ON THE SOLVABILITY OF A TWO POINT BOUNDARY VALUE PROBLEM AT RESONANCE II

Chung-Wei Ha - Chung-Cheng Kuo

1. Introduction

Let $k \geq 1$ be a fixed integer. We consider the boundary value problem

$$
\begin{equation*}
u^{\prime \prime}+k^{2} u+g(x, u)=h(x) \quad \text { in }(0, \pi), \quad u(0)=u(\pi)=0, \tag{k}
\end{equation*}
$$

where $g:(0, \pi) \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function, that is, $g(x, u)$ is measurable in $x \in(0, \pi)$ for each $u \in \mathbb{R}$ and continuous in $u \in \mathbb{R}$ for a.e. $x \in(0, \pi)$, $h \in L^{1}(0, \pi)$ is given. We assume throughout this paper that
(H1) For each $r>0$, there exists $a_{r} \in L^{1}(0, \pi)$ such that

$$
|g(x, u)| \leq a_{r}(x) \quad \text { for a.e. } x \in(0, \pi) \text { and }|u| \leq r .
$$

(H2) There exists $\Gamma \in L^{1}(0, \pi)$ such that
(2)

$$
\|\Gamma\|_{L^{1}} \leq 2 k
$$

and
(3)

$$
\limsup _{|u| \rightarrow \infty}|g(x, u) / u| \leq \Gamma(x)
$$

uniformly for a.e. $x \in(0, \pi)$.

1991 Mathematics Subject Classification. 34B15, 47H11.
Key words and phrases. Landesman-Lazer condition, L^{1} bound, nonlinear alternative.

The solvability of the problem $\left(1_{k}\right)$ has been studied for Γ in $L^{\infty}(0, \pi)$ (see [2], [7] and the references therein). Existence theorems for a solution to (1_{k}) when $k=1$ under a growth condition in terms of the L^{1} bound of Γ are proved in [6]. In this paper we continue the study of [6] by treating the problem for the general case $k \geq 2$ and improving the L^{1} bound for Γ when $k=1$. Our main result is Theorem 1 in Section 3, which is obtained under a LandesmanLazer condition (see (7) below) originated in [8]. In Section 4 we improve the solvability conditions when $k=1$ by assuming $\|\Gamma\|_{L^{1}} \leq 4$. The proof of Theorem 1 , which becomes more involved when $k \geq 2$, is based on some inequalities of the Lyapunov type obtained in [5] and the Leray-Schauder's fixed point theorem formulated by Granas as a nonlinear alternative in [2].

As in [6] we shall make use of the real Banach spaces $L^{p}(0, \pi), C[0, \pi]$ and $C^{1}[0, \pi]$, and the Sobolev spaces $H_{0}^{1}(0, \pi)$ and $W^{2,1}(0, \pi)$, with the norms distinguished by appropriate subscripts. We recall the compact imbedding of $H_{0}^{1}(0, \pi)$ into $C[0, \pi]$. By a solution of $\left(1_{k}\right)$, we mean a function $u \in H_{0}^{1}(0, \pi)$ solving the differential equation in $\left(1_{k}\right)$ in the sense of distribution. It follows from the standard regularity arguments that $u \in W^{2,1}(0, \pi)$ and satisfies the differential equation in $\left(1_{k}\right)$ a.e. on $(0, \pi)$.

2. Preliminaries

In this section we give some auxiliary results which provide important steps in the proofs below. We first state in the following Lemma 1 two inequalities of the Lyapunov type which extend [6, Lemma 1]. We refer to [5] for their proofs.

Lemma 1. Let $p \in L^{1}(0, \pi)$ such that either $p \geq 0$ or $p \leq 0$ a.e. on $(0, \pi)$, and let the problem

$$
\begin{aligned}
& v^{\prime \prime}+k^{2} v+p(x) v=0 \quad \text { in }(0, \pi) \\
& v(0)=v(\pi)=0
\end{aligned}
$$

have a nontrivial solution $v \in W^{2,1}(0, \pi)$.
(a) If $\|p\|_{L^{1}} \leq 2 k$, then $p=0$ a.e. on $(0, \pi)$, so that $v=\alpha \sin k x$ for some $\alpha \in \mathbb{R} \backslash\{0\}$.
(b) If $k=1$ and $\|p\|_{L^{1}} \leq 4$, then v has no zero in $(0, \pi)$.

