Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 11, 1998, 159–168

ON THE SOLVABILITY OF A TWO POINT BOUNDARY VALUE PROBLEM AT RESONANCE II

Chung-Wei Ha — Chung-Cheng Kuo

1. Introduction

Let $k \ge 1$ be a fixed integer. We consider the boundary value problem

(1_k)
$$u'' + k^2 u + g(x, u) = h(x)$$
 in $(0, \pi)$, $u(0) = u(\pi) = 0$,

where $g: (0,\pi) \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function, that is, g(x, u) is measurable in $x \in (0,\pi)$ for each $u \in \mathbb{R}$ and continuous in $u \in \mathbb{R}$ for a.e. $x \in (0,\pi)$, $h \in L^1(0,\pi)$ is given. We assume throughout this paper that

(H1) For each r > 0, there exists $a_r \in L^1(0, \pi)$ such that

 $|g(x,u)| \le a_r(x)$ for a.e. $x \in (0,\pi)$ and $|u| \le r$.

(H2) There exists $\Gamma \in L^1(0,\pi)$ such that

$$\|\Gamma\|_{L^1} \le 2k$$

and

(2)

(3)
$$\limsup_{|u| \to \infty} |g(x, u)/u| \le \Gamma(x)$$

uniformly for a.e. $x \in (0, \pi)$.

1991 Mathematics Subject Classification. 34B15, 47H11. Key words and phrases. Landesman–Lazer condition, L^1 bound, nonlinear alternative.

O1998Juliusz Schauder Center for Nonlinear Studies

159

The solvability of the problem (1_k) has been studied for Γ in $L^{\infty}(0, \pi)$ (see [2], [7] and the references therein). Existence theorems for a solution to (1_k) when k = 1 under a growth condition in terms of the L^1 bound of Γ are proved in [6]. In this paper we continue the study of [6] by treating the problem for the general case $k \geq 2$ and improving the L^1 bound for Γ when k = 1. Our main result is Theorem 1 in Section 3, which is obtained under a Landesman– Lazer condition (see (7) below) originated in [8]. In Section 4 we improve the solvability conditions when k = 1 by assuming $\|\Gamma\|_{L^1} \leq 4$. The proof of Theorem 1, which becomes more involved when $k \geq 2$, is based on some inequalities of the Lyapunov type obtained in [5] and the Leray–Schauder's fixed point theorem formulated by Granas as a nonlinear alternative in [2].

As in [6] we shall make use of the real Banach spaces $L^p(0,\pi)$, $C[0,\pi]$ and $C^1[0,\pi]$, and the Sobolev spaces $H_0^1(0,\pi)$ and $W^{2,1}(0,\pi)$, with the norms distinguished by appropriate subscripts. We recall the compact imbedding of $H_0^1(0,\pi)$ into $C[0,\pi]$. By a solution of (1_k) , we mean a function $u \in H_0^1(0,\pi)$ solving the differential equation in (1_k) in the sense of distribution. It follows from the standard regularity arguments that $u \in W^{2,1}(0,\pi)$ and satisfies the differential equation in (1_k) a.e. on $(0,\pi)$.

2. Preliminaries

In this section we give some auxiliary results which provide important steps in the proofs below. We first state in the following Lemma 1 two inequalities of the Lyapunov type which extend [6, Lemma 1]. We refer to [5] for their proofs.

LEMMA 1. Let $p \in L^1(0,\pi)$ such that either $p \ge 0$ or $p \le 0$ a.e. on $(0,\pi)$, and let the problem

$$v'' + k^2 v + p(x)v = 0$$
 in $(0, \pi)$,
 $v(0) = v(\pi) = 0$,

have a nontrivial solution $v \in W^{2,1}(0,\pi)$.

- (a) If $||p||_{L^1} \leq 2k$, then p = 0 a.e. on $(0, \pi)$, so that $v = \alpha \sin kx$ for some $\alpha \in \mathbb{R} \setminus \{0\}$.
- (b) If k = 1 and $||p||_{L^1} \le 4$, then v has no zero in $(0, \pi)$.

