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ON THE PROBLEM OF REALIZATION
OF A GIVEN GAUSSIAN CURVATURE FUNCTION
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1. Introduction

The Gaussian curvature of a smooth surface embedded into the Euclidean
space is a smooth function on the surface. We investigate below the local re-
alization problem: given a germ of a smooth function of two variables, find a
surface whose Gaussian curvature is the given function.

It is well known that any function germ g(x, y) is realizable as the Gaussian
curvature of the surface z = f(x, y) if the curvature value at the central point
is not vanishing. It is also known that it is realizable (in the same sense), if the
curvature is vanishing at the central point, but its differential does not vanish.
In this case, the parabolic curve is smooth.

In the case of a singular parabolic curve, the problem is more difficult. We
shall see that any parabolic curve singularity occurs for a suitable surface.

Theorem 1. For any smooth function of two variables vanishing at its cri-
tical point of finite multiplicity, there exists a smooth surface in the Euclidean
3-space, whose Gaussian curvature coincides with the given function at a neigh-
bourhood of the given point (provided that the surface is identified with the plane
by a suitable local diffeomorphism, depending on the function).
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I recall that the multiplicity µ of a critical point 0 of function f is the di-
mension of the quotient vector-space of the space of formal power series in (x, y)
modulo the ideal generated by the partial derivatives of the function:

µ = dimRR[[x, y]]/{a(x, y)fx + b(x, y)fy}.

Finite multiplicity critical points of holomorphic functions are just complex iso-
lated critical points. The codimension of the set of the functions having a critical
point of infinite multiplicity is infinite. Thus typical finite-dimensional families
of functions contain no function having a critical point of infinite multiplicity.

Corollary 1. Any singularity of finite multiplity µ of a plane curve is
realizable as a singularity of the parabolic curve on a surface in the Euclidean
3-space (up to a diffeomorphism).

Remark 1. The Theorem and the Corollary hold for analytical functions
and diffeomorphisms as well as for the holomorphic ones or for the infinitely
smooth ones and even for the finitely smooth ones (the number of the derivatives
in the last case grows with µ).

Remark 2. I have no counterexamples to the statement of Theorem 1 for
infinite multiplicity germs.

In the formal series setting, one can prove more.

Theorem 2. For any formal power series g(x, y) = ax+by+ . . . there exists
a formal power series f(x, y) such that the formal power series of the Gaussian
curvature of the formal surface z = f(x, y) coincides with g.

In Theorem 2, the identification of the surface with the plane (x, y) is fixed
by the choice of the coordinates (x, y, z) in the 3-space.

Corollary 2. Any formal singularity of a plane curve g(x, y) = 0 is reali-
zable as the singularity of the parabolic curve of some formal surface z = f(x, y).

Remark 3. I have no counterexamples (even for µ = ∞) in the smooth case
(neither for Theorem 2 nor for its Corollary).

Theorem 1 follows from Theorem 2, as it is explained below (in Section 3).
The same arguments (in a simpler form) prove the following results.

Theorem 3. For any function g(x, y) vanishing at a critical point of finite
multiplicity, there exists a function f(x, y), whose Hessian

h = h[f ] = fxxfyy − (fxy)2,

coindices with g at a neighbourhood of the point up to a suitable smooth change
of variables g(x, y) = h(X(x, y), Y (x, y)).
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Remark 4. Corollary 1 follows already from Theorem 3 (which is a simpli-
fied version of Theorem 1) since the Hessian vanishes exactly along the parabolic
curve.

Theorem 4. For any formal series g(x, y) = ax + by + . . . , there exists
a formal series f whose Hessian is g = h[f ].

Remark 5. Corollary 2 follows already from Theorem 4 (which is a simpli-
fied version of Theorem 2).

Remark 6. The proofs of these results provide in fact more: one might
replace in Theorems 3 and 4 the Hessian h = h[f ] by any function (series) of the
form, say,

g[f ] = hM(x, y, fx, fy, f, h), M(0) 6= 0,

provided that f(0) = fx(0) = fy(0) = 0 (there exist many other possibilities).

This Remark implies Theorems 1 and 2, since the Gaussian curvature admits
such a representation (in this case M = M(fx, fy), see Section 4 below).

Remark 7. Theorems 1–4 have higher dimensional versions (describing the
Hessians of the functions of n variables and the Jacobians of the Gaussian map-
pings from the hypersurfaces in Rn+1 to the n-sphere).

Remark 8. Whether the statements of Theorems 3 and 4 hold for infinite
mutiplicity critical points and for smooth functions f and g respectively is not
known to me (see the Remarks 1 and 2 above).

The extension of the results of this paper to the (formally more general) case
of the Jacobians of the Lagrangian mappings in symplectic geometry is automatic
(since Lagrangian germs have gradient representatives).

2. Proof of Theorem 4

We shall look for the series

(∗) f = f2 + f3 + . . . (fi = terms of degree i),

starting from f2 = y2/2. This choice of f2 is the crucial point of the present
paper: the remaining part of the proof consists of standard Cauchy–Kowalewsky
type calculations.