Before giving the next lemma, we introduce the following notation. For $v \in W^{2,1}(0, \pi) \cap H_{0}^{1}(0, \pi)$, we expand v into the sine series

$$
v=\sum_{n=1}^{\infty} b_{n} \sin n x
$$

and denote

$$
v=v^{-}+v^{0}+v^{+}, \quad v^{\perp}=v-v^{0}
$$

where $v^{-}, v^{0}, v^{+} \in W^{2,1}(0, \pi) \cap H_{0}^{1}(0, \pi)$ are defined by $v^{-}=0$ if $k=1$ and

$$
\begin{align*}
v^{-} & =\sum_{n=1}^{k-1} b_{n} \sin n x \quad \text { if } k \geq 2, \tag{4}\\
v^{0} & =b_{k} \sin k x
\end{align*}
$$

Lemma 2. Let $h \in L^{1}(0, \pi)$. Then there exist $\varepsilon, \delta>0$ such that

$$
\delta\left\|\left(v^{\perp}\right)^{\prime}\right\|_{L^{2}}^{2} \leq\left\|v^{\prime}\right\|_{L^{2}}\|h\|_{L^{1}}
$$

for any $v \in W^{2,1}(0, \pi) \cap H_{0}^{1}(0, \pi)$ such that

$$
\begin{aligned}
& v^{\prime \prime}+k^{2} v+p(x) v=h(x) \quad \text { in }(0, \pi), \\
& v(0)=v(\pi)=0,
\end{aligned}
$$

where $p \in L^{1}(0, \pi)$ is a function satisfying $\|p\|_{L^{1}}<\varepsilon$ and either $p \geq 0$ or $p \leq 0$ a.e. on $(0, \pi)$.

Proof. We follow an idea first introduced in [9] and developed, among others, in [2] and [7]. By the pairwise orthogonality of v^{-}, v_{0} and v^{+}in $H_{0}^{1}(0, \pi)$, it is easy to verify that
(5) $\quad \int_{0}^{\pi} h(x)\left(v^{-}+v^{0}-v^{+}\right) d x=\int_{0}^{\pi}\left[k^{2}\left(v^{-}\right)^{2}-\left(v^{-}\right)^{\prime 2}\right] d x$

$$
+\int_{0}^{\pi} p(x)\left(v^{-}+v^{0}\right)^{2} d x+\int_{0}^{\pi}\left[\left(u^{+}\right)^{\prime 2}-k^{2}\left(u^{+}\right)^{2}-p(x)\left(u^{+}\right)^{2}\right] d x
$$

The second integral on the right-hand side of (5) is nonnegative. Moreover, using the sine series of the functions given in (4), we see that there exist $\delta_{1}, \delta_{2}>0$ which depend only on k such that

$$
\int_{0}^{\pi}\left[k^{2}\left(v^{-}\right)^{2}-\left(v^{-}\right)^{\prime 2}\right] d x \geq \delta_{1}\left\|\left(v^{-}\right)^{\prime}\right\|_{L^{2}}^{2}
$$

and

$$
\int_{0}^{\pi}\left[\left(u^{+}\right)^{\prime 2}-k^{2}\left(u^{+}\right)^{2}\right] d x \geq \delta_{2}\left\|\left(v^{+}\right)^{\prime}\right\|_{L^{2}}^{2} .
$$

Since

$$
\left|\int_{0}^{\pi} p(x)\left(v^{+}\right)^{2} d x\right| \leq\|p\|_{L^{1}}\left\|v^{+}\right\|_{C}^{2} \leq \pi\|p\|_{L^{1}}\left\|\left(v^{+}\right)^{\prime}\right\|_{L^{2}}^{2}
$$

and

$$
\left\|v^{-}+v^{0}-v^{+}\right\|_{C} \leq \sqrt{\pi}\left\|v^{\prime}\right\|_{L^{2}}
$$

the result follows.