Before giving the next lemma, we introduce the following notation. For $v \in W^{2,1}(0,\pi) \cap H^1_0(0,\pi)$, we expand v into the sine series

$$v = \sum_{n=1}^{\infty} b_n \sin nx$$

and denote

$$v = v^{-} + v^{0} + v^{+}, \quad v^{\perp} = v - v^{0},$$

where $v^-,v^0,v^+\in W^{2,1}(0,\pi)\cap H^1_0(0,\pi)$ are defined by $v^-=0$ if k=1 and

(4)
$$v^{-} = \sum_{n=1}^{k-1} b_n \sin nx \quad \text{if } k \ge 2,$$
$$v^{0} = b_k \sin kx.$$

LEMMA 2. Let $h \in L^1(0,\pi)$. Then there exist ε , $\delta > 0$ such that

$$\delta \| (v^{\perp})' \|_{L^2}^2 \le \| v' \|_{L^2} \| h \|_{L^1}$$

for any $v \in W^{2,1}(0,\pi) \cap H^1_0(0,\pi)$ such that

$$v'' + k^2 v + p(x)v = h(x)$$
 in $(0, \pi)$,
 $v(0) = v(\pi) = 0$,

where $p \in L^1(0,\pi)$ is a function satisfying $||p||_{L^1} < \varepsilon$ and either $p \ge 0$ or $p \le 0$ a.e. on $(0,\pi)$.

PROOF. We follow an idea first introduced in [9] and developed, among others, in [2] and [7]. By the pairwise orthogonality of v^- , v_0 and v^+ in $H_0^1(0,\pi)$, it is easy to verify that

(5)
$$\int_0^{\pi} h(x)(v^- + v^0 - v^+) \, dx = \int_0^{\pi} [k^2(v^-)^2 - (v^-)'^2] \, dx + \int_0^{\pi} p(x)(v^- + v^0)^2 \, dx + \int_0^{\pi} [(u^+)'^2 - k^2(u^+)^2 - p(x)(u^+)^2] \, dx.$$

The second integral on the right-hand side of (5) is nonnegative. Moreover, using the sine series of the functions given in (4), we see that there exist δ_1 , $\delta_2 > 0$ which depend only on k such that

$$\int_0^{\pi} [k^2 (v^-)^2 - (v^-)'^2] \, dx \ge \delta_1 \| (v^-)' \|_{L^2}^2,$$

and

$$\int_0^{\pi} \left[(u^+)'^2 - k^2 (u^+)^2 \right] dx \ge \delta_2 \| (v^+)' \|_{L^2}^2.$$

Since

$$\left| \int_0^{\pi} p(x)(v^+)^2 \, dx \right| \le \|p\|_{L^1} \|v^+\|_C^2 \le \pi \|p\|_{L^1} \|(v^+)'\|_{L^2}^2,$$

and

$$||v^{-} + v^{0} - v^{+}||_{C} \le \sqrt{\pi} ||v'||_{L^{2}},$$

the result follows.

3. Solvability theorems for $k \ge 2$

We assume throughout this section that $k \ge 2$. Our main result is the following

THEOREM 1. Let $g: (0,\pi) \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory function satisfying the conditions (H1), (H2). If there exist r > 0 and $a, b \in L^1(0,\pi)$ such that

(6)
$$g(x,u) \ge b(x) \quad \text{if } u \ge r, \\ g(x,u) \le a(x) \quad \text{if } u \le -r$$

for a.e. $x \in (0,\pi)$, then the problem (1_k) is solvable for any $h \in L^1(0,\pi)$ satisfying

(7)
$$\int_0^\pi h(x)v(x)\,dx < \int_{v>0} g_+(x)v(x)\,dx + \int_{v<0} g_-(x)v(x)\,dx,$$

for $v(x) = \pm \sin kx$, where $g_+(x) = \liminf_{n \to \infty} g(x, u)$, $g_-(x) = \limsup_{n \to -\infty} g(x, u)$ for $x \in (0, \pi)$.

PROOF. The proof follows the scheme introduced in [9] and [10], and widely used since. Let $0 < \gamma \leq 1$ be fixed. We consider the boundary value problems

(8_k)
$$u'' + k^2 u + (1 - t)\gamma u + tg(x, u) = t h(x) \quad \text{in } (0, \pi),$$
$$u(0) = u(\pi) = 0,$$

for $0 < t \le 1$, which becomes the original problem (1_k) when t = 1.