The terms of the Hessian h[f ] = h1 + h2 + . . . are given by the obvious
formulae

h1 = f3,xx, h2 = f4,xx + (f3,xxf3,yy − f2
3,xy),

of the form

(∗∗) hk = fk+2,xx + Pk([fm]), 3 ≤ m < k + 2),
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where pk is a (quadratic) polynomial with respect to the second derivatives
(fm,xx, fm,xy, fm,yy) of homogeneous functions fm.

The system of equations for the functions fi that we get is triangular:

h1[f3] = g1, h2[f3, f4] = g2, . . . , hk[f3, . . . , fk+2] = gk, . . . .

It remains to solve the equation

(∗∗∗) fk+2,xx = gk − Pk([f3], . . . , [fk+1]),

(whose right hand side is known) with respect to fk+2 =
∑

ap,qx
pyq, p+q = k+2.

Denoting gk − Pk =
∑

bp,qx
pyq, p + q = k, we solve the equation (∗∗∗), taking

ap,q = bp−2,q/p(p− 1) if p ≥ 2,

a0,q = a1,q = 0. Theorem 4 is proved. �

Remark 9. The extension of Theorem 4, mentioned in Remark 6, is proved
by the same reasoning. Indeed, the multiplication of the Hessian by the multiplier
M = c + M1 + M2 + . . . , c 6= 0, preserves the triangular character of the system
h[f ]M [f, h] = g for f .

To study the n-dimensional hypersurfaces and functions of n variables (Re-
mark 7) one should start from f2 = ±y2

1/2± . . .± y2
n−1/2.

3. Proofs of Theorems 3 and 1

We deduce Theorem 3 from Theorem 4.
Let function g have at the origin the critical value 0 of finite multiplicity µ.

For any N the proof of Theorem 4 (in paragraph 2 above) provides a polynomial
f such that h[f ] = g + r, where the remainder r has at the origin a zero of order
at least N .

If N ≥ µ + 2, function g + r is reducible to g by a smooth (analytical,
holomorphic. . .) change of variables (see e.g., [1]). This proves Theorem 3.

Theorem 1 follows similarly from Theorem 2 and from the finite (µ + 2)
determinacy property of the finite multiplicity critical point (used in the proof
of Theorem 3 above).

4. Proof of Theorem 2

We start from an obvious remark.

Lemma. The Gaussian curvature g of the surface, defined in some Cartesian
orthonormal coordinates (x, y, z) in the Euclidean space as the graph of a function
z = f(x, y), is related to the Hessian h of the function f by the formula

g = h[f ]/E4[f ], where E2 = 1 + (fx)2 + (fy)2.
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Proof. Function E is the lenght of the normal vector n = (−fx,−fy, 1) of
the surface. The area element dS of the surface in inclined to the horizontal
direction at the same angle as the angle of deviation of the normal from the
vertical direction. Hence dS = Edx ∧ dy.

The Gaussian mapping G from the surface to the sphere is the product of the
gradient mapping F (sending (x, y) to (u = −fx, v = −fy) from the surface to
the horizontal plane {u, v, 1}, (tangent to the unite sphere at (0, 0, 1)) followed
by the central projection P from the horizontal plane to the sphere: G = P ◦F .

The area element of the sphere, dω, induces on the horizontal plane the form
P ∗dω = E−3du∧dv (the factor E−2 is the contribution of the fact that the point
of the plane is E-times farther from the origin than the point of the sphere, and
an additional factor E−1 is provided by the inclination of the horizontal plane
to the radial direction).

By definition of the Gaussian curvature we get

g =
G∗dω

dS
=

J∗(E−3 du ∧ dv)
E dx ∧ dy

= E−4h,

since the Hessian of f is the Jacobian of its gradient mapping F : F ∗ du ∧ dv =
h[f ] dx ∧ dy. The Lemma is thus proved. �

Proof of Theorem 2. To prove Theorem 2, we look for the series (∗) as
in Section 2. We get

E−4[f ] = 1 + e2[f2] + e3([f2], [f3]) + . . . ,

ek being the homogeneous part of degree k of the power series E−4 in (x, y).
The form ek is a weighted homogeneous polynomial in the first derivatives of

functions f2, . . . , fk (higher order terms, starting from fk+1, contribute noting
to ek):

e2[f2] = 2y2, e3([f2], [f3]) = −4yf3,y, . . . , ek = ek([f2], . . . , [fk]).

It follows that the system

h[f ]E−4[f ] = g,

of the equations for the unknown fk (which we should solve to prove Theorem 2,
conformally to the Lemma) is triangular.

