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ON THE SOLVABILITY OF A TWO POINT
BOUNDARY VALUE PROBLEM AT RESONANCE II

Chung-Wei Ha — Chung-Cheng Kuo

1. Introduction

Let k ≥ 1 be a fixed integer. We consider the boundary value problem

(1k) u′′ + k2u + g(x, u) = h(x) in (0, π), u(0) = u(π) = 0,

where g : (0, π)×R → R is a Carathéodory function, that is, g(x, u) is measurable
in x ∈ (0, π) for each u ∈ R and continuous in u ∈ R for a.e. x ∈ (0, π),
h ∈ L1(0, π) is given. We assume throughout this paper that

(H1) For each r > 0, there exists ar ∈ L1(0, π) such that

|g(x, u)| ≤ ar(x) for a.e. x ∈ (0, π) and |u| ≤ r.

(H2) There exists Γ ∈ L1(0, π) such that

(2) ‖Γ‖L1 ≤ 2k

and

(3) lim sup
|u|→∞

|g(x, u)/u| ≤ Γ(x)

uniformly for a.e. x ∈ (0, π).
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The solvability of the problem (1k) has been studied for Γ in L∞(0, π) (see
[2], [7] and the references therein). Existence theorems for a solution to (1k)
when k = 1 under a growth condition in terms of the L1 bound of Γ are proved
in [6]. In this paper we continue the study of [6] by treating the problem for
the general case k ≥ 2 and improving the L1 bound for Γ when k = 1. Our
main result is Theorem 1 in Section 3, which is obtained under a Landesman–
Lazer condition (see (7) below) originated in [8]. In Section 4 we improve the
solvability conditions when k = 1 by assuming ‖Γ‖L1 ≤ 4. The proof of Theorem
1, which becomes more involved when k ≥ 2, is based on some inequalities of
the Lyapunov type obtained in [5] and the Leray–Schauder’s fixed point theorem
formulated by Granas as a nonlinear alternative in [2].

As in [6] we shall make use of the real Banach spaces Lp(0, π), C[0, π] and
C1[0, π], and the Sobolev spaces H1

0 (0, π) and W 2,1(0, π), with the norms distin-
guished by appropriate subscripts. We recall the compact imbedding of H1

0 (0, π)
into C[0, π]. By a solution of (1k), we mean a function u ∈ H1

0 (0, π) solving
the differential equation in (1k) in the sense of distribution. It follows from the
standard regularity arguments that u ∈ W 2,1(0, π) and satisfies the differential
equation in (1k) a.e. on (0, π).

2. Preliminaries

In this section we give some auxiliary results which provide important steps
in the proofs below. We first state in the following Lemma 1 two inequalities of
the Lyapunov type which extend [6, Lemma 1]. We refer to [5] for their proofs.

Lemma 1. Let p ∈ L1(0, π) such that either p ≥ 0 or p ≤ 0 a.e. on (0, π),
and let the problem

v′′ + k2v + p(x)v = 0 in (0, π),

v(0) = v(π) = 0,

have a nontrivial solution v ∈ W 2,1(0, π).

(a) If ‖p‖L1 ≤ 2k, then p = 0 a.e. on (0, π), so that v = α sin kx for some
α ∈ R \ {0}.

(b) If k = 1 and ‖p‖L1 ≤ 4, then v has no zero in (0, π).

Before giving the next lemma, we introduce the following notation. For
v ∈ W 2,1(0, π) ∩H1

0 (0, π), we expand v into the sine series

v =
∞∑

n=1

bn sinnx

and denote
v = v− + v0 + v+, v⊥ = v − v0,
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where v−, v0, v+ ∈ W 2,1(0, π) ∩H1
0 (0, π) are defined by v− = 0 if k = 1 and

(4)
v− =

k−1∑
n=1

bn sinnx if k ≥ 2,

v0 = bk sin kx.

