of H in $(V \underline{H})^{\perp}$, i.e. $H / K_{i} \cong S^{1}$ and $D f_{\perp}\left(x_{0}\right)$, which is block-diagonal on these representations, has a complex Morse number $n\left(K_{i}\right)$. In the second sum one has the product $n\left(K_{i_{1}}\right) \ldots n\left(K_{i_{s}}\right)$ with $\operatorname{dim} H / K_{i_{1}} \cap \ldots \cap K_{i_{s}}=s$. Finally, $\left[F_{H_{i}}\right]_{\perp}\left[F_{K_{j}}\right]_{\perp}=\left[F_{H_{i} \cap K_{j}}\right]_{\perp}$. The generators used here are those of Theorem 2 with $\eta=1$.

Note that $d_{H_{i}}=0$ unless $V^{H_{i}}$ contains a real coordinate y with a \mathbb{Z}_{2}-action of Γ (and y not in V^{H}). In fact, if z is a complex coordinate in $V^{H_{i}} \cap\left(V^{H}\right)^{\perp}$, then real eigenvalues come in pairs. Note also that if two complex coordinates z_{1} and z_{2} have the same isotropy subgroup K of H, with $\operatorname{dim} H / K=1$, then either z_{1} and z_{2} or z_{1} and \bar{z}_{2} belong to the same irreducible representation of H. By taking conjugates if necessary, we shall assume that one has only the first case and that the formula includes the sum of the Morse numbers for the z and the \bar{z} : as real representations they are the same, via the linear map: $z \rightarrow \bar{z}$.

Proof. The first step in the computation of the index is to find the Poincaré indices for K with $\underline{H}<K<H$. For $k=0$, one has to use [14, Theorem 3.2], while for $k \geq 1$, one uses [14, Theorem 3.3]. Hence, $i_{H}=(-1)^{n_{H}}$ where n_{H} is the number of real negative eigenvalues of $D f\left(x_{0}\right)^{H}$. In fact $i_{H}(f)=\varepsilon(-1)^{n_{H}}$, where ε is a factor which depends on the orientation chosen and on the sign of the determinant of the matrix A with $A_{i j}=n_{i}^{j}, i, j=1, \ldots, k$. But, from Proposition 4.1, one has $i_{H}(f)=d_{H} i_{H}\left(F_{H}\right)$. By construction $i_{H}\left(F_{H}\right)$ is 1 , since $\operatorname{sign} \operatorname{det}\left(D F_{H}\right)_{k}=1$, hence $\varepsilon=1$. From the product formula, $i_{K}=i_{H}(-1)^{n_{K}}$, for $K<H$, where n_{K} is the number of real negative eigenvalues, counted with multiplicities, of $A_{\perp K}$, hence $i_{K}=i_{K}^{\prime}$ if $K<K^{\prime}$ and K^{\prime} / K doesn't contain a $\mathbb{Z}_{2^{-}}$ factor. From Proposition 4.1, one gets $d_{H}=i_{H}, d_{K_{j}}=\left(i_{K_{j}}-i_{H}\right) / 2$ if $H / K_{j} \cong \mathbb{Z}_{2}$ and d_{K} is completely determined by the above integers if $H / K \cong \mathbb{Z}_{2} \times \ldots \times \mathbb{Z}_{2}$ and $d_{K}=0$ otherwise.

Before computing d_{K} for K with $\operatorname{dim} H / K>0$, let us look at some examples.

1. Let \mathbb{Z}_{2} act on y as an antipodal map and S^{1} act on z by $e^{i \varphi}$. Then, the map $f(y, z)=\left(-y,\left(\left|z^{2}\right|-1\right) z\right)$ is equivariant with respect to $\Gamma=\mathbb{Z}_{2} \times S^{1}$ and has the isolated zero-orbit $y=0,|z|=1$, with $H=\mathbb{Z}_{2}$ and $K=\{e\}$. $D f^{H}(0, z=1)=\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)$ and since $k=1$ one has $i_{H}=-1, i_{K}=1$. Note that $f=\nabla \Phi$, with $\Phi(y, z)=-y^{2} / 2+\left(|z|^{2} / 2-1\right)|z|^{2} / 2$.
2. Let $\Gamma=S^{1}$ act on $\left(z_{1}, z_{2}\right)$ by $\left(e^{i \varphi} z_{1}, e^{2 i \varphi} z_{2}\right)$ and let $f(z)=f_{0}(z)-\lambda(z) A z$, with $f_{0}(z)=\left(z_{2} \bar{z}_{1},\left(\left|z_{2}\right|^{2}-1\right) z_{2}\right), A z=\left(i z_{1}, 2 i z_{2}\right)$ and $\lambda(z)=f_{0}(z) \cdot A z /|A z|^{2}=$ $\left(z_{2} \bar{z}_{1}^{2}-z_{1}^{2} \bar{z}_{2}\right) / 2 i\left(\left|z_{1}\right|^{2}+4\left|z_{2}\right|^{2}\right)$, which is real. Note that if $F=\left(f_{1}, \ldots, f_{N}\right) \in \mathbb{C}^{N}$ and $A x=\left(i n_{1} z_{1}, \ldots, i n_{N} z_{N}\right)$, then $F \cdot A x=\operatorname{Im}\left(n_{1} f_{1} \bar{z}_{1}+\ldots+n_{N} f_{N} \bar{z}_{N}\right)$. Thus, here if $f(z)=0$, then from the orthogonality, $z_{2} \bar{z}_{1}=0$ and $\left(z_{1}=0,\left|z_{2}\right|=1\right)$ is an isolated orbit, for which $D f^{H}(0,1)=\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)$. It is then easy to compute the
index of $f(z)+\lambda A z$ at $\lambda=0, z_{1}=0, z_{2}=1$, by deforming $\lambda(z)$ to 0 , getting $i_{H}=-1, i_{K}=1$, with $H=\mathbb{Z}_{2}, K=\{e\}$.
3. If f is in normal form, then $f^{\perp}\left(x^{H}, x_{\perp}\right)=x_{\perp}$, for $\left|x_{\perp}\right|<\varepsilon$ and $D f^{\perp}\left(x^{H}, 0\right)=$ Id, hence $i_{K}=i_{H}$ for any $K<H$. In this case $d_{H}=i_{H}, d_{K}=0$ for $K<H, K \geq \underline{H}$. Then, $[F \underline{H}]_{\perp}-d_{H}\left[F_{\underline{H}}^{H}\right]_{\perp} \equiv\left[F_{1}^{\underline{H}}\right]$ is non-zero and, since F is normal, one may complement $F_{1}^{\underline{H}}$ by $x_{\underline{H}}^{\perp}$, obtaining that $[F]_{\perp}-d_{H}\left[F_{H}\right]_{\perp}=0$, i.e., $d_{K}=0$ for any other K. Thus, Gęba's degree and ours coincide.

We may now go to the second step of the proof. Let $\lambda_{j}(x)=D_{x_{\perp}} f_{\perp}\left(x_{H}\right) x_{\perp}$. $\widetilde{A}_{j}(x)$, for $j=1, \ldots, k$, where $\widetilde{A}_{j}(x)$ are orthonormal as in Lemma 1.1 but starting the orthogonalization process from $j=n$, i.e. in reverse order. Here we are assuming that one has reparametrized the torus T^{n} in such a way, as in Lemma 4.1, that $A_{j} x_{\underline{H}}=0$ for $j=k+1, \ldots, n$. Hence, for $j>k, \widetilde{A}_{j}(x)$ are in $\left(V^{\underline{H}}\right)^{\perp}$ and orthogonal to $D_{x_{\perp}} f_{\perp}\left(x_{H}\right) x_{\perp}$ since $A_{j} x_{H}=0$ and $D_{x_{\perp}} f_{\perp}\left(x_{H}\right) x_{\perp}$ is H-orthogonal. Furthermore, for $j \leq k$, since $\widetilde{A}_{j}(x)=\widetilde{A}_{j}\left(x_{H}\right)+0\left(x_{\perp}\right)$, then, in the neighbourhood of x_{0} where $A_{j} x_{0}$ are linearly independent, one has $\lambda_{j}(x)=$ $0\left(\left|x_{\perp}\right|^{2}\right)$ and $\widetilde{A}_{j}(x)_{\perp}=0\left(x_{\perp}\right)$. Consider the homotopy

$$
\left(f^{H}\left(x_{H}, \tau x_{\perp}\right), \tau f_{\perp}\left(x_{H}, \tau x_{\perp}\right)\right)+\left(1-\tau^{2}\right)\left(D_{x_{\perp}} f_{\perp}\left(x_{H}\right) x_{\perp}-\sum_{1}^{k} \lambda_{j}(x) \widetilde{A}_{j}(x)\right)
$$

on the tubular neighbourhood of the orbit Γx_{0}. It is clear that the first term in the homotopy is Γ-orthogonal, while the second term is built so that it is orthogonal to $A_{j} x$. The equivariance is clear. If the neighbourhood Ω of Γx_{0} is of the form $\left\{\left(x_{H}, x_{\perp}\right): \operatorname{dist}\left(x_{H}, \Gamma x_{0}\right)<\eta,\left|x_{\perp}\right|<\varepsilon\right\}$, since the homotopy reduces, for $x_{\perp}=0$, to $\left(f^{H}\left(x_{H}, 0\right), 0\right)$ which is non-zero on the boundary of Ω (since Γx_{0} is isolated) and the second component is linearized to $D_{x_{\perp}} f_{\perp}\left(x_{H}\right) x_{\perp}+$ $\tau^{2} o\left(x_{\perp}\right)+\left(1-\tau^{2}\right) 0\left(\left|x_{\perp}\right|^{3}\right)$, hence one may choose ε so small that this component is non-zero for $\left|x_{\perp}\right|=\varepsilon$ (recall that $D_{x_{\perp}} f_{\perp}\left(x_{H}\right)$ is invertible at x_{0} and hence in Ω).

Now, $D_{x_{\perp}} f_{\perp}\left(x_{H}\right)$ has the form $\left(B\left(x_{H}\right), \bar{B}\left(x_{H}\right)\right)$, where \bar{B} is complex selfadjoint and has a block diagonal structure on the equivalent irreducible representations of H. On each block, $\bar{B}\left(x_{H}\right)$ is similar to a diagonal real matrix $\Lambda\left(x_{H}\right)$, with a well defined Morse index n_{K} (i.e. the number of negative eigenvalues. Note that, as a real matrix, the Morse number of $\bar{B}\left(x_{H}\right)$ is $2 n_{K}$). If v is an eigenvector of $\bar{B}\left(x_{H}\right)$, then γv is an eigenvector of $\bar{B}\left(\gamma x_{H}\right)$ with the same eigenvalue, hence if $\bar{B}\left(x_{H}\right)=U\left(x_{H}\right) \Lambda\left(x_{H}\right) U^{*}\left(x_{H}\right)$, with U unitary, then $U\left(\gamma x_{H}\right) \equiv \gamma U\left(x_{H}\right) \gamma^{*}, \Lambda\left(\gamma x_{H}\right)=\gamma \Lambda\left(x_{H}\right) \gamma^{*}=\Lambda\left(x_{H}\right)$ will diagonalize $\bar{B}\left(\gamma x_{H}\right)$, since Λ and γ are diagonal, hence commute. Note that $U\left(x_{H}\right)$ is continuous in x_{H} if the eigenvalues of $B\left(x_{0}\right)$ are simple. In general, for x_{H} in \mathcal{C}_{H}, the fundamental cell for H, and close to x_{0}, define $\widetilde{U}\left(x_{H}\right)=U\left(x_{0}\right)$ and $\widetilde{U}\left(\gamma x_{H}\right)=\gamma U\left(x_{0}\right) \gamma^{*}$. Let $\widetilde{\Lambda}\left(x_{H}\right)=\widetilde{U}^{*}\left(x_{H}\right) \bar{B}\left(x_{H}\right) \widetilde{U}\left(x_{H}\right)$, then $\widetilde{\Lambda}\left(\gamma x_{H}\right)=\gamma \widetilde{\Lambda}\left(x_{H}\right) \gamma^{*}$ is close to $\Lambda\left(x_{0}\right)$ for
x_{H} close to x_{0}, but not necessarily diagonal. Now, the space of unitary complex matrices is path-connected, hence one may choose a path $U_{\tau}\left(x_{0}\right)$ from $U\left(x_{0}\right)$ to I and therefore, from $\widetilde{U}\left(\gamma x_{H}\right)$ to I and from $\bar{B}\left(x_{H}\right)$ to $\widetilde{\Lambda}\left(x_{H}\right)$ which is linearly deformable to $\Lambda\left(x_{0}\right)$. By modifying $\lambda_{j}(x)$ along the deformations, one obtains an equivariant and Γ-orthogonal homotopy to

$$
\left(f^{H}\left(x_{H}\right), B\left(x_{H}\right) X, \Lambda \bar{X}\right)-\sum_{1}^{k} \widetilde{\lambda}_{j}(x) \widetilde{A}_{j}(x)
$$

where x_{\perp} is written as $X+\bar{X}$ and $\widetilde{\lambda}_{j}(x)=B\left(x_{H}\right) X \cdot \widetilde{A}_{j}(x)$ since Λ is real and diagonal hence orthogonal to $A_{j} x$ for all j and to the corresponding components of $\widetilde{A}_{j}(x)$. This last fact implies that one may take \bar{X} to 0 in $\widetilde{A}_{j}(x)$ and still get an orthogonal homotopy. Hence one has arrived to the map:

$$
\left(f^{H}\left(x_{H}\right), B\left(x_{H}\right) X, \Lambda \bar{X}\right)-\sum_{1}^{k} \widetilde{\lambda}_{j}\left(x_{\underline{H}}\right) \widetilde{A}_{j}\left(x_{\underline{H}}\right)
$$

or, equivalently to $\left(f \underline{H}\left(x_{\underline{H}}\right), \Lambda \bar{X}\right)$, which is a product map. Note that, if one had linearized f at $x_{\underline{H}}$, instead of x_{H}, then the matrix $D f_{\bar{X}}\left(x_{\underline{H}}\right)$ would be \underline{H} equivariant and would give larger blocks, however the end result would be the same.