Indeed, equating the homogeneous terms in the product

(h1 + h2 + . . . )(1 + e2 + . . . ) = g1 + g2 + . . . ,

we get for the unknowns fk the sequence of equations

h1 = g1, h2 = g2, h3 + h1e2 = g3, . . . , hk + Qk([h<k], [e<k]) = gk.
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Substituing the expression (∗∗) from the proof of Theorem 4 to hk, we get for
the unknown functions fk the system of equations of the form

fk+2,xx = −Rk([f<k+2]) + gk (k ≥ 1),

(with known Rk and gk). We solve these equations in the same way as equations
(∗∗∗) were solved in paragraph 2, finding successively f3, f4, . . . . Theorem 2 is
thus proved. �

As it was explained in paragraph 3, Theorem 1 follows.

5. Parabolic curves at a flattening point

We call the flattening points of the surface z = f(x, y) the points where the
second differential of f vanishes. In suitable (cartesian orthonormal) coordinates
the Taylor series of f at a flattening point takes the form

f = f3 + f4 + . . . (f0 = f1 = f2 = 0).

A typical example is the generalized monkey saddle D±
4 : f = 3x2y±y3. The

flattening points are critical points of the Gaussian curvature, where the critical
value vanishes.

Theorem 5. The second differential of the Gaussian curature at a flattening
point cannot be a nonzero nonnegative quadratic form (in particular, the flatten-
ing point cannot be a nondegenerate minimum point of the Gaussian curvature),
while all the other quadratic forms are realizable as the second differentials of the
Gaussian curvature at the flattening points.

Proof. Let f3 = ax3 +3bx2y +3cxy2 +dy3. The Hessian of this function is

h2 = 36(Ax2 + Bxy + Cy2),

where A = ac− b2, B = ad− bc, C = bd− c2.
We choose the (Cartesian orthonormal) coordinates reducing the quadratic

form h2 to the normal form (B = 0). In these coordinates ac = A + b2, bd =
C + c2, ad = bc. Hence we have

(A + b2)(C + c2) = b2c2, AC + Ac2 + Cb2 = 0.

If the form Ax2 + Cy2 is positive definite (A > 0, C > 0), the last equality is
impossible. The positive semidefinite case (A > 0, C = 0) is impossible too,
since then c = 0 and hence A + b2 = 0.

If one of the coefficients, say A, is negative, the required realization is pro-
vided by

b = ±
√
−A, a = c = 0, d = C/b.

Theorem 5 is thus proved. �
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Remark 10. Our formulae imply that the degenerate forms h2 are realized
only by degenerate forms f3 = ax3 +3bx2y, and that the zero-form h2 is realized
only by the bidegenerate forms f3 = ax3.

Theorem 6. The parabolic curve singularity at a flattening point of a surface
cannot be diffeomorphic to the E6 singularity (to the singularity of the curve
x3 + y4 at the origin).

Proof. The equation of the parabolic curve of the surface z = f(x, y) is
h[f ](x, y) = 0. Choosing a coordinate system for which f = f3 + f4 + . . . , we
should have h2 = 0 to realize the E6 singularity of h. From Remark 10 above,
we get (in suitable coordinates) f3 = ax3. We can normalize a to be 1/6 (a 6= 0,
since for E6 h3 ∼ x3 6= 0).

Now compute h3. Since we should get the E6 singularity for h[f ], it has the
form h3 = (px + qy)3. But for f2 = 0, f3 = x3/6 we get h3 = xf4,yy. Hence
q = 0, h3 = Px3, P 6= 0. Now we get f4,yy = Px2, f4 = x2e2(x, y),

h4 = xf5,yy + f4,xxf4,yy − (f4,xy)2.

Since f4 is divisible by x2, f4,yy and f4,xy are divisible by x, and thus h4 is
divisible by x.

Hence the sum of the terms of degrees 3 and 4 of the Taylor series of h[f ] is
equal to

H(x, y) = h3 + h4 = Px3 + xR3(x, y).

We shall prove now that such a function cannot have an E6 singularity (whose
4th degree Taylor polynomial should be equal X3+Y 4 for some local coordinates
(X, Y ), defined by (x = αX + βY + . . . , y = γX + δY = . . . )).

We denote the expression of H in new coordinates by

K(X, Y ) = H(x(X, Y ), y(X, Y )).

Equating the terms of degree 3 to X3, we get

P (αX + βy)3 = X3.

Thus β = 0, x = αX + (higher order terms). It follows that all the terms of
degree 4 in the series K are divisible by X. Indeed, the terms of degree 4, coming
from Px3, have the form

T4 = (3Px2(x− αX))4 = 3P (x2)2(x− αX)2.

The quadratic part of the expansion of x2 in the power series with argument
X, Y is equal to α2X2 since β = 0. Hence the polynomial T4 is divisible by X2.

The fourth degree terms coming from xR3 do contain X for the same reason
(x = αX + higher order terms). Hence the 4th degree Taylor polynomial of K

is divisible by X. Thus it cannot be equal to X3 + Y 4. Theorem 6 is proved. �
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Remark 11. I do not know which curve singularities are realizable as the
parabolic curve singularity at a flattening point. This question (together with
similar questions on the singularities of the Hessian of the Gaussian curvature
and of the Jacobian of a Lagrangian mapping) might be interesting also for
higher flattenings.
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