Lemma 2. Let h ∈ L1(0, π). Then there exist ε, δ > 0 such that

δ‖(v⊥)′‖2L2 ≤ ‖v′‖L2‖h‖L1

for any v ∈ W 2,1(0, π) ∩H1
0 (0, π) such that

v′′ + k2v + p(x)v = h(x) in (0, π),

v(0) = v(π) = 0,

where p ∈ L1(0, π) is a function satisfying ‖p‖L1 < ε and either p ≥ 0 or p ≤ 0
a.e. on (0, π).

Proof. We follow an idea first introduced in [9] and developed, among o-
thers, in [2] and [7]. By the pairwise orthogonality of v−, v0 and v+ in H1

0 (0, π),
it is easy to verify that

(5)
∫ π

0

h(x)(v− + v0 − v+) dx =
∫ π

0

[k2(v−)2 − (v−)′2] dx

+
∫ π

0

p(x)(v− + v0)2 dx +
∫ π

0

[(u+)′2 − k2(u+)2 − p(x)(u+)2] dx.

The second integral on the right-hand side of (5) is nonnegative. Moreover, using
the sine series of the functions given in (4), we see that there exist δ1, δ2 > 0
which depend only on k such that∫ π

0

[k2(v−)2 − (v−)′2] dx ≥ δ1‖(v−)′‖2L2 ,

and ∫ π

0

[(u+)′2 − k2(u+)2] dx ≥ δ2‖(v+)′‖2L2 .

Since ∣∣∣∣∫ π

0

p(x)(v+)2 dx

∣∣∣∣ ≤ ‖p‖L1‖v+‖2C ≤ π‖p‖L1‖(v+)′‖2L2 ,

and

‖v− + v0 − v+‖C ≤
√

π‖v′‖L2 ,

the result follows.
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3. Solvability theorems for k ≥ 2

We assume throughout this section that k ≥ 2. Our main result is the
following

Theorem 1. Let g : (0, π) × R → R be a Carathéodory function satisfying
the conditions (H1), (H2). If there exist r > 0 and a, b ∈ L1(0, π) such that

(6)
g(x, u) ≥ b(x) if u ≥ r,

g(x, u) ≤ a(x) if u ≤ −r,

for a.e. x ∈ (0, π), then the problem (1k) is solvable for any h ∈ L1(0, π) satis-
fying

(7)
∫ π

0

h(x)v(x) dx <

∫
v>0

g+(x)v(x) dx +
∫

v<0

g−(x)v(x) dx,

for v(x) = ± sin kx, where g+(x) = lim inf
n→∞

g(x, u), g−(x) = lim sup
n→−∞

g(x, u) for

x ∈ (0, π).

Proof. The proof follows the scheme introduced in [9] and [10], and widely
used since. Let 0 < γ ≤ 1 be fixed. We consider the boundary value problems

(8k)
u′′ + k2u + (1− t)γu + tg(x, u) = t h(x) in (0, π),

u(0) = u(π) = 0,

for 0 < t ≤ 1, which becomes the original problem (1k) when t = 1.
We suppose for the moment that there exists R > 0 such that ‖u‖C < R for

all possible solutions u to the problem (8k) for some 0 < t < 1 and use this to
finish proving the theorem. For any h ∈ L1(0, π), the linear problem

w′′ + k2w + γw = h(x), w(0) = w(π) = 0,

has a unique solution w ∈ W 1,2(0, π) ∩H1
0 (0, π), because by the choice of γ the

corresponding homogeneous problem has only the trivial solution. We define
F : L1(0, π) → C[0, π], Fh = w, which is a compact linear operator by the
compact imbedding of H1

0 (0, π) into C[0, π]. We define G : C[0, π] → L1(0, π)
by

(Gu)(x) = h(x) + γu− g(x, u(x)),

which by (H1) is continuous and maps bounded sets into bounded sets. Let
T = F ◦G : C[0, π] → C[0, π]. Then T is a compact map and the problem (8k)
is equivalent to the operator equation

u = tTu,

for 0 < t ≤ 1 which by assumption has no solution on the boundary of the ball
BR(0) = {u ∈ C[0, π] : ‖u‖C ≤ R} for 0 < t < 1. It follows from the nonlinear
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alternative of Granas (see [3, Chapter 2, Theorem 5.1] that the operator equation
u = Tu, or equivalently the original problem (1k) has a solution in BR(0).