Now, the orthogonal Γ-index of $f \underline{\underline{H}}\left(x_{\underline{H}}\right)$ at x_{0} has been computed in the first step. It remains to compute the orthogonal index of $\Lambda \bar{X}$ at 0 and to apply the product Theorem 3.3.

It is clear that Λ may be deformed to diag $(-I, I)$, where one deforms linearly each eigenvalue of $\bar{B}\left(x_{0}\right)$ to -1 or 1 according to its sign. The I-part acts as a suspension and does not affect the degree, while any $-z$ can be changed to $\left(1-|z|^{2}\right) z$ and one gets the sum of degrees on sets of the form $\left\{\left|z_{j}\right|<1 / 2\right.$, $j=1, \ldots, l,\left|z_{j}\right|>1 / 2$ for $\left.j>l\right\}$. For $\left|z_{j}\right|<1 / 2$ one may deform back to z_{j} and obtain a suspension. Hence one is reduced to compute the orthogonal degree on sets of the form $\widetilde{\Omega} \equiv\left\{\left|z_{j}\right|>1 / 2, j=1, \ldots, l\right\}$ of the map $\left(\ldots,\left(1-\left|z_{j}\right|^{2}\right) z_{j}, \ldots\right)$. Let H_{j} be the isotropy subgroup of z_{j} (by construction $\Gamma / H_{j} \cong S^{1}$), let $K=$ $\bigcap_{1}^{l} H_{j}$, with $\operatorname{dim} \Gamma / K=s$, and let K_{0} be the intersection of s of the H_{j} such that $\operatorname{dim} \Gamma / K_{0}=s$ (say the first s). Then, from Proposition 4.1, the orthogonal degree with respect to $\widetilde{\Omega}$ is given by $[F]_{\perp}=\sum_{K<K_{j}<K_{0}} d_{j}\left[F_{j}\right]$, where d_{j} is given by the relations:

$$
\begin{aligned}
& \operatorname{deg}\left(\left[\left(1-\left|z_{1}\right|^{2}\right) z_{1}, \ldots,\left(1-\left|z_{l}\right|^{2}\right) z_{l}\right]^{K_{i}}+\sum_{1}^{s} \lambda_{l}\left(A_{l} x\right)^{K_{i}} ; \widetilde{\Omega}_{k}^{i}\right) \\
&=\sum_{K_{i}<K_{j}<K_{0}} d_{j}\left|K_{0} / K_{j}\right|
\end{aligned}
$$

as a $\operatorname{map}\left(\lambda_{1}, \ldots, \lambda_{s}, z_{1}>0, \ldots, z_{s}>0, z \in \widetilde{\Omega}^{K_{i}}\right)$. Since on $\widetilde{\Omega}$ all z_{j} are non-zero, all the degrees on the left are 0 , except for $K_{i}=K$. For K, since $A_{1} x^{K_{0}}, \ldots, A_{s} x^{K_{0}}$ are linearly independent, one may deform $A_{l} z_{j}$ to 0 for $j>$ s (if of course $s<l$) and to $\left(1-\left|z_{l}\right|^{2}\right) z_{l}$ one may add $i \tau z_{l}$. Hence d_{j} are all 0 if $s<l$, while if $s=l$, one has to compare the indices of the maps $\left(2 t+1-2 \prod\left|z_{i}\right|,\left(\left|z_{2}\right|^{2}-1\right) z_{1}, \ldots,\left(\left|z_{s}\right|^{2}-1\right) z_{s-1}, \eta(2 t-1) z_{s}\right)+\sum \lambda_{j} A_{j} x$ and $\left(2 t+2 \varphi(x)-1,\left(1-\left|z_{1}\right|^{2}\right) z_{1}, \ldots,\left(1-\left|z_{s}\right|^{2}\right) z_{s}\right)+\sum \lambda_{j} A_{j} x$, where the first map is the generator and η is chosen such that the index is 1 and where $\varphi(x)$ is 1 if one of the z_{i} has norm less than $1 / 4$ and is 0 if all z_{i} have norm larger than $1 / 2$. An easy deformation, for z_{i} real and positive, of the first map to $\left(1-z_{1}, z_{2}-1, \ldots, z_{s}-1, \eta(2 t-1)\right)$ and of the second to $\left(2 t-1,1-z_{1}, \ldots, 1-z_{s}\right)$ will give an index of the first map equal to the number $-(-1)^{s} \eta \varepsilon \operatorname{Sign} \operatorname{det} A$ and of the second equal to $(-1)^{s} \varepsilon \operatorname{Sign} \operatorname{det} A$, where ε is an orientation factor. Hence $i(f)=d_{K_{0}} i\left(F_{K_{0}}\right)$ and $d_{K_{0}}=-\eta$.

Thus, $[F]_{\perp}=-\left[F_{K_{0}}\right]_{\perp}$, where the generator $F_{K_{0}}$ is chosen with $\eta=1$. Collecting all terms, one obtains:

$$
i_{\perp}(\Lambda \bar{X})=\left[F_{\Gamma}\right]_{\perp}-\sum n_{i}\left[F_{K_{i}}\right]_{\perp}-\sum_{s>1}\left(\prod n_{i}\right)\left[F_{\bigcap K_{i}}\right]_{\perp}
$$

where K_{i} is the isotropy subgroup of the i th coordinate in $\left(V^{\underline{H}}\right)^{\perp}$ (by construction $\operatorname{dim} \Gamma / K_{i}=1$), the first sum takes into account the K_{i} which are different and n_{i} is the number of those coordinates, with the same K_{i}, for which Λ contributes a -1 . The second sum is over those K_{i} such that $\operatorname{dim} \Gamma / K_{i_{1}} \cap \ldots \cap K_{i_{s}}=$ s. The map $F_{\Gamma}=(2 t-1, \bar{X})$ corresponds to the degree on the set where all z are small.

It is then enough to apply Theorem 3.3 for the product, noting that $\widetilde{H}_{2}^{0}=$ $H_{2}=K_{j}$ or $K_{i_{1}} \cap \ldots \cap K_{i_{s}}$ so that one has the usual product of integers. Finally, since $H_{i}<H$, if $K<H$ gives an irreducible representation of H in $(V \underline{H})^{\perp}$ and a block for $\bar{B}\left(x_{0}\right)$ with complex Morse index $n(K)$, then for any K_{j} isotropy subgroup of Γ of a coordinate z_{j} in the block, one has $H_{i} \cap K_{j}=H_{i} \cap K$ and $\sum n_{j}=n(K)$ with $\operatorname{dim} \Gamma / H_{i} \cap K=k+1$.

Remark 4. Instead of using the product theorem, one could have followed the arguments of [13], that is replace $\bar{B}\left(x_{H}\right)$ by terms, on each of its blocks, of the form $\left(1-\psi_{i}\right) \bar{B}_{i}\left(x_{H}\right) \bar{X}_{i}+\psi_{i} \bar{X}_{i}$, with the corresponding modifications of $\widetilde{\lambda}_{j}\left(x_{H}\right)$. Since $[F \underline{H}]_{\perp}=\sum d_{j}\left[F_{j}^{\underline{H}}\right]_{\perp}$ for $\underline{H}<H_{j}<H$, one may consider

$$
\widetilde{F}_{j}=\left(F_{j}^{H},\left(1-\psi_{i}\right) \bar{B}_{i}\left(x_{H}\right) \bar{X}_{i}+\psi_{i}\left(\bar{X}_{i}\right)+\sum \lambda_{j}(x) \widetilde{A}_{j}(x)_{i}\right)
$$

then $[F]_{\perp}=\sum d_{j}\left[\widetilde{F}_{j}\right]_{\perp}$ and it is enough to compute $\left[\widetilde{F}_{j}\right]_{\perp}$, which turns out to be

$$
\left[F_{j}\right]_{\perp}-\sum_{i} n\left(K_{i}\right)\left[F_{H_{j} \cap K_{i}}\right]_{\perp}-\sum_{s>1} \prod n\left(K_{i}\right)\left[F_{H_{j} \cap K_{i_{1}} \cap \ldots \cap K_{i_{s}}}\right]_{\perp}
$$

via a direct, but very lengthy, computation of the generators.

5. Bifurcation

Consider a family $f(\lambda, x)$ of orthogonal C^{1}-maps, with $f(\lambda, 0)=0, \lambda \in \mathbb{R}^{k}$, $x \in V$. As seen in Lemma 4.1, if one writes $f(\lambda, x)=D f(\lambda, 0) x+R(\lambda, x)=$ $B(\lambda) x+R(\lambda, x)$, then $B(\lambda) x$ and $R(\lambda, x)$ are both equivariant and orthogonal. $B(\lambda)$ has a block-diagonal structure on the irreducible representations of Γ and is complex self-adjoint on $\left(V^{T^{n}}\right)^{\perp}$.

Assume that $B(\lambda)$ is invertible for $\lambda \neq 0$ in a neighbourhood of 0 , then $\operatorname{deg}{ }_{\perp}\left((|x|-\varepsilon, f(\lambda, x)) ; B_{2 \varrho} \times B_{2 \varepsilon}\right)$ is well defined, where $B_{2 \varrho}=\{\lambda:|\lambda|<2 \varrho\}$ and $B_{2 \varepsilon}=\{x:|x|<2 \varepsilon\}$. Furthermore, one may deform linearly R to 0 (this is an orthogonal deformation). Then,

$$
\operatorname{deg}_{\perp}\left((|x|-\varepsilon, B(\lambda) x) ; B_{2 \varrho} \times B_{2 \varepsilon}\right)=\operatorname{deg}_{\perp}\left(\left(\varrho^{2}-|\lambda|^{2}, B(\lambda) x\right) ; B_{2 \varrho} \times B_{2 \varepsilon}\right)
$$

will give the standard results on local and global bifurcation (see [10]).
If $k=1$, this degree is $\operatorname{deg}_{\perp}\left(B(-\varrho) x ; B_{2 \varepsilon}\right)-\operatorname{deg} \perp\left(B(\varrho) x ; B_{2 \varepsilon}\right)$, from the product theorem. Hence, one has to compare the orthogonal indices at 0 of $B(\pm \varrho) x$ given in Theorem 4. For an invertible orthogonal matrix B, let $\sigma_{\Gamma} \equiv$ Sign $\operatorname{det} B^{\Gamma}, \sigma_{H} \equiv \operatorname{Sign} \operatorname{det} B_{\perp}^{H}$, if $\Gamma / H \cong \mathbb{Z}_{2}$ and B_{\perp}^{H} is B restricted to $\left(V^{\Gamma}\right)^{\perp} \cap$ V^{H} and n_{K} be the complex Morse number of B_{\perp}^{K}, where K is the isotropy for some coordinate z, with $\operatorname{dim} \Gamma / K=1$, and B_{\perp}^{K} is B restricted to $\left(V^{T^{n}}\right)^{\perp} \cap V^{K}$. Then,

$$
\begin{aligned}
i_{\perp}(B x)= & (-1)^{\sigma_{\Gamma}}\left\{\left[F_{\Gamma}\right]_{\perp}+\sum_{\Gamma / H_{i} \cong \mathbb{Z}_{2}}\left((-1)^{\sigma_{H_{i}}}-1\right) / 2\left[F_{H_{i}}\right]_{\perp}\right. \\
& \left.+\sum_{\Gamma / \widetilde{H}_{i} \cong \mathbb{Z}_{2} \times \ldots \times \mathbb{Z}_{2}} d_{\widetilde{H}_{i}}\left[F_{\widetilde{H}_{i}}\right]_{\perp}\right\} \\
& \times\left\{\left[F_{\Gamma}\right]_{\perp}-\sum n_{K_{i}}\left[F_{K_{i}}\right]_{\perp}-\sum \prod n_{K_{j}}\left[F_{\cap K_{j}}\right]_{\perp}\right\} .
\end{aligned}
$$

Theorem 5.1. If $k=1$, one has global bifurcation, i.e. the continuum of non-trivial solutions emanating from $(0,0)$ is unbounded or returns to $(\lambda, 0)$ with $\lambda \neq 0$:

- in V^{Γ}, if det B^{Γ} changes sign, or
- in $V^{H_{i}}$, if det $B_{\perp}^{H_{i}}$ changes sign, or
- in $V^{K_{i}}$, if $n_{K_{i}}$ changes.