3. Solvability theorems for $k \geq 2$

We assume throughout this section that $k \geq 2$. Our main result is the following

Theorem 1. Let $g:(0, \pi) \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function satisfying the conditions (H1), (H2). If there exist $r>0$ and $a, b \in L^{1}(0, \pi)$ such that

$$
\begin{array}{ll}
g(x, u) \geq b(x) & \text { if } u \geq r \\
g(x, u) \leq a(x) & \text { if } u \leq-r \tag{6}
\end{array}
$$

for a.e. $x \in(0, \pi)$, then the problem $\left(1_{k}\right)$ is solvable for any $h \in L^{1}(0, \pi)$ satisfying

$$
\begin{equation*}
\int_{0}^{\pi} h(x) v(x) d x<\int_{v>0} g_{+}(x) v(x) d x+\int_{v<0} g_{-}(x) v(x) d x \tag{7}
\end{equation*}
$$

for $v(x)= \pm \sin k x$, where $g_{+}(x)=\liminf _{n \rightarrow \infty} g(x, u), g_{-}(x)=\limsup _{n \rightarrow-\infty} g(x, u)$ for $x \in(0, \pi)$.

Proof. The proof follows the scheme introduced in [9] and [10], and widely used since. Let $0<\gamma \leq 1$ be fixed. We consider the boundary value problems

$$
\begin{align*}
& u^{\prime \prime}+k^{2} u+(1-t) \gamma u+t g(x, u)=t h(x) \quad \text { in }(0, \pi) \tag{k}\\
& u(0)=u(\pi)=0
\end{align*}
$$

for $0<t \leq 1$, which becomes the original problem $\left(1_{k}\right)$ when $t=1$.
We suppose for the moment that there exists $R>0$ such that $\|u\|_{C}<R$ for all possible solutions u to the problem $\left(8_{k}\right)$ for some $0<t<1$ and use this to finish proving the theorem. For any $h \in L^{1}(0, \pi)$, the linear problem

$$
w^{\prime \prime}+k^{2} w+\gamma w=h(x), \quad w(0)=w(\pi)=0
$$

has a unique solution $w \in W^{1,2}(0, \pi) \cap H_{0}^{1}(0, \pi)$, because by the choice of γ the corresponding homogeneous problem has only the trivial solution. We define $F: L^{1}(0, \pi) \rightarrow C[0, \pi], F h=w$, which is a compact linear operator by the compact imbedding of $H_{0}^{1}(0, \pi)$ into $C[0, \pi]$. We define $G: C[0, \pi] \rightarrow L^{1}(0, \pi)$ by

$$
(G u)(x)=h(x)+\gamma u-g(x, u(x)),
$$

which by (H1) is continuous and maps bounded sets into bounded sets. Let $T=F \circ G: C[0, \pi] \rightarrow C[0, \pi]$. Then T is a compact map and the problem $\left(8_{k}\right)$ is equivalent to the operator equation

$$
u=t T u
$$

for $0<t \leq 1$ which by assumption has no solution on the boundary of the ball $B_{R}(0)=\left\{u \in C[0, \pi]:\|u\|_{C} \leq R\right\}$ for $0<t<1$. It follows from the nonlinear
alternative of Granas (see [3, Chapter 2, Theorem 5.1] that the operator equation $u=T u$, or equivalently the original problem $\left(1_{k}\right)$ has a solution in $B_{R}(0)$.

It remains to show that solutions to $\left(8_{k}\right)$ for $0<t<1$ have an a priori bound in $C[0, \pi]$. To this end, we first choose $r>0$ such that

$$
g(x, u) / u \leq \Gamma(x)+1
$$

as well as the two inequalities in (6) hold for $|u| \geq r$. Let $\theta: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $0 \leq \theta \leq 1$ on \mathbb{R} and $\theta(u)=0$ for $|u| \leq r, \theta(u)=1$ for $|u| \geq 2 r$. We define

$$
g_{1}(x, u)= \begin{cases}\min \{g(x, u)+|b(x)|,(\Gamma(x)+1) u\} \theta(u) & \text { if } u \geq 0 \\ \max \{g(x, u)-|a(x)|,(\Gamma(x)+1) u\} \theta(u) & \text { if } u \leq 0\end{cases}
$$

and $g_{2}(x, u)=g(x, u)-g_{1}(x, u)$. Then $g_{1}, g_{2}:(0, \pi) \times \mathbb{R} \rightarrow \mathbb{R}$ are Carathéodory functions. Moreover, g_{1} satisfies (H1) and

$$
\begin{equation*}
0 \leq g_{1}(x, u) / u \leq \Gamma(x)+1 \tag{9}
\end{equation*}
$$