We suppose for the moment that there exists R > 0 such that $||u||_C < R$ for all possible solutions u to the problem (8_k) for some 0 < t < 1 and use this to finish proving the theorem. For any $h \in L^1(0, \pi)$, the linear problem

$$w'' + k^2 w + \gamma w = h(x), \quad w(0) = w(\pi) = 0,$$

has a unique solution $w \in W^{1,2}(0,\pi) \cap H^1_0(0,\pi)$, because by the choice of γ the corresponding homogeneous problem has only the trivial solution. We define $F : L^1(0,\pi) \to C[0,\pi]$, Fh = w, which is a compact linear operator by the compact imbedding of $H^1_0(0,\pi)$ into $C[0,\pi]$. We define $G : C[0,\pi] \to L^1(0,\pi)$ by

$$(Gu)(x) = h(x) + \gamma u - g(x, u(x)),$$

which by (H1) is continuous and maps bounded sets into bounded sets. Let $T = F \circ G : C[0, \pi] \to C[0, \pi]$. Then T is a compact map and the problem (8_k) is equivalent to the operator equation

$$u = tTu,$$

for $0 < t \le 1$ which by assumption has no solution on the boundary of the ball $B_R(0) = \{u \in C[0,\pi] : ||u||_C \le R\}$ for 0 < t < 1. It follows from the nonlinear

alternative of Granas (see [3, Chapter 2, Theorem 5.1] that the operator equation u = Tu, or equivalently the original problem (1_k) has a solution in $B_R(0)$.

It remains to show that solutions to (8_k) for 0 < t < 1 have an *a priori* bound in $C[0, \pi]$. To this end, we first choose r > 0 such that

$$g(x, u)/u \le \Gamma(x) + 1,$$

as well as the two inequalities in (6) hold for $|u| \ge r$. Let $\theta : \mathbb{R} \to \mathbb{R}$ be a continuous function such that $0 \le \theta \le 1$ on \mathbb{R} and $\theta(u) = 0$ for $|u| \le r$, $\theta(u) = 1$ for $|u| \ge 2r$. We define

$$g_1(x,u) = \begin{cases} \min\{g(x,u) + |b(x)|, (\Gamma(x) + 1)u\}\theta(u) & \text{if } u \ge 0, \\ \max\{g(x,u) - |a(x)|, (\Gamma(x) + 1)u\}\theta(u) & \text{if } u \le 0, \end{cases}$$

and $g_2(x, u) = g(x, u) - g_1(x, u)$. Then $g_1, g_2 : (0, \pi) \times \mathbb{R} \to \mathbb{R}$ are Carathéodory functions. Moreover, g_1 satisfies (H1) and

(9)
$$0 \le g_1(x, u)/u \le \Gamma(x) + 1,$$

for a.e. $x \in (0,\pi)$ and $u \in \mathbb{R}$, where we define $g_1(x,u)/u = 0$ if u = 0; g_2 is dominated by a function in $L^1(0,\pi)$, that is, there exits $c \in L^1(0,\pi)$ such that $|g(x,u)| \leq c(x)$ for a.e. $x \in (0,\pi)$ and $u \in \mathbb{R}$. Thus we also have

(10)
$$\limsup_{|u| \to \infty} g_1(x, u)/u = \limsup_{|u| \to \infty} g(x, u)/u \le \Gamma(x),$$

for a.e. $x \in (0, \pi)$ and $u \in \mathbb{R}$.

Now we argue by contradiction and suppose that there exists a sequence $\{u_n\}$ in $W^{2,1}(0,\pi) \cap H_0^1(0,\pi)$ and a corresponding sequence $\{t_n\}$ in (0,1) such that u_n is a solution to (8_k) when $t = t_n$, and $||u_n||_C \ge n$ for $n \ge 1$. Let $v_n = u_n/||u_n||_C$. Then $||v_n||_C = 1$ and

(11)
$$\begin{aligned} v_n'' + k^2 v_n + p_n(x) v_n &= h_n(x) \quad \text{in } (0, \pi), \\ v_n(0) &= v_n(\pi) = 0, \end{aligned}$$