Furthermore, if the continuum is bounded and the bifurcation points on it are isolated, then the sum of the jumps of the orthogonal indices is 0 . Finally, if $\operatorname{det} B^{\Gamma}$, $\operatorname{det} B_{\perp}^{H_{i}}$ and $n_{K_{i}}$ do not change, then there is an orthogonal nonlinearity $\widetilde{R}(\lambda, x)$ such that $B(\lambda) x+\widetilde{R}(\lambda, x)$ is zero only at $x=0$.

Note that this result generalizes the results for an S^{1}-action given in [12] and [18]. Note also that the corresponding theorem in [14, Theorem 5.1], was proved by using the J-homomorphism and phrased differently with respect to the action of $-y$, but one may recover part of the present result by applying [14] to $B(\lambda) x+\mu A x$.

Note that n_{K} changes if $B_{\perp}^{K}=\lambda B$ and B has a non-zero signature, for example, if $B=I$. Finally, for the correct application of this result, it is important to assimilate complex conjugate representations (they are the same real representations) as the following example shows. Let Γ act on z_{1} as $e^{i \varphi}$ and on z_{2} as $e^{-i \varphi}$. Consider the orthogonal Γ-map $\left(\lambda z_{1}+t \bar{z}_{2},-\lambda z_{2}+t \bar{z}_{1}\right)$, with $t=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$, (here $A z=i\left(z_{1},-z_{2}\right)$). It is easy to see that this map has no zeros except $z_{1}=z_{2}=0$, i.e. there is no bifurcation, although the Morse numbers for z_{1} and z_{2} change but their sum remains invariant.

The last part of the theorem will be proved below together with the general case.

Let us turn now to the case of several parameters. Consider the equation

$$
f(\lambda, x)=A x-T(\lambda) x-g(\lambda, x)=0
$$

where x is in B, A is a Fredholm operator of index 0 from B into E, both Hilbert Γ-spaces, $B \subset E,\|T(\lambda)\|$ tends to 0 as λ goes to 0 and $g(\lambda, x)=o(\|x\|)$ uniformly in λ. The map $f(\lambda, x)$ is assumed to be Γ-orthogonal (with respect to the scalar product in E). Then, the Liapunov-Schmidt reduction, see [10, p. 346], implies that for λ small enough:
$\left.f(\lambda, x)=(A-Q T(\lambda)) H\left(\lambda, x_{1}, x_{2}\right) \oplus B(\lambda) x_{1}+G(\lambda, x)-(I-Q) T(\lambda) H\left(\lambda, x_{1}, x_{2}\right)\right)$,
where $x=x_{1}+x_{2}$, with x_{1} in $\operatorname{ker} A, x_{2}$ in a complement, Q is a projection from E into Range A and

$$
\begin{aligned}
H\left(\lambda, x_{1}, x_{2}\right) & =x_{2}-(I-K Q T(\lambda))^{-1} K Q\left(T(\lambda) x_{1}+g(\lambda, x)\right), \\
B(\lambda) & =-(I-Q) T(\lambda)(I-K Q T(\lambda))^{-1} P \\
G(\lambda, x) & =-(I-Q)(I-T(\lambda) K Q)^{-1} g(\lambda, x)
\end{aligned}
$$

where K is the pseudo-inverse of A and $P x=x_{1}$.
The equation $f(\lambda, x)=0$, with $g(\lambda, x)$ Lipschitz continuous in x, is equivalent to $H\left(\lambda, x_{1}, x_{2}\right)=0$, which is uniquely solved for $x_{2}\left(x_{1}, \lambda\right)$ with a contraction
argument, and the bifurcation equation

$$
B(\lambda) x_{1}+G\left(\lambda, x_{1}+x_{2}\left(x_{1}, \lambda\right)\right)=0
$$

Lemma 5.1. Under the above hypothesis, one may choose P and Q such that the bifurcation equation is Γ-orthogonal.

Note that the gradient case was treated in [10, p. 358].
Proof. As above, the orthogonality of $f(\lambda, x)$ implies that of $A, T(\lambda)$ and $g(\lambda, x)$. In particular, $A-T(\lambda)$ has a diagonal structure on equivalent irreducible representations of Γ and, on $\left(E^{T^{n}}\right)^{\perp}$, its restriction has a complex self-adjoint form $\widetilde{A}-\widetilde{T}(\lambda)$ and the above space has the decomposition $\operatorname{ker} \widetilde{A} \oplus \operatorname{Range} \widetilde{A}$. As in [10, p. 413], one may choose P and Q equivariant, hence K and $B(\lambda)$ will be equivariant and will commute with A_{j}. Furthermore, one may choose an orthogonal projection \widetilde{P} on $\operatorname{ker} \widetilde{A}$, with $\widetilde{Q}=I-\widetilde{P}$, hence the part of $B(\lambda)$ on ker $A \cap\left(E^{T^{n}}\right)^{\perp}$ will be $\widetilde{B}(\lambda)=-\widetilde{P} \widetilde{T}(I-\widetilde{K}(I-\widetilde{P}) \widetilde{T})^{-1} \widetilde{P}$ which commutes with A_{j} and is self-adjoint (expand the inverse in power series). Hence $B(\lambda)$ is orthogonal.

On the other hand,

$$
-\left(G(\lambda, x), A_{j} x_{1}\right)=\left(g, A_{j} x_{1}\right)+\left(\widetilde{Q} g, \widetilde{K} \widetilde{T}(I-\widetilde{Q} \widetilde{K} \widetilde{T})^{-1} A_{j} x_{1}\right)
$$

by using the fact that A_{j} is 0 on $E^{T^{n}}$ and has also a diagonal structure. Since g is orthogonal, one may replace the first term by $-\left(g, A_{j} x_{2}\right)$. But $x_{2}\left(x_{1}, \lambda\right)$ is such that $Q g=(A-Q T)\left(x_{1}+x_{2}\right)$, hence, using the fact that A is orthogonal and Q commutes with A_{j}, one obtains $\left(Q T x_{1}, A_{j} x_{2}\right)$. The same substitution in the second term yields

$$
\left((I-\widetilde{T} \widetilde{K} \widetilde{Q})^{-1} \widetilde{T} \widetilde{K}(A-Q T) x_{2}, A_{j} x_{1}\right)-\left(x_{1}, \widetilde{T} \widetilde{Q} \widetilde{K} \widetilde{T}(I-\widetilde{Q} \widetilde{K} \widetilde{T})^{-1} A_{j} x_{1}\right)
$$

where the first term reduces to $\left(\widetilde{T} x_{2}, A_{j} x_{1}\right)$ and the second is 0 since it is of the form $\left(x_{1}, L A_{j} x_{1}\right)$, with L self-adjoint (as we have seen orthogonality is equivalent to self-adjointness for linear operators). Thus, one has $\left(T x_{1}, A_{j} x_{2}\right)+$ ($\left.T x_{2}, A_{j} x_{1}\right)=0$, since T is Γ-orthogonal.

Assume that $B(\lambda)$ is invertible for $\lambda \neq 0$ small, then if $B=E, A=I-K$ with $K, T(\lambda)$ and g compact, so that the orthogonal degree is

$$
J_{\perp}^{\Gamma}(f) \equiv \operatorname{deg} \perp\left((\|x\|-\varepsilon, f(\lambda, x)) ; B_{2 \varepsilon} \times B_{\varrho}\right)
$$

is well defined provided $f(\lambda, x)$ is non-zero if $x \neq 0$ and $\|\lambda\|=\varrho$, or by remaining in the local context, one may deform linearly (hence orthogonally) $f(\lambda, x)$ to $A x_{2} \oplus B(\lambda) x_{1}+G\left(\lambda, x_{1}+x_{2}\left(x_{1}, \lambda\right)\right)$ on the set $\{\|x\|=\varepsilon,\|\lambda\|=\varrho\}$, if one chooses ε small enough: solving the first part one gets $x_{2}=0\left(\left\|x_{1}\right\|\|\lambda\|\right)$ and $B(\lambda) x_{1}$ dominates the other terms. Then, on the same set, one may deform G to 0 . In particular, $J_{\perp}^{\Gamma}(f)=J_{\perp}^{\Gamma}\left(A x_{2} \oplus B(\lambda) x_{1}\right)$.

It is clear that the term $A x_{2}$ will act only as an orientation factor and as an indicator for the different isotropy subspaces. It is needed in the global results.

Recall, from [10], that one has no linearized orthogonal local bifurcation if there is an orthogonal Γ-nonlinearity $G\left(\lambda, x_{1}\right)$ such that the only zero of the bifurcation equation is $x_{1}=0$. Similarly, there is no linearized orthogonal global bifurcation if there is a nonlinearity $g(\lambda, x), \Gamma$-orthogonal, such that the continuum of non-trivial solutions emanating from $(0,0)$ is bounded and does not return to $(\lambda, 0)$, with $\lambda \neq 0$ (it could reduce to $(0,0)$).

From the fact that the Borsuk extension theorem is valid for orthogonal maps, one has, as in [10, Propositions 6.1 and 6.3].

Lemma 5.2.

(1) One has no-linearized orthogonal local bifurcation if and only if the map $B(\lambda) \eta: S^{k-1} \times S^{d-1} \rightarrow V \backslash\{0\}$ has a non-zero orthogonal extension $B(\lambda, \eta)$, to $B^{k} \times S^{d-1}$, where $S^{k-1}=\partial B^{k}=\{\lambda:\|\lambda\|=\varrho\}$, $S^{d-1}=\{\eta \in \operatorname{ker} A:\|\eta\|=1\}$ and V is a complement of Range A, of dimension d.
(2) If $k<d_{0}$, the dimension of $\operatorname{ker} A^{\Gamma}$, and if $J_{\perp}^{\Gamma}\left(C(\lambda)^{\Gamma} X_{0}, x_{0}, \widetilde{B}(\lambda) Z\right)=0$ implies that $J_{\perp}^{\Gamma}\left(C(\lambda)^{\Gamma} X_{0}, \widetilde{B}(\lambda) Z\right)=0$, where $\left(X_{0}, x_{0}\right)$ span $\operatorname{ker} A^{\Gamma}$ and Z is in the complement, then one has no linearized orthogonal local bifurcation if an only if $J_{\perp}^{\Gamma}(B(\lambda) x)=0$.
(3) If $k<2 \operatorname{dim} E^{\Gamma}-2$ (with equality possible if $d_{0}<\operatorname{dim} E^{\Gamma}$), then there is no linearized orthogonal global bifurcation if and only if $J_{\perp}^{\Gamma}((A-$ $T(\lambda)) x)=0$.

Now, $B(\lambda)$ has the form $\operatorname{diag}\left(B^{\Gamma}, B_{j}^{\mathbb{R}}, B_{l}^{\mathbb{C}}, \widetilde{B}_{s}\right)$ where $B_{j}^{\mathbb{R}}$ corresponds to equivalent irreducible representations of Γ with Γ acting as $\mathbb{Z}_{2}, B_{l}^{\mathbb{C}}$ where Γ acts as \mathbb{Z}_{p}, and \widetilde{B}_{s} where Γ acts as S^{1} and $\widetilde{B}_{s}=\widetilde{B}_{s}^{*}$, because of the orthogonality. Since $B(\lambda)$ is invertible for $\lambda \neq 0$, each $\widetilde{B}_{s}(\lambda)$ has a constant complex Morse number n_{s} (if $k>1$). As noted after Theorem 5.1, complex conjugate representations are assimilated.

Let $G L S\left(\mathbb{C}^{n+m}\right)$ be the set of self-adjoint invertible matrices with Morse index n. Consider the mapping $\mathcal{B}: G L S\left(\mathbb{C}^{n+m}\right) \rightarrow \Omega\left(G L\left(\mathbb{C}^{n+m}\right),-I, I\right)$, the set of paths in $G L\left(\mathbb{C}^{n+m}\right)$ from $-I$ to I, given by $\mathcal{B}(B)=\left(1-\mu^{2}\right) i B+\mu I$.

Lemma 5.3. Mapping \mathcal{B} induces an isomorphism from $\prod_{k-1}\left(G L S\left(\mathbb{C}^{n+m}\right)\right)$ onto $\prod_{k}(U(n+m))$, provided $0<k-1 \leq 2 m, 2 n$ and gives the Bott periodicity.