for a.e. $x \in(0, \pi)$ and $u \in \mathbb{R}$, where we define $g_{1}(x, u) / u=0$ if $u=0 ; g_{2}$ is dominated by a function in $L^{1}(0, \pi)$, that is, there exits $c \in L^{1}(0, \pi)$ such that $|g(x, u)| \leq c(x)$ for a.e. $x \in(0, \pi)$ and $u \in \mathbb{R}$. Thus we also have

$$
\begin{equation*}
\limsup _{|u| \rightarrow \infty} g_{1}(x, u) / u=\limsup _{|u| \rightarrow \infty} g(x, u) / u \leq \Gamma(x), \tag{10}
\end{equation*}
$$

for a.e. $x \in(0, \pi)$ and $u \in \mathbb{R}$.
Now we argue by contradiction and suppose that there exists a sequence $\left\{u_{n}\right\}$ in $W^{2,1}(0, \pi) \cap H_{0}^{1}(0, \pi)$ and a corresponding sequence $\left\{t_{n}\right\}$ in $(0,1)$ such that u_{n} is a solution to $\left(8_{k}\right)$ when $t=t_{n}$, and $\left\|u_{n}\right\|_{C} \geq n$ for $n \geq 1$. Let $v_{n}=u_{n} /\left\|u_{n}\right\|_{C}$. Then $\left\|v_{n}\right\|_{C}=1$ and

$$
\begin{align*}
& v_{n}^{\prime \prime}+k^{2} v_{n}+p_{n}(x) v_{n}=h_{n}(x) \quad \text { in }(0, \pi) \\
& v_{n}(0)=v_{n}(\pi)=0 \tag{11}
\end{align*}
$$

where

$$
\begin{align*}
& p_{n}(x)=\left(1-t_{n}\right) \gamma+t_{n} g_{1}\left(x, u_{n}(x)\right) / u_{n}(x) \\
& h_{n}(x)=t_{n}\left[h(x)-g_{2}\left(x, u_{n}(x)\right)\right] /\left\|u_{n}\right\|_{C} \tag{12}
\end{align*}
$$

Clearly $\lim _{n \rightarrow \infty} h_{n}=0$ in $L^{1}(0, \pi)$. By (9) we have

$$
\begin{equation*}
0 \leq p_{n}(x) \leq \Gamma(x)+1 \tag{13}
\end{equation*}
$$

for a.e. $x \in(0, \pi)$ and $n \geq 1$. It follows from the Dunford-Pettis theorem that the sequence $\left\{p_{n}\right\}$ has a subsequence which converges weakly to a function p in $L^{1}(0, \pi)$. Moreover, by the Mazur theorem $0 \leq p(x) \leq \Gamma(x)+1$ for a.e. $x \in(0, \pi)$. From (11) we see that $v_{n}^{\prime \prime}$ is dominated by a function in $L^{1}(0, \pi)$ independent of n. Since each v_{n}^{\prime} vanishes somewhere in $(0, \pi)$, the sequence $\left\{v_{n}^{\prime}\right\}$ is equicontinuous
and uniformly bounded on $[0, \pi]$. Hence the sequence $\left\{v_{n}\right\}$ is also equicontinuous and uniformly bounded on $[0, \pi]$. It follows from the Arzela-Ascoli theorem that $\left\{v_{n}\right\}$ has a subsequence which converges in $C^{1}[0, \pi]$. We assume without any loss of generality that $\left\{p_{n}\right\}$ converges weakly to p in $L^{1}(0, \pi), t_{n} \rightarrow t_{0}$ and there exists $v \in C^{1}[0, \pi]$ such that $\left\{v_{n}\right\}$ converges to v in $C^{1}[0, \pi]$ and so does also in $H_{0}^{1}(0, \pi)$. Letting $n \rightarrow \infty$ in (11), we have

$$
\begin{equation*}
v^{\prime \prime}+k^{2} v+p(x) v=0, \quad v(0)=v(\pi)=0, \tag{k}
\end{equation*}
$$

where by (10), (13) and the Lebesgue theorem

$$
\begin{equation*}
\|p\|_{L^{1}}=\lim _{n \rightarrow \infty}\left\|p_{n}\right\|_{L^{1}} \leq 2 k \tag{15}
\end{equation*}
$$

Since v is a nontrivial solution to $\left(14_{k}\right)$, it follows from Lemma 1 (a) that $p=0$ a.e. on $(0, \pi)$, so that either $v=\sin k x$ or $v=-\sin k x$. Consequently $t_{0}=1$.