where

(12)
$$p_n(x) = (1 - t_n)\gamma + t_n g_1(x, u_n(x))/u_n(x),$$

$$h_n(x) = t_n[h(x) - g_2(x, u_n(x))] / ||u_n||_C.$$

Clearly $\lim_{n\to\infty} h_n = 0$ in $L^1(0,\pi)$. By (9) we have

(13)
$$0 \le p_n(x) \le \Gamma(x) + 1,$$

for a.e. $x \in (0,\pi)$ and $n \ge 1$. It follows from the Dunford–Pettis theorem that the sequence $\{p_n\}$ has a subsequence which converges weakly to a function p in $L^1(0,\pi)$. Moreover, by the Mazur theorem $0 \le p(x) \le \Gamma(x)+1$ for a.e. $x \in (0,\pi)$. From (11) we see that v''_n is dominated by a function in $L^1(0,\pi)$ independent of n. Since each v'_n vanishes somewhere in $(0,\pi)$, the sequence $\{v'_n\}$ is equicontinuous and uniformly bounded on $[0, \pi]$. Hence the sequence $\{v_n\}$ is also equicontinuous and uniformly bounded on $[0, \pi]$. It follows from the Arzela–Ascoli theorem that $\{v_n\}$ has a subsequence which converges in $C^1[0, \pi]$. We assume without any loss of generality that $\{p_n\}$ converges weakly to p in $L^1(0, \pi)$, $t_n \to t_0$ and there exists $v \in C^1[0, \pi]$ such that $\{v_n\}$ converges to v in $C^1[0, \pi]$ and so does also in $H^1_0(0, \pi)$. Letting $n \to \infty$ in (11), we have

(14_k)
$$v'' + k^2 v + p(x)v = 0, \quad v(0) = v(\pi) = 0,$$

where by (10), (13) and the Lebesgue theorem

(15)
$$\|p\|_{L^1} = \lim_{n \to \infty} \|p_n\|_{L^1} \le 2k.$$

Since v is a nontrivial solution to (14_k) , it follows from Lemma 1 (a) that p = 0 a.e. on $(0, \pi)$, so that either $v = \sin kx$ or $v = -\sin kx$. Consequently $t_0 = 1$.

We consider the sequence $\{v_n^0\}$ as defined in (4) which is contained in the onedimensional vector subspace generated by $\sin kx$. Obviously $\{v_n^0\}$ also converges to v in $C^1[0, \pi]$. Taking the inner product in $L^2(0, \pi)$ of (8_k) when $u = u_n$ and $t = t_n$ with v_n^0 , we have

$$t_n \left[\int_0^\pi h(x) v_n^0 \, dx - \int_0^\pi g(x, u_n) v_n^0 \, dx \right] = (1 - t_n) \gamma \int_0^\pi u_n v_n^0 \, dx$$
$$= (1 - t_n) \gamma \|u_n\|_C \int_0^\pi (v_n^0)^2 \, dx \ge 0,$$

and so

(16)
$$\int_0^{\pi} h(x) v_n^0 dx \ge \int_0^{\pi} g(x, u_n) v_n^0 dx$$
$$= \int_{v>0} g(x, u_n) v_n^0 dx + \int_{v<0} g(x, u_n) v_n^0 dx.$$

Using the inequality

(17)
$$|w(x)/\sin x| \le (\pi/2) ||w'||_C$$
 for $x \in [0,\pi]$,

valid for all $w \in C^1[0,\pi]$ with $w(0) = w(\pi) = 0$, we see that for $x \in (0,\pi)$, if v(x) > 0, then $v_n(x) > 0$ for n large enough, so that $u_n(x) \to \infty$; if v(x) < 0, then $v_n(x) < 0$ for n large enough, so that $u_n(x) \to -\infty$. We suppose for the moment that there exists a function $f \in L^1(0,\pi)$ such that for n large enough,

(18)
$$g(x, u_n)v_n^0 \ge f(x) \quad \text{for a.e. } x \in (0, \pi).$$

By taking the limits inferior on both sides of (16) and applying the Fatou Lemma, we would have

$$\int_{0}^{\pi} h(x)v \, dx \ge \liminf_{n \to \infty} \int_{v > 0} g(x, u_n) v_n^0 \, dx + \liminf_{n \to \infty} \int_{v < 0} g(x, u_n) v_n^0 \, dx$$
$$\ge \int_{v > 0} g_+(x)v \, dx + \int_{v < 0} g_-(x)v \, dx,$$

which contradicts the Landesman–Lazer condition (7).