Proof. Since the spectrum of B is real and non-zero, it is clear that $\mathcal{B}(B)$ is invertible for all μ. Let T be unitary such that $B=T^{*} \Lambda T$, with $\Lambda=$ $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n+m}\right) . \quad$ Let $\widetilde{\Lambda}=\operatorname{diag}\left(\varepsilon_{1}, \ldots, \varepsilon_{n+m}\right)$, with $\varepsilon_{j}=\operatorname{sign} \lambda_{j}$. Let $\widetilde{B}=(i \pi / 2) T^{*} \widetilde{\Lambda} T$, then $e^{(1-\mu) \widetilde{B}}$ is a path in $U\left(\mathbb{C}^{n+m}\right)$ from $-I$ to I and in fact
it is a minimal geodesic, [16, p. 127]. Furthermore, $\mathcal{B}(B)$ is linearly deformable to $e^{(1-\mu) \widetilde{B}}$, since they are simultaneously diagonalizable, then the eigenvalues for both paths are in the upper half plane if $\lambda_{j}>0$. Conversely, for any skewhermitian matrix \widetilde{B}, giving a minimal geodesic, one may construct B, for instance with $\left|\lambda_{j}\right|=1$, such that $\mathcal{B}(B)$ and $e^{(1-\mu) \widetilde{B}}$ are in the same homotopy class, where B and $-i \widetilde{B}$ have the same Morse number.

Furthermore, the assignment of the negative eigenspace of B (or of $-i \widetilde{B}$) is a strong deformation retract of $G L S\left(\mathbb{C}^{n+m}\right)$ to $G_{n}\left(\mathbb{C}^{n+m}\right)$ the complex Grassmanian of n-planes in \mathbb{C}^{n+m}, see [16, p. 127], [2, Lemma 4.3]. Bott's theorem, [16, Theorem 23.3], gives that, if $n=m$, the map $\widetilde{B} \rightarrow e^{(i-\mu) \widetilde{B}}$ induces an isomorphism from $\prod_{k-1}\left(G_{n}\left(\mathbb{C}^{2 n}\right)\right)$ onto $\prod_{k}(S U(2 n))$, if $k-1 \leq 2 n$, and onto $\prod_{k}(U(2 n))$, if $k \neq 1$. Also, the suspensions by I and $-I$ induce isomorphisms from $\prod_{k-1}\left(G L S\left(\mathbb{C}^{n+m}\right)\right)$ onto $\prod_{k-1}\left(G L S\left(\mathbb{C}^{n+m+1}\right)\right)$, provided $k-1 \leq 2 m$ and $k-1 \leq 2 n$, respectively ([9, Theorem 8.2.6, p. 102]), where this result is phrased in terms of Grassmanians. Note that changing B into $-B$, interchanges n and m. Thus, by suspending by $-I^{m-n}$ if $n<m$, or by I^{n-m} if $n>m$, then

$$
\left.\prod_{k-1}\left(G L S\left(\mathbb{C}^{n+m}\right)\right) \cong \prod_{k-1}\left(G L S\left(\mathbb{C}^{2 \alpha}\right)\right) \cong \prod_{k}(U(2 \alpha)) \cong \prod_{k}(U(n+m))\right)
$$

if k satisfies the conditions of the lemma and $\alpha=\max (n, m)$, in particular one is in the stable range for $U(n+m)$, [16, Lemma 23.4]. Note also that, since $U(n+m)$ is a strong deformation retract of $G L\left(\mathbb{C}^{n+m}\right)$, then the path spaces based on them have the same property. This gives the first part of the lemma.

Finally, using long exact sequences, [20, Theorem 10.16], one has that if $n \leq m$, then $\prod_{k-1}\left(G_{n}\left(\mathbb{C}^{n+m}\right)\right) \cong \prod_{k-1}\left(V_{n+m, n}\right) \times \prod_{k-2}(U(n))$, where $V_{n+m, n}$ is the Stiefel manifold. Hence, for $k-1 \leq 2 n, 2 m$, one has $\prod_{k-1}\left(G L S\left(\mathbb{C}^{n+m}\right)\right) \cong$ $\prod_{k-2}(U(n)),[9$, p. 83]. Hence, if $0<k-1 \leq 2 n \leq 2 m$, one gets an isomorphism from $\prod_{k-2}(U(n))$ onto $\prod_{k}(U(n+m))$. These groups are 0 if k is even and \mathbb{Z} if k is odd. If $k=1$, then $G L S\left(\mathbb{C}^{n+m}\right)$ is connected and $S U(n+m)$ is simply connected. The set of self-adjoint invertible matrices has its connected components characterized by their Morse index: B is deformable to diag $(-I, I)$ by deforming Λ to that matrix and T to Id.

We are now ready for the main result of this section. Because of space considerations, we shall stick to the stable case. Recall that \widetilde{B}_{s} are complex self-adjoint invertible matrices with Morse index n_{s} and dimension $n_{s}+m_{s}$.

Theorem 5.2. Assume $k-1 \leq 2 n_{s}, 2 m_{s}$ for all s, then there is no linearized orthogonal local bifurcation if and only if:
(1) There is no linearized equivariant local bifurcation in $(\operatorname{ker} A)^{T^{n}}$.
(2) If k is odd, if $\widetilde{B}_{s}(\lambda)$ is deformable in $G L S\left(\mathbb{C}^{n_{s}+m_{s}}\right)$ to $\operatorname{diag}\left(-I_{n_{s}}, I_{m_{s}}\right)$. If k is even, (1) is the only condition.

Note that if $k=1$, then (2) says that $\widetilde{B}_{s}(\pm \varrho)$ have the same Morse index, i.e. the situation of Theorem 5.1. Furthermore, if B^{Γ} is a $d_{0} \times d_{l}$ matrix, $B_{j}^{\mathbb{R}}$ is $d_{j} \times d_{j}$ and $B_{l}^{\mathbb{C}}$ is a complex $d_{l} \times d_{l}$ matrix, then, if $k<d_{0}, d_{j}, k \leq 2 d_{l}$ for all j, l, one may apply [10, Theorem 6.1 , p. 436], to verify (1). In particular, if k is odd, one needs B_{0}, B_{j} to be deformable to I, since $B_{l}^{\mathbb{C}}$ is always deformable to I.

Note also that, if one is not in the stable case, one may add the required number of $\pm Z_{s}$, in order to get $k-1 \leq 2 n_{s}, 2 m_{s}$. Then, if k is odd and \widetilde{B}_{s} is not stably deformable to diag $(-I, I)$, one has local (in fact global) bifurcation. The same sort of results holds for $(\operatorname{ker} A)^{T^{n}}$.

Proof. If $B(\lambda) \eta$ has an orthogonal extension $B(\lambda, \eta)$, from $S^{k-1} \times S^{d}$ to $B^{k} \times S^{d}$, then $(B(\lambda) \eta)^{T^{n}} \equiv B_{0}(\lambda) \eta_{0}$ has the equivariant extension $B(\lambda, \eta)^{T^{n}}=$ $B_{0}\left(\lambda, \eta_{0}\right)$, from $S^{k-1} \times S^{l}$ to $B^{k} \times S^{l}$, where $\eta_{0} \in S^{l}$ in $(\operatorname{ker} A)^{T^{n}}$. Hence, from [10, Proposition 6.1, p. 431], (1) is verified. Furthermore, if T is any of the ($n-1$)-tori used in Step 2 of the proof of Theorem 2, one has a similar orthogonal extension for $(B(\lambda) \eta)^{T}=\left(B_{0}(\lambda) \eta_{0}, \widetilde{B}(\lambda) \widetilde{\eta}\right)$, where η_{0} belongs to $(\operatorname{ker} A)^{T^{n}}$ and $\widetilde{\eta}$ to its complement. The group T^{n} acts as S^{1} on $\widetilde{\eta}$ and, for some j, one has $A_{j} \widetilde{\eta}_{s}=i n_{s} \widetilde{\eta}_{s}$, with $n_{s}>0$ by taking conjugates, and $\widetilde{\eta}_{s}$ is in the respective space of equivalent irreducible representations.

Now, $\left(\left\|\eta_{0}\right\| B_{0}\left(\lambda, \eta_{0} /\left\|\eta_{0}\right\|\right), \widetilde{B}(\lambda) \eta\right)$, has a non-zero orthogonal extension from $S^{k-1} \times \partial\left(B^{l} \times B^{\widetilde{d}}\right)$ to $B^{k} \times \partial\left(B^{l} \times B^{\widetilde{d}}\right)$, since, on the first set this map is linearly (and orthogonally) deformable to $\left(B_{0}(\lambda) \eta_{0}, \widetilde{B}(\lambda) \widetilde{\eta}\right)$. Furthermore, it is easy to check that the arguments of [10, Proposition 6.2 , p. 432 and Remark 6.3, p. 434], are valid in the orthogonal case, by looking at the explicit construction and using the fact that the orthogonality is used only on $\widetilde{\eta}$ and that the Borsuk extension theorem is valid for orthogonal maps. Hence, the above map has this extension property if and only if it extends orthogonally from $\partial\left(B^{k} \times B_{0}^{l}\right) \times S^{\tilde{d}-1}$ to $B^{k} \times B_{0}^{l} \times S^{\widetilde{d}-1}$. Let then $\left(B_{0}\left(\lambda, \eta_{0}, \widetilde{\eta}\right), \widetilde{B}\left(\lambda, \eta_{0}, \widetilde{\eta}\right)\right)$ be this extension. But then, $\left(B_{0}\left(\lambda, \eta_{0}, \widetilde{\eta}\right), \widetilde{B}\left(\lambda, \eta_{0}, \widetilde{\eta}\right)+\mu A_{j} \widetilde{\eta}\right)$ is equivariant and non-zero on $B^{k+1} \times$ $B_{0}^{l} \times S^{\tilde{d}-1}$, where in B^{k+1} we have added μ, with $|\mu| \leq 1$. This map is an extension of its restriction on $\partial\left(B^{k+1} \times B_{0}^{l}\right) \times S^{\tilde{d}-1}$. Again, from [10, Remark 6.3], which is true in this context, this last map has a non-zero Γ-extension if and only if $\left(\left\|\eta_{0}\right\| B_{0}\left(\lambda, \eta_{0} /\left\|\eta_{0}\right\|\right), \widetilde{B}(\lambda) \widetilde{\eta}+\mu A_{j} \widetilde{\eta}\right) \Gamma$-extends from $S^{k} \times \partial\left(B_{0}^{l} \times B^{\widetilde{d}}\right)$ to $B^{k+1} \times \partial\left(B_{0}^{l} \times B^{\widetilde{d}}\right)$. Furthermore, one may adapt [10, Theorem 6.1, p. 436], to conclude that, in the stable case of the theorem, the family of matrices from S^{k} into $G L\left(\mathbb{C}^{d_{s}}\right)$ given by $\widetilde{B}_{s}(\lambda)+\mu A_{j}$ must be deformable to the identity, since $k+1 \leq 2\left(n_{s}+m_{s}\right)$, provided n_{s} and m_{s} are not 0 . Then, from Lemma 5.3, one has that $\widetilde{B}_{s}(\lambda)$ is deformable to $\operatorname{diag}\left(-I_{n}, I_{m}\right)$ in $G L S\left(\mathbb{C}^{n_{s}+m_{s}}\right)$. Note that this is always the case if k is even. If n_{s} or m_{s} is 0 , then, from the conditions of the theorem, one has $k=1$, one has to replace $U(n+m)$ by $S U(n)$ and $\widetilde{B}_{s}(\lambda)+\mu A_{j}$
is trivial in $\prod_{1}(U(n))$ if and only if its complex determinant has zero winding number, which is the net number of eigenvalues of $\widetilde{B}_{s}(\lambda)$ which change sign as λ goes from $-\varrho$ to ϱ, that is, up to a sign, the difference of the Morse numbers. This argument has been used extensively in our previous papers.

The converse follows from the fact that $\left(B_{0}(\lambda) \eta_{0}, \widetilde{B}(\lambda) \widetilde{\eta}\right)$ is orthogonally deformable to $\left(B_{0}(\lambda) \eta_{0}, \varepsilon_{s} \widetilde{\eta}_{s}\right)$ on $S^{k-1} \times S^{d-1}$, where $\varepsilon_{s}=\operatorname{diag}\left(-I_{n_{s}}, I_{m_{s}}\right)$ which has the orthogonal non-zero extension $\left.\left(\left\|\eta_{0}\right\| B_{0}\left(\lambda, \eta_{0} /\left\|\eta_{0}\right\|\right)\right), \varepsilon_{s} \widetilde{\eta}_{s}\right)$ to $B^{k} \times$ S^{d-1}. The conclusion follows from the orthogonal Borsuk extension result and Lemma 5.2.

If $f(\lambda, x)$ is a gradient and $\Gamma=\{e\}$, Bartsch, in [2], has found the same increase of the number of parameters given in Lemma 5.3, for the Conley index and the real Grassmanians and real Bott periodicity. In his case, as usual with Conley index, one has no continua.

6. Periodic solutions of Hamiltonian systems

As an illustration of the preceding results, we shall give an idea of how to study the problem of finding 2π-periodic solutions to

$$
f(X) \equiv J X^{\prime}+\nabla H(X)=0
$$

where $X \in \mathbb{R}^{2 N}, J$ is the standard symplectic matrix and H is C^{2}. (Note that by rescaling time, there is no loss of generality when one looks for 2π-periodic solutions instead of a fixed period T).