We consider the sequence $\left\{v_{n}^{0}\right\}$ as defined in (4) which is contained in the onedimensional vector subspace generated by $\sin k x$. Obviously $\left\{v_{n}^{0}\right\}$ also converges to v in $C^{1}[0, \pi]$. Taking the inner product in $L^{2}(0, \pi)$ of $\left(8_{k}\right)$ when $u=u_{n}$ and $t=t_{n}$ with v_{n}^{0}, we have

$$
\begin{aligned}
t_{n}\left[\int_{0}^{\pi} h(x) v_{n}^{0} d x-\int_{0}^{\pi} g\left(x, u_{n}\right) v_{n}^{0} d x\right] & =\left(1-t_{n}\right) \gamma \int_{0}^{\pi} u_{n} v_{n}^{0} d x \\
& =\left(1-t_{n}\right) \gamma\left\|u_{n}\right\|_{C} \int_{0}^{\pi}\left(v_{n}^{0}\right)^{2} d x \geq 0
\end{aligned}
$$

and so

$$
\begin{align*}
\int_{0}^{\pi} h(x) v_{n}^{0} d x & \geq \int_{0}^{\pi} g\left(x, u_{n}\right) v_{n}^{0} d x \tag{16}\\
& =\int_{v>0} g\left(x, u_{n}\right) v_{n}^{0} d x+\int_{v<0} g\left(x, u_{n}\right) v_{n}^{0} d x
\end{align*}
$$

Using the inequality

$$
\begin{equation*}
|w(x) / \sin x| \leq(\pi / 2)\left\|w^{\prime}\right\|_{C} \quad \text { for } x \in[0, \pi] \tag{17}
\end{equation*}
$$

valid for all $w \in C^{1}[0, \pi]$ with $w(0)=w(\pi)=0$, we see that for $x \in(0, \pi)$, if $v(x)>0$, then $v_{n}(x)>0$ for n large enough, so that $u_{n}(x) \rightarrow \infty$; if $v(x)<0$, then $v_{n}(x)<0$ for n large enough, so that $u_{n}(x) \rightarrow-\infty$. We suppose for the moment that there exists a function $f \in L^{1}(0, \pi)$ such that for n large enough,

$$
\begin{equation*}
g\left(x, u_{n}\right) v_{n}^{0} \geq f(x) \quad \text { for a.e. } x \in(0, \pi) \tag{18}
\end{equation*}
$$

By taking the limits inferior on both sides of (16) and applying the Fatou Lemma, we would have

$$
\begin{aligned}
\int_{0}^{\pi} h(x) v d x & \geq \liminf _{n \rightarrow \infty} \int_{v>0} g\left(x, u_{n}\right) v_{n}^{0} d x+\liminf _{n \rightarrow \infty} \int_{v<0} g\left(x, u_{n}\right) v_{n}^{0} d x \\
& \geq \int_{v>0} g_{+}(x) v d x+\int_{v<0} g_{-}(x) v d x
\end{aligned}
$$

which contradicts the Landesman-Lazer condition (7).
It suffices to prove (18). Since $\lim _{n \rightarrow \infty}\left\|p_{n}\right\|_{L^{1}}=\|p\|_{L^{1}}=0$, by Lemma 2 there exists $\delta>0$ such that for n large enough

$$
\delta\left\|\left(v_{n}^{\perp}\right)^{\prime}\right\|_{L^{1}}^{2} \leq\left\|v_{n}^{\prime}\right\|_{L^{2}}\left\|h_{n}\right\|_{L^{1}}
$$

As noted before, $\left\{v_{n}^{\prime}\right\}$ is uniformly bounded on $[0, \pi]$ and so it follows from the definition of h_{n} that there exists $\beta>0$ such that

$$
\left\|u_{n}\right\|_{C}\left|v_{n}^{\perp}(x)\right|^{2} \leq 2 \beta
$$

and so

$$
u_{n}(x) v_{n}^{0}(x) \geq-\left\|u_{n}\right\|_{C}\left|v_{n}(x)-v_{n}^{0}(x)\right|^{2} / 2=-\left\|u_{n}\right\|_{C}\left|v_{n}^{\perp}(x)\right|^{2} / 2 \geq-\beta
$$

for $x \in[0, \pi]$. Hence

$$
\begin{aligned}
g\left(x, u_{n}(x)\right) v_{n}^{0}(x) & =\left(g_{1}\left(x, u_{n}(x)\right) / u_{n}(x)\right) u_{n}(x) v_{n}^{0}(x)+g_{2}\left(x, u_{n}(x)\right) v_{n}^{0}(x) \\
& \geq-\beta(\Gamma(x)+1)-c(x),
\end{aligned}
$$

for a.e. $x \in(0, \pi)$. Thus it suffices to choose $f(x)=-\beta(\Gamma(x)+1)-c(x)$. This completes the proof of the theorem.