It suffices to prove (18). Since $\lim_{n\to\infty} ||p_n||_{L^1} = ||p||_{L^1} = 0$, by Lemma 2 there exists $\delta > 0$ such that for *n* large enough

$$\delta \| (v_n^{\perp})' \|_{L^1}^2 \le \| v_n' \|_{L^2} \| h_n \|_{L^1}.$$

As noted before, $\{v'_n\}$ is uniformly bounded on $[0, \pi]$ and so it follows from the definition of h_n that there exists $\beta > 0$ such that

$$||u_n||_C |v_n^{\perp}(x)|^2 \le 2\beta,$$

and so

$$u_n(x)v_n^0(x) \ge -\|u_n\|_C |v_n(x) - v_n^0(x)|^2/2 = -\|u_n\|_C |v_n^{\perp}(x)|^2/2 \ge -\beta$$

for $x \in [0, \pi]$. Hence

$$g(x, u_n(x))v_n^0(x) = (g_1(x, u_n(x))/u_n(x))u_n(x)v_n^0(x) + g_2(x, u_n(x))v_n^0(x)$$

$$\geq -\beta(\Gamma(x) + 1) - c(x),$$

for a.e. $x \in (0, \pi)$. Thus it suffices to choose $f(x) = -\beta(\Gamma(x) + 1) - c(x)$. This completes the proof of the theorem.

We see in the proof of Theorem 1 above that only the parts of Lemmas 1 and 2 in which $p \in L^1(0,\pi)$ satisfies $p \ge 0$ a.e. on $(0,\pi)$ are used. By applying the other parts of Lemmas 1 and 2 we obtain similarly the following

THEOREM 2. Let $g: (0,\pi) \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory function satisfying the conditions (H1), (H2). If there exist r > 0 and $a, b \in L^1(0,\pi)$ such that

$$g(x, u) \le b(x)$$
 if $u \ge r$,
 $g(x, u) \ge a(x)$ if $u \le -r$

for a.e. $x \in (0,\pi)$, then the problem (1_k) is solvable for any $h \in L^1(0,\pi)$ satisfying

$$\int_0^{\pi} h(x)v(x) \, dx > \int_{v>0} g_+(x)v(x) \, dx + \int_{v<0} g_-(x)v(x) \, dx,$$

for $v(x) = \pm \sin kx$, where $g_+(x) = \limsup_{n \to \infty} g(x, u)$, $g_-(x) = \liminf_{n \to -\infty} g(x, u)$ for $x \in (0, \pi)$.

Clearly the Landesman–Lazer conditions are essential for Theorems 1 and 2 to hold. It would be interesting to obtain solvability conditions for (1_k) if the equality holds in place of one of the inequalities. We refer to [4] for a solvability result without assuming a Landesman–Lazer condition when g is bounded.

4. Solvability conditions for k = 1

When k = 1 the solvability conditions for the problem (1_k) obtained in Section 3 can be significantly improved. The following Theorem 3, which is obtained under assumptions with or without a Landesman–Lazer condition, extends the main results of [6].

THEOREM 3. Let $g: (0, \pi) \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory function satisfying the conditions (H1), (H2) except (2) which is replaced by

(19)
$$\|\Gamma\|_{L^1} \le 4.$$

(a) If there exist r > 0 and $a, b \in L^1(0, \pi)$ such that (6) holds for a.e. $x \in (0, \pi)$, then the problem (1_1) is solvable for any $h \in L^1(0, \pi)$ satisfying

(20)
$$\int_0^{\pi} g_-(x) \sin x \, dx < \int_0^{\pi} h(x) \sin x \, dx < \int_0^{\pi} g_+(x) \sin x \, dx,$$

where g_+ and g_- are defined as in Theorem 1; (b) If

(21)

$$g(x,u)u \ge 0 \quad \text{for } u \in \mathbb{R},$$

then the problem (1_1) is solvable for any $h \in L^1(0,\pi)$ satisfying $\int_0^{\pi} h(x) \sin x \, dx = 0$.

PROOF. The existence of a solution to (1_1) is proved by the theorem of Granas as in the proof of Theorem 1. It requires an *a priori* bound for the solutions of (8_1) for 0 < t < 1. This is obtained in exactly the same way as in the proof of Theorem 1 up to the step where we have a nontrivial solution $v \in W^{2,1}(0,\pi) \cap H_0^1(0,\pi)$ to the problem (14_1) . It follows from the weaker assumption (19) that $\|p\|_{L^1} \leq 4$ instead of (15). By Lemma 1(b) we know that v has no zero in $(0,\pi)$. Moreover, $0 < t_0 \leq 1$ since (14_1) with $p = \gamma$ a.e. on $(0,\pi)$ cannot have a nontrivial solution.