Assume that the abelian group Γ_{0} acts symplectically on $\mathbb{R}^{2 N}$, i.e. it commutes with J or, if $X=(Y, Z)$ with Y and Z in \mathbb{R}^{N}, then the action on Y and Z are the same. If one of the complex irreducible representations of Γ_{0} associates one coordinate of Y to its similar in Z, then J, on this pair, takes the form of a multiplication by i. Assume that H is invariant under Γ_{0}, hence $\nabla H(X)$ is equivariant, as well as the term $J X^{\prime}$. Hence, if $B=H^{1}\left(S^{1}\right)$ and $E=L^{2}\left(S^{1}\right)$, for 2π-periodic functions, the equation is Γ-equivariant, for $\Gamma=S^{1} \times \Gamma_{0}$, where the action of S^{1} is by time translation.

The infinitesimal generators for Γ will be $A X \equiv X^{\prime}$ for the action of S^{1} and $A_{j} X, j=1, \ldots, n$, if the rank of Γ_{0} is n. It is easy to see that $(f(X), A X)=$ $\int_{0}^{2 \pi}\left(J X^{\prime} \cdot X^{\prime}+\nabla H(X) \cdot X^{\prime}\right) d t=0$, while $\nabla H(X) \cdot A_{j} X=0$ (since H is $\Gamma_{0^{-}}$ invariant) and $\left(J X^{\prime}, A_{j} X\right)=\int_{0}^{2 \pi}-\left(X^{T} J A_{j} X\right)^{\prime} d t / 2=0$, where we have used the relations $J^{T}=-J, A_{j}^{T}=-A_{j}, J A_{j}=A_{j} J$ (since Γ_{0} commutes with J). Thus, $f(X)$ is Γ-orthogonal.

Note that for the equation $X^{\prime \prime}+\nabla V(X)=0$, one may take the same generators $A X=X^{\prime}$ and $A_{j} X$, if V is Γ_{0}-invariant. Of course B is then $H^{2}\left(S^{1}\right)$.

As in [12, p. 119], assume there is an open, bounded $\omega \subset \mathbb{R}^{2 N}$, invariant under Γ_{0}, such that any 2π-periodic solution in $\bar{\omega}$ is in fact in ω. Let then
$\Omega \equiv\left\{X \in H^{1}\left(S^{1}\right):\|X\|_{1}<R, X(t) \in \omega\right\}$, where R is chosen so large that any periodic solution in ω has $\|X\|_{1}<R / 2$ (R depends on bounds on ∇H on $\bar{\omega}$ and Sobolev constants). Then $f(X) \neq 0$ on $\partial \Omega$ and the orthogonal degree of f with respect to Ω is defined. A word of caution is necessary here: we are dealing with two infinite dimensional spaces (a setting different from the one given in the present paper). The standard ways of reducing to a single space, i.e. looking at the integral equation or working in $H^{1 / 2}\left(S^{1}\right)$, have the inconvenient of obscuring the orthogonality. A complete theory should follow either the steps of [6] and study difference of degrees (as it is easily seen if $\nabla H(X)=A X$, for a constant matrix A, then the complex Morse index of $\operatorname{in} J+A$ is N for large n, that is most of the components of the orthogonal degree are non-zero). However, it is simpler to restrict oneself to a large ball in $H^{1}\left(S^{1}\right)$, hence $X(t)$ will be bounded, as well as $D^{2} H(X)$. Write $X(t)=\sum X_{n} e^{i n t}$, with $X_{n}=\bar{X}_{-n}$ in $\mathbb{C}^{2 N}$, or $X=X_{1} \oplus X_{2}$, where $X_{1} \equiv P X$ corresponds to modes $|n| \leq N_{1}$ and X_{2} to the others. Since $J X^{\prime}$ is a Fredholm operator of index 0 , one may use a global Liapunov-Schmidt reduction: the equation $(I-P) J X^{\prime}+(I-P) \nabla H(X)=0$ is uniquely solvable for X_{2} as a C^{1}-function of X_{1}, for N_{1} large enough. In fact, the linearization at any X_{0} in the ball has the property that

$$
\left\|J X_{2}^{\prime}+(I-P) D^{2} H\left(X_{0}\right) X_{2}\right\|_{L^{2}} \geq\left(1-M / N_{1}\right)\left\|X_{2}\right\|_{H^{1}}
$$

where M is a uniform bound for $\left\|D^{2} H\left(X_{0}\right)\right\|$, hence the global implicit function theorem may be applied. Furthermore, since $(\nabla H(X), A X)=0$, one has that the scalar product $\left(P \nabla H\left(X_{1}+X_{2}\left(X_{1}\right)\right), A X_{1}\right)=-\left((I-P) \nabla H, A X_{2}\right)=$ $\left((I-P) J X_{2}^{\prime}, A X_{2}\right)=0$, hence, the reduced equation is orthogonal and the degree will be that of $J X_{1}^{\prime}+P \nabla H\left(X_{1}+X_{2}\left(X_{1}\right)\right)$, in the finite dimensional space $P H^{1}\left(S^{1}\right)$, i.e. $\operatorname{deg} \perp_{\perp}\left(P f\left(X_{1}+X_{2}\left(X_{1}\right)\right) ; P \Omega\right)$. Note that the second term inherits the gradient structure.

Remark 6.1. After the research for this paper was completed, we were given the preprints of [6] and [19]. The first paper studies the non-autonomous case and its relation to Maslov's index. For the Hopf bifurcation, the change of the invariant in [6] is the sum of the changes of the Morse indices, given below (see also the different other Conley-like degrees mentionned in the bibliography of [6]). The second paper uses the finite dimensional reduction of Amann and Zendher and the orthogonal degree of [18] for S^{1}-actions, (there $\Gamma_{0}=\{e\}$), and computes these indices at different stationary points (including infinity, provided there is no resonance there). See also [1] and [15].

In the case of $\Gamma_{0}=\{e\}$, one should also compare to the results of [12, p. 120 and p. 135-147], where the existence of a first integral $(H(X(t))$ here), was used to add a parameter. It is clear that $\tau X^{\prime}+(1-\tau) J \nabla H$ is orthogonal to $f(X)$ and that the new parameter corresponds to part of the construction given here.

Assume then that ΓX_{0} is an isolated orbit of dimension k, of solutions of $f(X)=0$, with $\operatorname{ker} D f\left(X_{0}\right)$ of real dimension k and generated by k among $A X_{0}=X_{0}^{\prime}, A_{1} X_{0}, \ldots, A_{n} X_{0}$. Then, if H is the isotropy subgroup of X_{0}, one is in the position of applying Theorem 4, provided one identifies \underline{H} and computes $d_{H}, d_{H_{i}}$ and $n_{K_{i}}$.

Note that the hyperbolicity conditions (i.e. the conditions on $\left.\operatorname{ker} D f\left(X_{0}\right)\right)$ imply that $D f\left(X_{0}\right)$ cannot commute with J, unless $k=0$. (This does not mean that pieces of $D f\left(X_{0}\right)$ can't commute with $\left.J\right)$. In fact, if J commutes with $D f\left(X_{0}\right)$, then if V belongs to the kernel so does $J V$, which has to be a real linear combination of X_{0}^{\prime} and $A_{j} X_{0}$. On the nth mode X_{n} of X_{0}, one would have $\lambda_{0} n X_{n}+\sum \lambda_{j} N_{j} X_{n}=n J X_{n}$, where $N_{j}=\operatorname{diag}\left(N_{j}^{1}, \ldots, N_{j}^{N}, N_{j}^{1}, \ldots, N_{j}^{N}\right)$, (just one N_{j}^{s} if J is multiplication by i on the pair of coordinates). This leads to $X_{n}=0$ for $n \neq 0$, and the same argument for $A_{j} X_{0}$, gives that this vector has to be 0 .

We shall consider three cases.
(a) Stationary solution. If X_{0} is time stationary, then $\Gamma_{X_{0}}=H=S^{1} \times H_{0}$ with $H_{0}<\Gamma_{0}$ such that $\operatorname{dim} \Gamma_{0} / H_{0}=k$ and $\underline{H}=S^{1} \times T^{n-k}$ generated by $\left(\varphi, \varphi_{j}, j=k+1, \ldots, n\right)$. As before, we shall reparametrize T^{n} in such a way that the action on the first k complex non-zero variables of X_{0} is of the form $e^{i N_{j} \varphi_{j}} z_{j}$ (and also on $J X_{0}$). Then, $V \underline{\underline{H}}$ is contained in $\mathbb{R}^{2 N}$, the constant functions, $B \equiv D f\left(X_{0}\right)$ has the form $\operatorname{diag}\left(B^{H}, B_{\perp}\right)$, with $B_{\perp}=\operatorname{diag}\left(B_{m}^{\mathbb{R}}, B_{l}^{\mathbb{C}}, B_{s}^{\mathbb{C}}\right)$, where, on each B_{m}, the group H acts as \mathbb{Z}_{2}, on the complex B_{l} as \mathbb{Z}_{p} and on the complex B_{s} as S^{1}. Each of these matrices is self-adjoint, since $B=D^{2} H\left(X_{0}\right)$. The hyperbolicity condition means that ker B^{H} has dimension k, that B_{\perp} is invertible and that, for $n>0, i n J+B$ is invertible. Furthermore, from Lemma 4.1, B_{s} is complex self-adjoint and H-orthogonal. Note that since J commutes with Γ_{0}, J has also a diagonal structure $\left.\operatorname{diag}\left(J_{H}, J_{m}, J_{l}, J_{s}\right)\right)$. By looking at Fourier series (non-negative modes are enough), a straight application of Theorem 4.1 will give

Theorem 6.1. For a stationary hyperbolic orbit, the orthogonal index is given by
(a) $d_{H}=(-1)^{n_{H}}$, with n_{H} the Morse index of B^{H},
(b) $d_{H_{j}}=d_{H}\left((-1)^{n_{H_{j}}}-1\right) / 2$, with $(-1)^{n_{H_{j}}}=\operatorname{Sign} \operatorname{det} B_{j}^{\mathbb{R}}$,
(c) the Morse index of inJ $+\widetilde{B}$, where \widetilde{B} is any of the matrices B^{H} (with $n>0), B_{m}^{\mathbb{R}}($ with $n>0), B_{l}^{\mathbb{C}}($ with $n>0)$ or $B_{s}^{\mathbb{C}}($ with $n \geq 0)$ for the mode n and the decomposition of $\mathbb{C}^{2 N}$ (induced by that of $\mathbb{R}^{2 N}$) in irreducible representations of H.

Remark 6.2.
(a) If one has a family of hamiltonians $f(\lambda, X)$, with $f\left(\lambda, X_{0}\right)=0$ and X_{0} hyperbolic for λ_{1} and λ_{2} and if any of the above numbers change, then
one has a global Hopf bifurcation in the interval from λ_{1} to λ_{2}, in V^{K}, where $K<H$ is any of the isotropy subgroups for which d_{K} has changed. V^{K} can be characterized as in [14, Lemma 3.1(a)]. In particular, if there is no bifurcation in $V \underline{H}$, then one has a bifurcation from a stationary k-torus ΓX_{0} to a $(k+1)$-torus, either stationary if the Morse index of $B_{s}^{\mathbb{C}}$ has changed, or, if there is no bifurcation of stationary solutions, to a time-periodic solution, i.e. a pulsating k-torus.
(b) One may compute the Morse indices as in [12, p. 142].
(c) If J commutes with $B_{j}^{\mathbb{R}}$, then $d_{H_{j}}=0$, since $n_{H_{j}}$ is even. More generally, if J commutes with \widetilde{B}, then one may decompose the space into twodimensional subspaces, $\left\langle X_{k}, J X_{k}\right\rangle$, corresponding to the eigenvalue λ_{k} of \widetilde{B}, orthogonal between them and invariant under J. The eigenvalues of $i n J+\widetilde{B}$, on this subspace, are $\lambda_{k} \pm n$ and the Morse index of $i n J+\widetilde{B}$ is $a(n)+a(-n)$, where $a(n)$ is half the number of eigenvalues of \widetilde{B} which are less than n. This is also the case if J is multiplication by i, since we are considering the complex Morse index.
(d) For the system $X^{\prime \prime}+\nabla V(X)=0$, with $D^{2} V\left(X_{0}\right)=B$, then the Morse index of $-n^{2} I+\widetilde{B}$ is $a\left(n^{2}\right)$. Note that for the system, $\left(X^{\prime}=Y, Y^{\prime}=\right.$ $-\nabla V(X)), J$ commutes with $D^{2}\left(V(X)+\|Y\|^{2} / 2\right)$ only if $B=I$.
(b) Reduction to the stationary case. Assume that X_{0}^{\prime} is a linear combination of the $A_{j} X_{0}$. Then for each coordinate z_{s} of $\mathbb{R}^{2 N}$, with a nontrivial action of T^{n}, there is at most one mode n_{s} such that X_{0}^{\prime} is non-zero on that mode (n_{s} is the same for $J X_{0}$). As in [14, p. 387], consider the ma$\operatorname{trix} A(t)=\operatorname{diag}\left(\ldots, e^{-i n_{s} t}, \ldots\right)$, written this way according to the action of Γ_{0} (each exponential corresponds to a rotation for a pair of real coordinates of Y, and the same for the symmetric pair in Z, or to a single pair if J acts as i). If $Y(t)=A(t) X(t)$, then, $Y_{0}^{\prime}=0$ since $A^{\prime} X_{0}=-A X_{0}^{\prime}$. Furthermore, $Y^{\prime}=A^{\prime}(0) Y+A(t) J \nabla H\left(A^{-1}(t) Y\right)$. Using the equivariance of ∇H with respect to Γ_{0} (and the fact that $A(t)$ is defined that way) and the fact that J commutes with $A(t)$, one has that $J Y^{\prime}-J A^{\prime}(0) Y+\nabla H(Y)=0$ and a reduction to the previous case: the rotating wave X_{0} has been frozen. Furthermore, from Proposition 3 (and the fact $A^{T}=A^{-1}$ as real matrices), both orthogonal degrees coincide.