We see in the proof of Theorem 1 above that only the parts of Lemmas 1 and 2 in which $p \in L^{1}(0, \pi)$ satisfies $p \geq 0$ a.e. on $(0, \pi)$ are used. By applying the other parts of Lemmas 1 and 2 we obtain similarly the following

Theorem 2. Let $g:(0, \pi) \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function satisfying the conditions (H1), (H2). If there exist $r>0$ and $a, b \in L^{1}(0, \pi)$ such that

$$
\begin{array}{ll}
g(x, u) \leq b(x) & \text { if } u \geq r \\
g(x, u) \geq a(x) & \text { if } u \leq-r
\end{array}
$$

for a.e. $x \in(0, \pi)$, then the problem $\left(1_{k}\right)$ is solvable for any $h \in L^{1}(0, \pi)$ satisfying

$$
\int_{0}^{\pi} h(x) v(x) d x>\int_{v>0} g_{+}(x) v(x) d x+\int_{v<0} g_{-}(x) v(x) d x
$$

for $v(x)= \pm \sin k x$, where $g_{+}(x)=\limsup _{n \rightarrow \infty} g(x, u), g_{-}(x)=\liminf _{n \rightarrow-\infty} g(x, u)$ for $x \in(0, \pi)$.

Clearly the Landesman-Lazer conditions are essential for Theorems 1 and 2 to hold. It would be interesting to obtain solvability conditions for $\left(1_{k}\right)$ if the
equality holds in place of one of the inequalities. We refer to [4] for a solvability result without assuming a Landesman-Lazer condition when g is bounded.

4. Solvability conditions for $k=1$

When $k=1$ the solvability conditions for the problem $\left(1_{k}\right)$ obtained in Section 3 can be significantly improved. The following Theorem 3, which is obtained under assumptions with or without a Landesman-Lazer condition, extends the main results of [6].

Theorem 3. Let $g:(0, \pi) \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function satisfying the conditions (H1), (H2) except (2) which is replaced by

$$
\begin{equation*}
\|\Gamma\|_{L^{1}} \leq 4 \tag{19}
\end{equation*}
$$

(a) If there exist $r>0$ and $a, b \in L^{1}(0, \pi)$ such that (6) holds for a.e. $x \in$ $(0, \pi)$, then the problem $\left(1_{1}\right)$ is solvable for any $h \in L^{1}(0, \pi)$ satisfying

$$
\begin{equation*}
\int_{0}^{\pi} g_{-}(x) \sin x d x<\int_{0}^{\pi} h(x) \sin x d x<\int_{0}^{\pi} g_{+}(x) \sin x d x \tag{20}
\end{equation*}
$$

where g_{+}and g_{-}are defined as in Theorem 1;
(b) If

$$
\begin{equation*}
g(x, u) u \geq 0 \quad \text { for } u \in \mathbb{R} \tag{21}
\end{equation*}
$$

then the problem $\left(1_{1}\right)$ is solvable for any $h \in L^{1}(0, \pi)$ satisfying $\int_{0}^{\pi} h(x)$ $\sin x d x=0$.

Proof. The existence of a solution to $\left(1_{1}\right)$ is proved by the theorem of Granas as in the proof of Theorem 1. It requires an a priori bound for the solutions of $\left(8_{1}\right)$ for $0<t<1$. This is obtained in exactly the same way as in the proof of Theorem 1 up to the step where we have a nontrivial solution $v \in W^{2,1}(0, \pi) \cap H_{0}^{1}(0, \pi)$ to the problem $\left(14_{1}\right)$. It follows from the weaker assumption (19) that $\|p\|_{L^{1}} \leq 4$ instead of (15). By Lemma 1(b) we know that v has no zero in $(0, \pi)$. Moreover, $0<t_{0} \leq 1$ since $\left(14_{1}\right)$ with $p=\gamma$ a.e. on $(0, \pi)$ cannot have a nontrivial solution.