It remains to show that solutions to (8k) for 0 < t < 1 have an a priori
bound in C[0, π]. To this end, we first choose r > 0 such that

g(x, u)/u ≤ Γ(x) + 1,

as well as the two inequalities in (6) hold for |u| ≥ r. Let θ : R → R be a
continuous function such that 0 ≤ θ ≤ 1 on R and θ(u) = 0 for |u| ≤ r, θ(u) = 1
for |u| ≥ 2r. We define

g1(x, u) =

{
min{g(x, u) + |b(x)|, (Γ(x) + 1)u}θ(u) if u ≥ 0,

max{g(x, u)− |a(x)|, (Γ(x) + 1)u}θ(u) if u ≤ 0,

and g2(x, u) = g(x, u)− g1(x, u). Then g1, g2 : (0, π)×R → R are Carathéodory
functions. Moreover, g1 satisfies (H1) and

(9) 0 ≤ g1(x, u)/u ≤ Γ(x) + 1,

for a.e. x ∈ (0, π) and u ∈ R, where we define g1(x, u)/u = 0 if u = 0; g2 is
dominated by a function in L1(0, π), that is, there exits c ∈ L1(0, π) such that
|g(x, u)| ≤ c(x) for a.e. x ∈ (0, π) and u ∈ R. Thus we also have

(10) lim sup
|u|→∞

g1(x, u)/u = lim sup
|u|→∞

g(x, u)/u ≤ Γ(x),

for a.e. x ∈ (0, π) and u ∈ R.
Now we argue by contradiction and suppose that there exists a sequence {un}

in W 2,1(0, π)∩H1
0 (0, π) and a corresponding sequence {tn} in (0, 1) such that un

is a solution to (8k) when t = tn, and ‖un‖C ≥ n for n ≥ 1. Let vn = un/‖un‖C .
Then ‖vn‖C = 1 and

(11)
v′′n + k2vn + pn(x)vn = hn(x) in (0, π),

vn(0) = vn(π) = 0,

where

(12)
pn(x) = (1− tn)γ + tng1(x, un(x))/un(x),

hn(x) = tn[h(x)− g2(x, un(x))]/‖un‖C .

Clearly limn→∞ hn = 0 in L1(0, π). By (9) we have

(13) 0 ≤ pn(x) ≤ Γ(x) + 1,

for a.e. x ∈ (0, π) and n ≥ 1. It follows from the Dunford–Pettis theorem that
the sequence {pn} has a subsequence which converges weakly to a function p in
L1(0, π). Moreover, by the Mazur theorem 0 ≤ p(x) ≤ Γ(x)+1 for a.e. x ∈ (0, π).
From (11) we see that v′′n is dominated by a function in L1(0, π) independent of n.
Since each v′n vanishes somewhere in (0, π), the sequence {v′n} is equicontinuous
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and uniformly bounded on [0, π]. Hence the sequence {vn} is also equicontinuous
and uniformly bounded on [0, π]. It follows from the Arzela–Ascoli theorem that
{vn} has a subsequence which converges in C1[0, π]. We assume without any
loss of generality that {pn} converges weakly to p in L1(0, π), tn → t0 and there
exists v ∈ C1[0, π] such that {vn} converges to v in C1[0, π] and so does also in
H1

0 (0, π). Letting n →∞ in (11), we have

(14k) v′′ + k2v + p(x)v = 0, v(0) = v(π) = 0,

where by (10), (13) and the Lebesgue theorem

(15) ‖p‖L1 = lim
n→∞

‖pn‖L1 ≤ 2k.