For the case of $X^{\prime \prime}+\nabla H(X)=0$, then the above transformation gives $Y^{\prime \prime}+A^{\prime}(0)^{2} Y-2 A^{\prime}(0) Y^{\prime}+\nabla H(Y)=0$, which is also orthogonal.
(c) Non-stationary solution. If $X_{0}^{\prime}, A_{1} X_{0}, \ldots, A_{k-1} X_{0}$ are linearly independent, we may assume, from case (b), that $A_{k} X_{0}, \ldots, A_{n} X_{0}$ are linear combinations of $A_{1} X_{0}, \ldots, A_{k-1} X_{0}$ only. In particular, if $k=1$, then $A_{j} X_{0}=0$ and X_{0} belongs to $V^{T^{n}}$. In general, one may reparametrize T^{n} such that on
$V \underline{H}$ one has $A_{j} X=0$, for $j \geq k$. Here $H=\mathbb{Z}_{p} \times H_{0}$, with $\operatorname{dim} \Gamma_{0} / H_{0}=k-1$, $\underline{H}=\underline{H}_{0}=T^{n-k+1}$, if $X_{0}(t)$ is $2 \pi / p$-time periodic. Then, $V \underline{H}=\{X(t)$ in $\left.\left(\mathbb{R}^{2 N}\right)^{\underline{H}_{0}} \equiv V_{0}\right\}$ and its complement is $\left\{X(t)\right.$ in $\left.V_{0}^{\perp}\right\}$. In fact $H=\{(\varphi, \Phi, L)$: $n \varphi+\left\langle N^{j}, \Phi\right\rangle+\left\langle K_{j} / M, L\right\rangle$ is in \mathbb{Z}, for each non-zero component X_{n}^{j} of $\left.X_{0}\right\}$, as in [14, p. 386]. The fact that N_{l}^{j} is a linear combination of N_{m}^{j} for $l \geq k$ and $m<k$, allows to reparametrize T^{n}, as in the proof of Theorem 2, and eliminate from H the phases $\Phi_{l}, l \geq k$. The fact that X_{0}^{\prime} is linearly independent from $A_{j} X_{0}$, restricts Φ_{m} and φ to a discrete set, hence the claim on \underline{H}. From the compactness of Γ, there is a positive minimum φ_{0}, such that $\left(\varphi_{0}, \psi_{0}, L_{0}\right)$ is in H. From the congruences, φ_{0} (as well as each component of ψ_{0}) is a rational, of the form r / q. If $r>1$, then there are integers k and a such that $k r+a q=1$ and, changing φ_{0} to $k \varphi_{0}$, one may take $\varphi_{0}=1 / q$. Thus, $X_{0}(t)=\gamma_{0} X_{0}(t+2 \pi / q)$, where γ_{0} corresponds to $\left(\psi_{0}, L_{0}\right)$. Now, any other element of H gives $X_{0}(t)=\gamma X_{0}(t+2 \pi \varphi)$. For such an element let k be such that $0 \leq \varphi-k \varphi_{0}<\varphi_{0}$. Then, $X_{0}(t)=\gamma \bar{\gamma}_{0}^{k} X_{0}\left(t+2 \pi\left(\varphi-k \varphi_{0}\right)\right)$ and ($\varphi-k \varphi_{0}, \psi-k \psi_{0}, L-k L_{0}$) belongs to H, contradicting the minimality of φ_{0}, unless $\varphi=k \varphi_{0}$ and $\gamma=\gamma_{0}^{k}$.

Let $H_{0}<\Gamma_{0}$ be the isotropy subgroup of the geometrical coordinates of $X_{0}(t)$. Then, since $\varphi_{0}=1 / q$, one has that $\gamma_{0}^{q} \in H_{0}$ and $H=\left\{k\left(\varphi_{0}, \psi_{0}, L_{0}\right), k=\right.$ $1, \ldots, q\} \cup\left\{(\psi, L) \in H_{0}\right\}$. Let q_{0} be the smallest integer such that $\gamma_{0}^{q_{0}} \in H_{0}$. From the minimality $q=p q_{0}$ and one has $X_{0}(t)=\gamma_{0} X_{0}(t+2 \pi / q)$, with $\gamma_{0}^{q_{0}} X_{0}=X_{0}$ and $X_{0}(t)$ is $2 \pi / p$-periodic.

Lemma 6.1. $V^{H}=\left\{X(t) \in V_{0}^{H_{0}}, X(t)=\gamma_{0} X(t+2 \pi / q)\right\}$.
Proof. On the component X_{n}^{j} the action of H is as

$$
\exp 2 \pi i\left(k n / q+k\left\langle N^{j}, \psi_{0}\right\rangle+k\left\langle K_{j} / M, \psi_{0}\right\rangle+\left\langle N^{j}, \psi\right\rangle+\left\langle K_{j} / M, L\right\rangle\right)
$$

with (ψ, L) in H_{0}. Taking $k=0$, one needs that (ψ, L) is in H_{j}, the isotropy of the j th coordinate, i.e. $H_{0}<H_{j}$ and $X(t)$ is in $V_{0}^{H_{0}}$. In particular, $\gamma_{0}^{q_{0}}$ acts trivially on X_{j}. Hence, taking $k=q_{0}, n$ has to be a multiple of p. The converse is clear.

Consider now K such that $H / K \cong \mathbb{Z}_{2}$. Since, $K=\bigcap H_{j n}$, the inclusions $K<H \cap H_{j n}<H$ imply that either $H<H_{j n}$ or $K=H \cap H_{j n}$. In the second case, one has that γ^{2} is in $H_{j n}$ for any $\gamma \in H$. In particular, for $\varphi=0$ and $\widetilde{\gamma}$ in H_{0}, one needs $\widetilde{\gamma}^{2} \in H_{j}$ and $H_{0} / H_{0} \cap H_{j}$ has at most order 2. Let $K_{0}=H_{0} \cap H_{j}$, for all such j, then $K_{0}=H_{0}$ or $H_{0} / K_{0} \cong \mathbb{Z}_{2}$. In the second case, there is $\gamma_{1} \in H_{0}$, with $\gamma_{1}^{2} \in K_{0}$, i.e. γ_{1} acts as Id on $V_{0}^{H_{0}}$ and as -Id on $V_{0}^{K_{0}} \cap\left(V_{0}^{H_{0}}\right)^{\perp}$. Since $\gamma_{0}^{q_{0}} \in H_{0}$, one has $\gamma_{0}^{2 q_{0}}$ acts as Id on $V_{0}^{K_{0}}$. Let $V_{0}^{ \pm}$be the subspaces of $V_{0}^{K_{0}}$ where $\gamma_{0}^{q_{0}}$ acts as $\pm \mathrm{Id}$. Then $V_{0}^{+} \supset V_{0}^{H_{0}}$.

Lemma 6.2. V^{K} consists of all 2π-periodic functions $X(t)$ in $V_{0}^{K_{0}}$ of the form $X(t)=X_{+}(t)+X_{-}(t)$, with $X_{ \pm}(t)= \pm \gamma_{0} X_{ \pm}(t+2 \pi / q)$. In particular, if q is odd, then $X_{ \pm}(t)$ is in $V_{0}^{ \pm}$and both are $2 \pi / p$-periodic. If q is even and p is odd, then $X(t)$ is in V_{0}^{+}and it is $2 \pi / p$-periodic. The components of $X_{+}(t)$ in V_{0}^{+}are $2 \pi / p$-periodic and those in V_{0}^{-}are $2 \pi / p$-antiperiodic. The behavior of the components of $X_{-}(t)$ differ by a factor $(-1)^{q_{0}}$.

Proof. For the coordinate X_{j}, we know that $2 q_{0}\left(\left\langle N^{j}, \psi_{0}\right\rangle+\left\langle K_{j} / M, L_{0}\right\rangle\right)=$ a_{j}, where a_{j} is an integer, even if X_{j} is in V_{0}^{+}and odd if X_{j} is in V_{0}^{-}. Since $\left(2 \varphi_{0}, 2 \psi_{0}, 2 L_{0}\right)$ fixes X_{n}^{j}, one has that $2 n / q+a_{j} / q_{0}=b$ is an integer. From $n=b q / 2-a_{j} p / 2$, one has that, if q is odd, then b has the parity of a_{j}, while if q is even and a_{j} is odd, then p has to be even. Even b will give $X_{+}(t)$ and odd b give $X_{-}(t)$. There are minimum $n_{j}^{ \pm}$such that the modes of $X_{ \pm}^{j}$ are of the form $n^{ \pm}=n_{j}^{ \pm}+c q$, for any integer c. The numbers $n_{j}^{ \pm}$are multiples of p, except if p is even and, for X_{+}^{j}, a_{j} is odd or, for X_{-}^{j}, a_{j} and q_{0} have opposite parities, in which case $n_{j}^{ \pm}$are odd multiples of $p / 2$. The converse is clear.

It remains to identify the irreducible representations of H in V_{0}^{\perp}. Since the action of H on X_{n}^{j} is

$$
\exp \pi i\left(n s / q+s\left(\left\langle N^{j}, \psi_{0}\right\rangle+\left\langle K_{j} / M, L_{0}\right\rangle\right)+\left\langle N^{j}, \widetilde{\psi}\right\rangle+\left\langle K_{j} / M, \widetilde{L}\right\rangle+\left\langle N^{j}, \psi\right\rangle\right)
$$

where $s=0, \ldots, q,(\widetilde{\psi}, \widetilde{L})$ gives an element of H_{0} and $\left\langle N^{j}, \psi\right\rangle=\sum_{k}^{n} N_{l}^{j} \psi_{l}$ is non-trivial, then one has the same action for different (n, j) if the following happens: taking $s=0$ and $(\widetilde{\psi}, \widetilde{L})=0$, then N_{l}^{j} has to be the same for all j, for $l=k, \ldots, n$. Taking $s=0$ and $\psi=0$, one needs the same action for all $(\widetilde{\psi}, \widetilde{L})$. Hence, the different X^{j} are in the same irreducible representation of H_{0} in V_{0}^{\perp}. If $\alpha_{j}=\left\langle N^{j}, \psi_{0}\right\rangle+\left\langle K_{j} / M, L_{0}\right\rangle$ gives the action of γ_{0}, then, since $\gamma_{0}^{q_{0}}$ is in H_{0}, one needs that $q_{0}\left(\alpha_{j}-\alpha_{l}\right)$ is an integer $a_{j l}$. Then, for $X_{j}^{n_{j}}$ and $X_{l}^{n_{l}}$, one has that $\left(n_{j}-n_{l}\right) / q+a_{j l} / q_{0}$ is an integer b_{j}. One has proved the following result.

Lemma 6.3. Assume X_{0}, \ldots, X_{r} are the coordinates of an irreducible representation of H_{0} in V_{0}^{\perp}. Then, for each $n_{0}=0, \ldots,[q / 2]$, there is a different irreducible representation of H in $(V \underline{H})^{\perp}$ given by functions of the form $X(t)=\operatorname{Re}\left(X_{n_{0}}(t) Y(t)\right)$, where $Y(t)$ is $2 \pi / q$-periodic and the j-component of $X_{n_{0}}(t), j=0, \ldots, r$, is $\exp \left(i n_{j}^{0} t\right)$, and n_{j}^{0} is the minimum positive integer n_{j} such that $n_{j}=n_{0}-a_{j_{0}} p+b_{j} q=n_{j}^{0}+c_{j} q$ for any integer c_{j}.

Note that the facts that all integers c_{j} are possible and that $X(t)$ has to be real will couple the modes corresponding to n_{0} and to $q-n_{0}$, as real representations. Note also that for $q=1$, then $n_{j}^{0}=0$ and $V^{K}=\left\{Y(t), 2 \pi\right.$-periodic in $\left.V_{0}^{\perp}\right\}$.

Let $B(t)=D \nabla H\left(X_{0}(t)\right)$, which is symmetric, $2 \pi / p$-periodic and H_{0}-equivariant. Hence, since $\gamma_{0}^{q_{0}}$ and γ_{1} are in H_{0}, one has a diagonal structure for $B(t)=$ $\operatorname{diag}\left(B_{0}, B_{+}^{j}, B_{-}^{j}, \ldots, B_{K_{0}}, \ldots\right)$, where B_{0} corresponds to $V_{0}^{H_{0}}, B_{ \pm}^{j}$ correspond
to $\left(V_{0}^{K_{j}}\right)^{ \pm} \cap\left(V_{0}^{H_{0}}\right)^{\perp}$ with $H_{0} / K_{j} \cong \mathbb{Z}_{2}$ and $\gamma_{0}^{q_{0}}$ acts as $\pm \operatorname{Id}$ on $\left(V_{0}^{K_{j}}\right)^{ \pm}$, and $B_{K_{0}}$ is on an irreducible representation of H_{0} in V_{0}^{\perp}.