We assume that $v>0$ on $(0, \pi)$; the case in which $v<0$ on $(0, \pi)$ can be treated similarly. Using the inequality (17), we obtain that $u_{n}>0$ on $(0, \pi)$ for n large enough, so that $u_{n}(x) \rightarrow \infty$ for $x \in(0, \pi)$. In the following we consider only n large enough. Taking the inner product in $L^{2}(0, \pi)$ of $\left(8_{1}\right)$ when $u=u_{n}$ and $t=t_{n}$ with $\sin x$, we have
(22) $t_{n}\left[\int_{0}^{\pi} h(x) \sin x d x-\int_{0}^{\pi} g\left(x, u_{n}(x)\right) \sin x d x\right]$

$$
=\left(1-t_{n}\right) \gamma \int_{0}^{\pi} u_{n}(x) \sin x d x>0 .
$$

If the assumption in (a) holds, then it follows from (H1) and the first inequality in (6) that $g\left(x, u_{n}(x)\right)$ is bounded from below by a function in $L^{1}(0, \pi)$ independent of n. By (22) and the Fatou lemma we would have

$$
\int_{0}^{\pi} h(x) \sin x d x \geq \int_{0}^{\pi} g_{+}(x) \sin x d x
$$

which contradicts the second inequality in (20). If the assumption in (b) holds, then by (22) again we would have

$$
\int_{0}^{\pi} g\left(x, u_{n}(x)\right) \sin x d x<0
$$

which contradicts (21). This completes the proof of the theorem.
It is clear from the proof of Theorem 3 that we can obtain new solvability conditions for $\left(1_{1}\right)$ by making combinations out of conditions (20) and (21). For example, under the general hypothesis of Theorem 3 we have that
(c) If there exist $r>0, b \in L^{1}(0, \pi)$ such that the first inequality in (6) holds for a.e. $x \in(0, \pi)$ and

$$
g(x, u) \leq 0 \quad \text { for } u \leq 0
$$

then the problem $\left(1_{1}\right)$ is solvable for any $h \in L^{1}(0, \pi)$ satisfying

$$
0 \leq \int_{0}^{\pi} h(x) \sin x d x<\int_{0}^{\pi} g_{+}(x) \sin x d x
$$

where g_{+}is defined as in Theorem 1.
We refer to [1] for a result similar to Theorem 3(b) under slightly restricted conditions.

References

[1] E. N. Dancer and C. P. Gupta, A Liapunov-type result with application to a Dirichlettype two-point boundary value problem at resonance, Nonlinear Anal. 22 (1994), 305-318.
[2] P. Drábek, Landesman-Lazer condition for nonlinear problems with jumping nonlinearities, J. Differential Equations 85 (1990), 186-199.
[3] J. Dugundji and A. Granas, Fixed Point Theory, Vol. 1, Monografie Matematyczne t. 61, PWN, Warszawa, 1982.
[4] C. W. HA, On the solvability of an operator equation without the Landesman-Lazer condition, J. Math. Anal. Appl. 178 (1993), 547-552.
[5] C. W. HA, Eigenvalues of a Sturm-Liouville problem and inequalities of Lyapunov type, Proc. Amer. Math. Soc. (to appear).
[6] C.-W. Ha and Ch.-Ch. Kuo, On the solvability of a two point boundary value problem at resonance, Topol. Methods Nonlinear Anal. 1 (1993), 295-302.
[7] R. Iannacti and M. N. Nkashama, Unbounded perturbations of forced second order ordinary differential equations at resonance, J. Differential Equations 69 (1987), 289309.
[8] E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609-623.
[9] J. Mawhin and J. R. Ward, Nonresonance and existence for nonlinear elliptic boundary value problems, Nonlinear Anal. 6 (1981), 677-684.
[10] J. Mawhin and J. R. Ward, Periodic solutions of some forced Liénard differential equations at resonance, Arch. Math. (Basel) 41 (1983), 337-351.

Manuscript received September 20, 1996
Chung-Wei Ha
Department of Mathematics
National Tsing Hua University
Hsin Chu, TAIWAN
E-mail address: cwha@math.nthu.edu.tw

Chung-Cheng Kuo
Department of Mathematics
Fu Jen University
Taipei, TAIWAN