Since v is a nontrivial solution to (14k), it follows from Lemma 1 (a) that p = 0
a.e. on (0, π), so that either v = sin kx or v = − sin kx. Consequently t0 = 1.

We consider the sequence {v0
n} as defined in (4) which is contained in the one-

dimensional vector subspace generated by sin kx. Obviously {v0
n} also converges

to v in C1[0, π]. Taking the inner product in L2(0, π) of (8k) when u = un and
t = tn with v0

n, we have

tn

[∫ π

0

h(x)v0
n dx−

∫ π

0

g(x, un)v0
n dx

]
= (1− tn)γ

∫ π

0

unv0
n dx

= (1− tn)γ‖un‖C

∫ π

0

(v0
n)2 dx ≥ 0,

and so ∫ π

0

h(x)v0
n dx ≥

∫ π

0

g(x, un)v0
n dx(16)

=
∫

v>0

g(x, un)v0
n dx +

∫
v<0

g(x, un)v0
n dx.

Using the inequality

(17) |w(x)/ sinx| ≤ (π/2)‖w′‖C for x ∈ [0, π],

valid for all w ∈ C1[0, π] with w(0) = w(π) = 0, we see that for x ∈ (0, π), if
v(x) > 0, then vn(x) > 0 for n large enough, so that un(x) → ∞; if v(x) < 0,
then vn(x) < 0 for n large enough, so that un(x) → −∞. We suppose for the
moment that there exists a function f ∈ L1(0, π) such that for n large enough,

(18) g(x, un)v0
n ≥ f(x) for a.e. x ∈ (0, π).
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By taking the limits inferior on both sides of (16) and applying the Fatou Lemma,
we would have∫ π

0

h(x)v dx ≥ lim inf
n→∞

∫
v>0

g(x, un)v0
n dx + lim inf

n→∞

∫
v<0

g(x, un)v0
n dx

≥
∫

v>0

g+(x)v dx +
∫

v<0

g−(x)v dx,

which contradicts the Landesman–Lazer condition (7).
It suffices to prove (18). Since limn→∞ ‖pn‖L1 = ‖p‖L1 = 0, by Lemma 2

there exists δ > 0 such that for n large enough

δ‖(v⊥n )′‖2L1 ≤ ‖v′n‖L2‖hn‖L1 .

As noted before, {v′n} is uniformly bounded on [0, π] and so it follows from the
definition of hn that there exists β > 0 such that

‖un‖C |v⊥n (x)|2 ≤ 2β,

and so

un(x)v0
n(x) ≥ −‖un‖C |vn(x)− v0

n(x)|2/2 = −‖un‖C |v⊥n (x)|2/2 ≥ −β

for x ∈ [0, π]. Hence

g(x, un(x))v0
n(x) = (g1(x, un(x))/un(x))un(x)v0

n(x) + g2(x, un(x))v0
n(x)

≥ −β(Γ(x) + 1)− c(x),

for a.e. x ∈ (0, π). Thus it suffices to choose f(x) = −β(Γ(x) + 1) − c(x). This
completes the proof of the theorem.

We see in the proof of Theorem 1 above that only the parts of Lemmas 1
and 2 in which p ∈ L1(0, π) satisfies p ≥ 0 a.e. on (0, π) are used. By applying
the other parts of Lemmas 1 and 2 we obtain similarly the following

Theorem 2. Let g : (0, π) × R → R be a Carathéodory function satisfying
the conditions (H1), (H2). If there exist r > 0 and a, b ∈ L1(0, π) such that

g(x, u) ≤ b(x) if u ≥ r,

g(x, u) ≥ a(x) if u ≤ −r,

for a.e. x ∈ (0, π), then the problem (1k) is solvable for any h ∈ L1(0, π) satis-
fying ∫ π

0

h(x)v(x) dx >

∫
v>0

g+(x)v(x) dx +
∫

v<0

g−(x)v(x) dx, ‘

for v(x) = ± sin kx, where g+(x) = lim sup
n→∞

g(x, u), g−(x) = lim inf
n→−∞

g(x, u) for

x ∈ (0, π).