Lemma 6.4. The fact that $X_{0}(t)$ is in V^{H} implies a further decomposition of each of the components of $B(t)$ as $B_{1}(t)+B_{2}(t)$, where $B_{1}(t)$ is $2 \pi / q$-periodic and in block-diagonal form on coordinates with the same action of γ_{0} and $B_{2}(t)$, which is non-zero only if q_{0} is even, is $4 \pi / q$-periodic, $e^{-q t / 2} B_{2}(t)$ is $2 \pi / q$-periodic and $B_{2}(t)$ has a block-diagonal form $\left(\begin{array}{cc}0 & A \\ A & 0\end{array}\right)$ on $\binom{X}{Y}$ where γ_{0} has the same action on X and the opposite on Y.

Proof. Since $X_{0}(t)=\gamma_{0} X_{0}(t+2 \pi / q)$ and $D f(\gamma X) \gamma=\gamma D f(X)$, one has $\gamma_{0} B(t+2 \pi / q)=B(t) \gamma_{0}$. Hence, for $B(t)=\sum B_{n} e^{i n t}$ and if γ_{0} acts on the j th coordinate as $\exp \left(2 \pi i \alpha_{j}\right)$, then $\exp 2 \pi i\left(\alpha_{j}-\alpha_{l}+n / q\right) B_{n}^{j l}=B_{n}^{j l}$, for the entries of B_{n}. Hence, whenever $B_{n}^{j l} \neq 0$, one has that $\alpha_{j}-\alpha_{l}+n / q$ is an integer. In particular, if, for some $l, B_{n}^{l l} \neq 0$, then n is a multiple of q and for all (j, k) with $B_{n}^{j k} \neq 0$ one has $\alpha_{j}-\alpha_{k}$ is an integer. Thus, B_{n} will contribute to $B_{1}(t)$. On the other hand, if $B_{n}^{l l}=0$, for all l and $B_{n}^{j l} \neq 0$, then, since B_{n} is symmetric, $B_{n}^{l j} \neq 0$ and $2 n / q$ is an integer. If $2 n$ is an even multiple of q, we are back to the previous situation, while if $2 n$ is an odd multiple of q (hence q is even), then $2\left(\alpha_{j}-\alpha_{l}\right)$ is an odd integer, giving opposite actions of γ_{0} on X_{j} and X_{l}, if $B_{n}^{j l} \neq 0$. Thus, B_{n} contributes to $B_{2}(t)$. Finally, since $X_{0}(t)$ is $2 \pi / p$-periodic, one has $\gamma_{0}^{q_{0}} B(t+2 \pi / p)=\gamma_{0}^{q_{0}} B(t)=B(t) \gamma_{0}^{q_{0}}$. Thus, $q_{0}\left(\alpha_{j}-\alpha_{l}\right)$ is an integer, which implies, for $B_{2}(t)$, that q_{0} is even.

Now, recall that $L X=J X^{\prime}+B(t) X$ is a bounded Fredholm operator of index 0 , from $H^{1}\left(S^{1}\right)$ into $L^{2}\left(S^{1}\right)$ and self-adjoint on $L^{2}\left(S^{1}\right)$, with kernel generated by $\left\{X_{0}^{\prime}, A_{1} X_{0}, \ldots, A_{k-1} X_{0}\right\}$. Hence, one has the decompositions $H^{1}\left(S^{1}\right)=\operatorname{ker} L \oplus$ Range $L \cap H^{1}, L^{2}\left(S^{1}\right)=\operatorname{ker} L \oplus$ Range L (orthogonal in L^{2}) and one has a bounded pseudo-inverse K from Range L onto Range $L \cap H^{1}$.

Furthermore, the reduction to finite dimensions, on $V_{N_{1}}$ generated by all modes less or equal to N_{1}, was done by using the implicit function theorem on the higher modes to solve the equation $J \widetilde{X}_{N_{1}}^{\prime}+\left(I-P_{N_{1}}\right) \nabla H\left(X_{N_{1}}+\widetilde{X}_{N_{1}}\right)=0$ for $\widetilde{X}_{N_{1}}$ in $V_{N_{1}}^{\perp}$ and reduce to $J X_{N_{1}}^{\prime}+P_{N_{1}} \nabla H\left(X_{N_{1}}+\widetilde{X}_{N_{1}}\left(X_{N_{1}}\right)\right)=0$, which is the problem which we have studied. It is then not difficult to prove that the linearization of this last equation is of the form

$$
L_{N_{1}} X_{N_{1}}=J X_{N_{1}}^{\prime}+P_{N_{1}} B(t)\left(X_{N_{1}}+\widetilde{X}_{N_{1}}\right)
$$

where $\widetilde{X}_{N_{1}}$ in $V_{N_{1}}^{\perp}$ is the unique solution of the equation

$$
J \widetilde{X}_{N_{1}}^{\prime}+\left(I-P_{N_{1}}\right) B\left(X_{N_{1}}+\widetilde{X}_{N_{1}}\right)=0
$$

Then, $\left\|\widetilde{X}_{N_{1}}\right\|_{1} \leq C\left\|X_{N}\right\|_{0}$ and $\left\|\widetilde{X}_{N_{1}}\right\|_{0} \leq\left\|\widetilde{X}_{N_{1}}\right\|_{1} / N_{1}$. Furthermore, $\operatorname{ker} L_{N_{1}}=$ $P_{N_{1}}(\operatorname{ker} L)$ and has also dimension k, if N_{1} is large enough, and $L_{N_{1}}$ is selfadjoint. In fact, one may use the gradient structure of the linearization of the reduction, or see directly that

$$
\begin{aligned}
\left(L_{N_{1}} X_{N_{1}}, Z_{N_{1}}\right)_{L^{2}}-\left(X_{N_{1}}, L_{N_{1}} Z_{N_{1}}\right)_{L^{2}} & =\left(B \widetilde{X}_{N_{1}}, Z_{N_{1}}\right)-\left(X_{N_{1}}, B \widetilde{Z}_{N_{1}}\right) \\
& =\left(X, B Z_{N_{1}}\right)-\left(X_{N_{1}}, B Z\right)
\end{aligned}
$$

using the symmetry of B. But, since $J \widetilde{X}_{N_{1}}^{\prime}=-\left(I-P_{N_{1}}\right) B X$, then

$$
\left(J \widetilde{X}_{N_{1}}^{\prime}, \widetilde{Z}_{N_{1}}\right)=-\left(B X, \widetilde{Z}_{N_{1}}\right)=\left(\widetilde{X}_{N_{1}}, J \widetilde{Z}_{N_{1}}^{\prime}\right)=-\left(B Z, \widetilde{X}_{N_{1}}\right)
$$

hence the above difference is $(Z, B X)-(X, B Z)=0$. The constant C depends only on $\sup |B(t)|$. Furthermore, if $L_{N_{1}} X_{N_{1}}=Z_{N_{1}}$, then $L\left(X_{N_{1}}+\widetilde{X}_{N_{1}}\right)=$ $Z_{N_{1}}+0$, i.e. Range $L_{N_{1}}=$ Range $L \cap V_{N_{1}}$ and since $L K Z=Z$, for $Z=Z_{N_{1}}$ in $V_{N_{1}}$, one has that $K_{N_{1}}$, from Range $L_{N_{1}}$ onto Range $L_{N_{1}} \cap H^{1}$, the pseudoinverse of $L_{N_{1}}$ is $P_{N_{1}} K P_{N_{1}}$, in particular, as operator from L^{2} into H^{1}, one has $\left\|K_{N_{1}}\right\| \leq\|K\|$.

Finally, if P is the projection onto ker L and $I-P$ that on Range L, one has that $P_{N_{1}} P P_{N_{1}}$ will project on $\operatorname{ker} L_{N_{1}}$ while $P_{N_{1}}(I-P) P_{N_{1}}$ will project onto Range $L_{N_{1}}$ and one has $L_{N_{1}} P=P L_{N_{1}}=0$.

Recall that $\sigma(L)$, the spectrum of L, is discrete, since $L-\lambda I$ is also a Fredholm operator of index 0 (the inclusion of H^{1} in L^{2} is compact) and self-adjoint in L^{2} and K, as an operator from L^{2} into L^{2}, is compact. Furthermore, if λ is not in $\sigma(L)$, then, since $(L-\lambda)\left(X_{N_{1}}+\widetilde{X}_{N_{1}}\right)=\left(L_{N}-\lambda\right) X_{N_{1}}-\lambda \widetilde{X}_{N_{1}}$ and $\|(L-\lambda) X\|_{0} \geq\left\|K_{\lambda}\right\|^{-1}\|X\|_{1}$, with K_{λ} the inverse of $L-\lambda$, one has
$\left\|\left(L_{\lambda}-\lambda\right) X_{N_{1}}\right\|_{0} \geq\left\|K_{\lambda}\right\|^{-1}\left\|X_{N_{1}}\right\|_{0}-|\lambda|\left\|\widetilde{X}_{N_{1}}\right\|_{0} \geq\left(\left\|K_{\lambda}\right\|^{-1}-C|\lambda| / N_{1}\right)\left\|X_{N_{1}}\right\|_{0}$.
Hence, for N_{1} large enough, λ is not in $\sigma\left(L_{N_{1}}\right)$. Thus, if \mathcal{K} is a compact subset of \mathbb{R}, with $\mathcal{K} \cap \sigma(L)=\phi$, then for N_{1} large enough (depending on \mathcal{K}), one has that $\mathcal{K} \sigma\left(L_{N_{1}}\right)=\phi$.

Conversely, if $\lambda_{0} \in \sigma(L)$, then treating $\left(L_{N_{1}}-\lambda\right) X_{N_{1}}=\left(L-\lambda_{0}\right)\left(X_{N_{1}}+\widetilde{X}_{N_{1}}\right)+$ $\left(\lambda_{0}-\lambda\right) X_{N_{1}}+\lambda_{0} \widetilde{X}_{N_{1}}$ as a bifurcation problem by projecting on $\operatorname{ker}\left(L-\lambda_{0}\right)$ and Range ($L-\lambda_{0}$), one obtains

$$
\begin{aligned}
\left(L_{N_{1}}-\lambda\right) X_{N_{1}}= & (L-\lambda)\left((I - P _ { 0 }) \left(X_{N_{1}}+\widetilde{X}_{N_{1}}+K_{\lambda_{0}}\left[\left(\lambda_{0}-\lambda\right)\left(I-P_{0}\right) X_{N_{1}}\right.\right.\right. \\
& \left.+\lambda_{0}\left(I-P_{0}\right) \widetilde{X}_{N_{1}}\right] \oplus\left(\lambda_{0}-\lambda\right) P_{0} X_{N_{1}}+\lambda_{0} P_{0} \widetilde{X}_{N_{1}}
\end{aligned}
$$

where P_{0} projects on $\operatorname{ker}\left(L-\lambda_{0}\right)$ and $I-P_{0}$ on $\operatorname{Range}\left(L-\lambda_{0}\right)$. Then, see [10], $\operatorname{ker}\left(K-\lambda_{0}\right)$ will give d eigenvalues for $L_{N_{1}}$, close to λ_{0}, with $d=\operatorname{dim} \operatorname{ker}(L-$ $\left.\lambda_{0}\right) \leq 2 N$.

Note also that $\left\|L_{N_{1}} X_{N_{1}}-P_{N_{1}} L X_{N_{1}}\right\|_{0}=\left\|P_{N_{1}} B \widetilde{X}_{N_{1}}\right\|_{0} \leq C\left\|X_{N_{1}}\right\|_{0} / N_{1}$, hence the spectra of the matrices $L_{N_{1}}$ and $P_{N_{1}} L P_{N_{1}}$ are close, for N_{1} large.

Theorem 6.2. The orthogonal index of $P_{N_{1}} X_{0}$ is given by, for N_{1} large enough,
(1) $d_{H}=(-1)^{n_{H}}$, where n_{H} is the real Morse number of $L_{N_{1}}$ restricted to V^{H}, where $\gamma_{0}^{q_{0}}=\operatorname{Id}$ and $X(t)=\gamma_{0} X(t+2 \pi / q)$. In particular, d_{H} is independent of N_{1}, for N_{1} large enough.
(2) $d_{H_{j}}=d_{H}\left((-1)^{n_{H_{j}}}-1\right) / 2$, where $n_{H_{j}}$ is the real Morse number of $L_{N_{1}}$ restricted to $V^{H_{j}} \cap\left(V^{H}\right)^{\perp}$, where $\gamma_{0}^{2 q_{0}}=I d$ and $X(t)$ has the decomposition given in Lemma 6.2. In particular, $d_{H_{j}}$ is independent of N_{1}, for N_{1} large enough.
(3) $n_{K}^{N_{1}}$ the complex Morse number of $L_{N_{1}}$ restricted to one of the q different irreducible representations of H in $\left(V^{\underline{H}}\right)^{\perp}$, based on V_{1} an irreducible representation of H_{0} in V_{0}^{\perp} and with functions given in Lemma 6.3, of the form $X(t)=\operatorname{Re}\left(X_{n_{0}}(t) Y(t)\right)$, with $Y(t)$ of period $2 \pi / q$. One has that $n_{K}^{N_{1}+q}=n_{K}^{N_{1}}+\operatorname{dim} V_{1},\left(\operatorname{dim} V_{1}\right.$ is even $)$.
(4) The relations of Theorem 4.