We assume that v > 0 on $(0, \pi)$; the case in which v < 0 on $(0, \pi)$ can be treated similarly. Using the inequality (17), we obtain that $u_n > 0$ on $(0, \pi)$ for n large enough, so that $u_n(x) \to \infty$ for $x \in (0, \pi)$. In the following we consider only n large enough. Taking the inner product in $L^2(0, \pi)$ of (8_1) when $u = u_n$ and $t = t_n$ with sin x, we have

(22)
$$t_n \left[\int_0^{\pi} h(x) \sin x \, dx - \int_0^{\pi} g(x, u_n(x)) \sin x \, dx \right]$$

= $(1 - t_n) \gamma \int_0^{\pi} u_n(x) \sin x \, dx > 0.$

If the assumption in (a) holds, then it follows from (H1) and the first inequality in (6) that $g(x, u_n(x))$ is bounded from below by a function in $L^1(0, \pi)$ independent of *n*. By (22) and the Fatou lemma we would have

$$\int_0^{\pi} h(x) \sin x \, dx \ge \int_0^{\pi} g_+(x) \sin x \, dx,$$

which contradicts the second inequality in (20). If the assumption in (b) holds, then by (22) again we would have

$$\int_0^\pi g(x, u_n(x)) \sin x \, dx < 0,$$

which contradicts (21). This completes the proof of the theorem.

It is clear from the proof of Theorem 3 that we can obtain new solvability conditions for (1_1) by making combinations out of conditions (20) and (21). For example, under the general hypothesis of Theorem 3 we have that

(c) If there exist r > 0, $b \in L^1(0, \pi)$ such that the first inequality in (6) holds for a.e. $x \in (0, \pi)$ and

$$g(x, u) \le 0 \quad \text{for } u \le 0,$$

then the problem (1_1) is solvable for any $h \in L^1(0,\pi)$ satisfying

$$0 \le \int_0^{\pi} h(x) \sin x \, dx < \int_0^{\pi} g_+(x) \sin x \, dx,$$

where g_+ is defined as in Theorem 1.

We refer to [1] for a result similar to Theorem 3(b) under slightly restricted conditions.

References

- E. N. DANCER AND C. P. GUPTA, A Liapunov-type result with application to a Dirichlettype two-point boundary value problem at resonance, Nonlinear Anal. 22 (1994), 305–318.
- P. DRÁBEK, Landesman-Lazer condition for nonlinear problems with jumping nonlinearities, J. Differential Equations 85 (1990), 186–199.
- [3] J. DUGUNDJI AND A. GRANAS, Fixed Point Theory, Vol. 1, Monografie Matematyczne t. 61, PWN, Warszawa, 1982.
- [4] C. W. HA, On the solvability of an operator equation without the Landesman-Lazer condition, J. Math. Anal. Appl. 178 (1993), 547–552.
- [5] C. W. HA, Eigenvalues of a Sturm-Liouville problem and inequalities of Lyapunov type, Proc. Amer. Math. Soc. (to appear).
- [6] C.-W. HA AND CH.-CH. KUO, On the solvability of a two point boundary value problem at resonance, Topol. Methods Nonlinear Anal. 1 (1993), 295–302.
- [7] R. IANNACCI AND M. N. NKASHAMA, Unbounded perturbations of forced second order ordinary differential equations at resonance, J. Differential Equations 69 (1987), 289– 309.
- [8] E. M. LANDESMAN AND A. C. LAZER, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609–623.

- [9] J. MAWHIN AND J. R. WARD, Nonresonance and existence for nonlinear elliptic boundary value problems, Nonlinear Anal. 6 (1981), 677–684.
- [10] J. MAWHIN AND J. R. WARD, Periodic solutions of some forced Liénard differential equations at resonance, Arch. Math. (Basel) 41 (1983), 337–351.

Manuscript received September 20, 1996

CHUNG-WEI HA Department of Mathematics National Tsing Hua University Hsin Chu, TAIWAN

E-mail address: cwha@math.nthu.edu.tw

CHUNG-CHENG KUO Department of Mathematics Fu Jen University Taipei, TAIWAN

 TMNA : Volume 11 – 1998 – Nº 1

168