Clearly the Landesman–Lazer conditions are essential for Theorems 1 and 2
to hold. It would be interesting to obtain solvability conditions for (1k) if the
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equality holds in place of one of the inequalities. We refer to [4] for a solvability
result without assuming a Landesman–Lazer condition when g is bounded.

4. Solvability conditions for k = 1

When k = 1 the solvability conditions for the problem (1k) obtained in Sec-
tion 3 can be significantly improved. The following Theorem 3, which is obtained
under assumptions with or without a Landesman–Lazer condition, extends the
main results of [6].

Theorem 3. Let g : (0, π) × R → R be a Carathéodory function satisfying
the conditions (H1), (H2) except (2) which is replaced by

(19) ‖Γ‖L1 ≤ 4.

(a) If there exist r > 0 and a, b ∈ L1(0, π) such that (6) holds for a.e. x ∈
(0, π), then the problem (11) is solvable for any h ∈ L1(0, π) satisfying

(20)
∫ π

0

g−(x) sinx dx <

∫ π

0

h(x) sinx dx <

∫ π

0

g+(x) sinx dx,

where g+ and g− are defined as in Theorem 1;
(b) If

(21) g(x, u)u ≥ 0 for u ∈ R,

then the problem (11) is solvable for any h ∈ L1(0, π) satisfying
∫ π

0
h(x)

sinx dx = 0.

Proof. The existence of a solution to (11) is proved by the theorem of
Granas as in the proof of Theorem 1. It requires an a priori bound for the
solutions of (81) for 0 < t < 1. This is obtained in exactly the same way as
in the proof of Theorem 1 up to the step where we have a nontrivial solution
v ∈ W 2,1(0, π) ∩ H1

0 (0, π) to the problem (141). It follows from the weaker
assumption (19) that ‖p‖L1 ≤ 4 instead of (15). By Lemma 1(b) we know that v

has no zero in (0, π). Moreover, 0 < t0 ≤ 1 since (141) with p = γ a.e. on (0, π)
cannot have a nontrivial solution.

We assume that v > 0 on (0, π); the case in which v < 0 on (0, π) can be
treated similarly. Using the inequality (17), we obtain that un > 0 on (0, π) for
n large enough, so that un(x) → ∞ for x ∈ (0, π). In the following we consider
only n large enough. Taking the inner product in L2(0, π) of (81) when u = un

and t = tn with sinx, we have

(22) tn

[ ∫ π

0

h(x) sinx dx−
∫ π

0

g(x, un(x)) sinx dx

]
= (1− tn)γ

∫ π

0

un(x) sinx dx > 0.
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If the assumption in (a) holds, then it follows from (H1) and the first inequality
in (6) that g(x, un(x)) is bounded from below by a function in L1(0, π) indepen-
dent of n. By (22) and the Fatou lemma we would have∫ π

0

h(x) sinx dx ≥
∫ π

0

g+(x) sinx dx,

which contradicts the second inequality in (20). If the assumption in (b) holds,
then by (22) again we would have∫ π

0

g(x, un(x)) sinx dx < 0,

which contradicts (21). This completes the proof of the theorem.
It is clear from the proof of Theorem 3 that we can obtain new solvability

conditions for (11) by making combinations out of conditions (20) and (21). For
example, under the general hypothesis of Theorem 3 we have that

(c) If there exist r > 0, b ∈ L1(0, π) such that the first inequality in (6) holds
for a.e. x ∈ (0, π) and

g(x, u) ≤ 0 for u ≤ 0,

then the problem (11) is solvable for any h ∈ L1(0, π) satisfying

0 ≤
∫ π

0

h(x) sinx dx <

∫ π

0

g+(x) sinx dx,

where g+ is defined as in Theorem 1.
We refer to [1] for a result similar to Theorem 3(b) under slightly restricted

conditions.
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