Proof. From Theorem 4, the only thing to study is how the spectrum of $L_{N_{2}}$ is related to that of $L_{N_{1}}$, where N_{2} is the next integer after N_{1} where one has to consider new modes. From the composition of the spaces one may take $N_{2}=N_{1}+q$, with $X_{N_{2}}=X_{N_{1}} \oplus Y_{N_{1}}$, where $Y_{N_{1}}$ has two conjugate modes based on an even dimensional (because of J) space V_{1}. Then,

$$
\begin{aligned}
L_{N_{2}} X_{N_{2}}= & L_{N_{1}} X_{N_{1}}+P_{N_{1}} B\left(\widetilde{X}_{N_{2}}-\widetilde{X}_{N_{1}}+Y_{N_{1}}\right) \\
& \oplus J Y_{N_{1}}^{\prime}+\left(P_{N_{2}}-P_{N_{1}}\right) B\left(X_{N_{1}}+Y_{N_{1}}+\widetilde{X}_{N_{2}}\right)
\end{aligned}
$$

But, since $\widetilde{X}_{N_{1}}=\widetilde{X}_{N_{2}} \oplus \widetilde{Y}_{N_{1}}$, with $J \widetilde{Y}_{N_{1}}^{\prime}+\left(P_{N_{2}}-P_{N_{1}}\right) B\left(X_{N_{1}}+\widetilde{X}_{N_{1}}\right)=0$, one has

$$
\begin{aligned}
L_{N_{2}} X_{N_{2}}= & L_{N_{1}} X_{N_{1}}+P_{N_{1}} B\left(Y_{N_{1}}-\widetilde{Y}_{N_{1}}\right) \oplus J\left(Y_{N_{1}}^{\prime}-\widetilde{Y}_{N_{1}}^{\prime}\right) \\
& +\left(P_{N_{2}}-P_{N_{1}}\right) B\left(Y_{N_{1}}-\widetilde{Y}_{N_{1}}\right) .
\end{aligned}
$$

Now, since $L_{N_{2}}$ and $L_{N_{1}} X_{N_{1}} \oplus J Y_{N_{1}}^{\prime}$ are self-adjoint, this is also the case for the linear deformation

$$
\begin{aligned}
L_{N_{2}}^{\tau} X_{N_{2}}= & L_{N_{1}}\left[(I-P) X_{N_{1}}+\tau K_{N_{1}}(I-P) P_{N_{1}} B\left(Y_{N_{1}}-\widetilde{Y}_{N_{1}}\right)\right] \\
& \oplus \tau P P_{N_{1}} B\left(Y_{N_{1}}-\widetilde{Y}_{N_{1}}\right) \oplus J Y_{N_{1}}^{\prime}-\tau J \widetilde{Y}_{N_{1}}^{\prime} \\
& +\tau\left(P_{N_{2}}-P_{N_{1}}\right) B\left(Y_{N_{1}}-\widetilde{Y}_{N_{1}}\right),
\end{aligned}
$$

where we have used the decomposition of the space on $\operatorname{ker} L_{N_{2}} \oplus \operatorname{Range} L_{N_{2}}$ induced by that for L. Then, if $L_{N_{2}}^{\tau} X_{N_{2}}=0$, one may solve uniquely the first and last terms in function of $P X_{N_{1}}$, with $\left\|Y_{N_{1}}\right\|_{0} \leq C\left\|X_{N_{1}}\right\|_{0} / N_{1}, \|(I-$ $P) X_{N_{1}}\left\|_{1} \leq C\right\| P X_{N_{1}} \|_{0} / N_{1}$ and hence $\left\|Y_{N_{1}}\right\|_{0} \leq C\left\|P X_{N_{1}}\right\|_{0} / N_{1}$, where the constant C is independent of N_{1}. In particular if $X_{N_{1}}+Y_{N_{1}}$ is in Range $L_{N_{2}}=$

Range $L \cap V_{N_{2}}$, then $P X_{N_{1}}+P Y_{N_{1}}=0$ and one has that $Y_{N_{1}}=0=X_{N_{1}}$, i.e. Range $L_{N_{2}} \cap \operatorname{ker} L_{N_{2}}^{\tau}=\{0\}$. Hence, the non-zero eigenvalues of $L_{N_{2}}$ don't cross over 0 . (One could also prove this fact by taking λ_{0} a mid-point between 0 and the first negative eigenvalue of L. Then as seen above, $L_{N_{1}}-\lambda_{0}$ and $L_{N_{2}}-\lambda_{0}$ are invertible, for N_{1} large enough, with inverses bounded independently of N_{1}. then, it is not difficult to show that $L_{N_{2}}^{\tau}-\lambda_{0} I$ is also invertible, for N_{1} large). Thus, $n\left(L_{N_{2}}\right)=n\left(L_{N_{1}}\right)+n\left(J Y_{N_{1}}^{\prime}\right)$.

Now, if $J Y_{N_{1}}^{\prime}=\lambda Y_{N_{1}}$, then, since $Y_{N_{1}}=\left(X_{M}, X_{-M}=\bar{X}_{M}\right)$, one has $i M J X_{M}=\lambda X_{M}$, with $X_{M}=(X, Y)$ in $\mathbb{C}^{2 r}$, where $2 r=\operatorname{dim} V_{i}, V_{i}=V_{0}^{H_{0}}$, or $V_{0}^{K_{0}}$, or V_{1}. Then, $\lambda= \pm M$, each with an eigenspace isomorphic to \mathbb{C}^{r}, hence taking into account X_{-M} or writing $Y_{N_{1}}=\cos M t X+\sin M t Y$, with X and Y in $\mathbb{R}^{2 r}$, one obtains that $n\left(J Y_{N_{1}}^{\prime}\right)=2 r$.

Remark 6.3. For the case of $-X^{\prime \prime}+\nabla H(X)$, the linearization $L X=-X^{\prime \prime}+$ $B(t) X$ is an elliptic operator and hence has a spectrum bounded from below. The numbers $n(H), n\left(H_{j}\right), n(K)$ are those for $L X$.

Remark 6.4. If $J \widetilde{B}=\widetilde{B} J$ for some block in B, then let $\Phi(t)$ be the fundamental matrix for $X^{\prime}=J \widetilde{B} X$, with $\Phi(0)=I$. If $J X^{\prime}+\widetilde{B} X=\lambda X$, then $X(t)=$ $e^{-\lambda J t} \Phi(t) X(0)$ and $X(2 \pi)=X(0)$ if and only if $X(0)$ is in $\operatorname{ker}\left(I-e^{-\lambda 2 \pi J} \Phi(2 \pi)\right)$. Note that, since $\Phi^{\prime}=J \widetilde{B} \Phi=\widetilde{B} J \Phi$, then $J \Phi$ and ΦJ are also fundamental matrices and, being equal for $t=0$, one has that J and Φ commute. Since $\Phi^{T} J \Phi=J$ (by differentiating the left hand side), one has that Φ is an orthogonal matrix and hence with spectrum on the unit disc. Furthermore $e^{\lambda J t}$ preserves the generalized eigenspaces of $\Phi(t)$. Thus, if $\Phi(2 \pi) W=\mu W$, one has $\left(I-e^{-\lambda 2 \pi J} \Phi(2 \pi)\right) W=0$ if and only if $e^{\lambda 2 \pi J} W=\mu W=(\cos \lambda 2 \pi I+\sin \lambda 2 \pi J) W$, that is $\mu=e^{ \pm i \lambda 2 \pi}$.

Note also that if $J X^{\prime}+B X=\lambda X$ then $Y(t)=e^{-J t} X(t)$ satisfies $J Y^{\prime}+B Y=$ $(\lambda+1) Y$ and is 2π-periodic if $X(t)$ is 2π-periodic. Similarly, if $X(t)$ belongs to V^{H} or $V^{H_{j}}$ or V^{K}, then $Y(t)=e^{-q J t} X(t)$ belongs to the same space. From these last observations (with the fact that if X is in $\operatorname{ker}(\widetilde{L}-\lambda I)$ also $J X$ is in the same kernel), one has that $d_{H_{j}}=0$ for these subspaces and that $n(K)$ is even and the spectrum of \widetilde{L} is completely determined by its restriction to $(-q, 0]$. Note finally, that one may relate the spectrum of $\Phi(2 \pi / q)$ to that of $\Phi(2 \pi)$ as in [14, p. 390] or as in [5].

References

[1] H. Amann and E. Zehnder, Periodic solutions of asymptotically linear hamiltonian systems, Manuscripta Math. 32 (1980), 149-189.
[2] T. Bartsch, The Conley index over a space, Math. Z. 209 (1992), 167-177.
[3] E. N. Dancer, A new degree for S^{1}-invariant gradient mappings and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 329-370.
[4] G. Dylawerski, K. Gęba, J. Jodel and W. Marzantowicz, An S^{1}-equivariant degree and the Fuller index, Ann. Polon. Math. LII (1991), 243-280.
[5] I. Ekeland, Convexity methods in hamiltonian mechanics, Engebnisse der Mathematik und ihrer Grenzgebeite, vol. 19, Springer Verlag, 1990.
[6] P. M. Fitzpatrick, J. Pejsachowicz and L. Recht, Spectral flow and bifurcation of critical points of strongly indefinite functionals, Part II: Bifurcation of periodic orbits of Hamiltonian systems., Preprint (1998).
[7] K. GęBA, Degree for gradient equivariant maps and equivariant Conley index., Topological Nonlinear Analysis II, Progress in Nonlinear Differential Equations and their Applications (Birkhauser, M. Matzeu and A. Vignoli, eds.), vol. 27, 1997, pp. 247-272.
[8] K. Gęba, W. Krawcewicz and J. Wu, An equivariant degree with applications to symmetric bifurcation problems. Part I: Construction of the degree, Proc. London Math. Soc. 69 (1994), 377-398.
[9] D. Husemoller, Fibre Bundles, Springer Verlag, 1975.
[10] J. Ize, Topological bifurcation, Topological Nonlinear Analysis (M. Matzeu and A. Vignoli, eds.), Birkhauser, 1995, pp. 341-463.
[11] J. Ize, I. Massabó and A. Vignoli, Degree theory for equivariant maps I, Trans. Amer. Math. Soc. 315 (1989), 433-510.
[12] , Degree theory for equivariant maps, the general S^{1}-action, Mem. Amer. Math. Soc. 481 (1992).
[13] J. Ize and A. Vignoli, Equivariant degree for abelian actions. Part I: Equivariant homotopy groups, Topol. Methods Nonlinear Anal. 2 (1993), 367-413.
[14] , Equivariant degree for abelian actions. Part II: Index Computations, Topol. Methods Nonlinear Anal. 7 (1996), 369-430.
[15] W. Kryszewski and A. Szulkin, An infinite dimensional Morse theory with applications, Trans. Amer. Math. Soc. 349 (1997), 3181-3234.
[16] J. Milnor, Morse Theory (1963), Princeton Univ. Press.
[17] A. Parusiński, Gradient homotopies of gradient vector fields, Studia Math. 46 (1990), 73-80.
[18] S. Rybicki, S^{1}-degree for orthogonal maps and its applications to bifurcation theory, Nonlinear Anal. 23 (1994), 83-102.
\qquad , On periodic solutions of autonomous hamiltonian systems via degree for $S^{1}-e-$ quivariant gradient maps, Nonlinear Anal. 34 (1998), 537-569.
[20] G. W. Whitehead, Elements of homotopy theory, Grad. Texts in Math. 61 (1978).

Jorge Ize

Departamento de Matemáticas y Mecánica
IIMAS-UNAM
Apdo. Postal 20-726
México, D. F. MEXICO
E-mail address: jil@uxmym1.iimas.unam.mx
Alfonso Vignoli
Dipartimento di Matematica
Universitá di Roma Tor Vergata
Via della Ricerca Scientifica
00133 Roma, ITALY
E-mail address: vignoli@axp.mat.uniroma2.it
TMNA: Volume 13 - 1999 - $\mathrm{N}^{\mathrm{o}} 1$

[^0]: 1991 Mathematics Subject Classification. Primary 58B05; Secondary 34C25, 47H15, 54F45, 55Q91, 58E09.

 Key words and phrases. Equivariant degree, orthogonal maps, hamiltonian systems.
 The research of the first author was partially supported by a CONACYT-KBN Grant: "Topological Methods in Nonlinear Analysis"

