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DIFFERENTIAL EQUATIONS AND IMPLICIT FUNCTION:
A GENERALIZATION OF THE NEAR OPERATORS THEOREM

Antonio Tarsia

1. Introduction

Many extensions of Implicit Function Theorem have been proposed for study-
ing non linear differential equations and systems as the already classic Hilde-
brandt and Graves Theorem [7]. The global invertibility problem has been con-
sidered in several forms (see for example [2]), and the differentiability hypothesis
has been weakened in various ways to face up different problems connected with
differential equations.

S. Campanato in [3] has introduced the notion of “near operators” for study-
ing the existence of solutions of elliptic differential equations and systems.

Definition 1.1 (near operators). Let X be a set, B a Banach space with
norm ‖ · ‖, A,B : X → B. We say that A is near B in X if there exist two real
and positive constants α, k,∈ (0, 1), such that for all x1, x2 ∈ X

(1.1) ‖B(x1)−B(x2)− α[A(x1)−A(x2)]‖ ≤ k‖B(x1)−B(x2)‖.

The main result on this operators is the following global invertibility theorem
(see [3]).
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116 A. Tarsia

Theorem 1.1. Let X be a set, B a Banach space, A, B : X → B such that
A is near B in X . If B is bijective between X and B then A is bijective X and B.

If we take away the injectivity hypothesis on B we obtain a surjectivity
theorem: if B is surjective then A is surjective (it follows from Theorem 1.1 by
replacing set X with the quotient set X|∼, where ∼ is the equivalence: x ∼ y if
and only if B(x) = B(y).)

Moreover, we remind that if B is a Hilbert space with the scalar product
( · , · ), then A is near B in X if and only if A is strictly monotone with respect
to B (see [4]), i.e. there exist two positive constants M and ν with M ≥ ν > 0,
such that for all u, v ∈ X :

‖A(u)−A(v)‖ ≤ M‖B(u)−B(v)‖,
ν‖B(u)−B(v)‖2 ≤

(
A(u)−A(v)

∣∣ B(u)−B(v)
)
.

This theory has been first applied to a class of systems of differential equa-
tions satisfying a special ellipticity condition, Condition A, which we state below.
Let Ω be a bounded convex open set in Rn, with C2 boundary.

Let x = (x1, . . . , xn) ∈ Ω, ξ = {ξij}i,j=1,...,n, ξij ∈ RN . Let a(x, ξ) be a map
Ω× Rn2N → RN , measurable in x, continuous in ξ, such that:

(1.2) a(x, 0) = 0.

Condition A. There exist three positive constants α, β, γ, with γ + δ < 1,
such that1:

(1.3)
∥∥∥∥ n∑

i=1

ξii − α[a(x, ξ + η)− a(x, η)]
∥∥∥∥

N

≤ γ‖ξ‖n2N + δ

∥∥∥∥ n∑
i=1

ξii

∥∥∥∥
N

a.e. in Ω, for all ξ, η ∈ Rn2N .

If u = (u1, . . . , uN ) is a map, Ω → RN , we set:

Diu =
∂u

∂xi
=

(
∂u1

∂xi
, . . . ,

∂uN

∂xi

)
,

Du = (D1u, . . . , Dnu),

H(u) = {DiDju}i,j=1,...,n.

In particular if ∆ is the Laplace operator then ∆u is the N -vector (∆u1,

. . . , ∆uN ). In [3] the following system is considered

a(x,H(u)) = f(x),

and the following theorem is proved:

1If m ∈ N, ‖ · ‖m and ( · , · )m are respectively norm and scalar product in Rm.
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Theorem 1.2. If a satisfies hypotheses (1.2) and (1.3), so that A(u) =
a(x,H(u)) is a operator between H2 ∩H1

0 (Ω, RN )2 and L2(Ω, RN ), then

(i) A is near ∆ in H2 ∩H1
0 (Ω, RN ), and consequently,

(ii) A is bijective between H2 ∩H1
0 (Ω, RN ) and L2(Ω, RN ).

This result makes important progress in the study of non variational elliptic
systems. We remark that in the case of a linear equation such as

∑
i,j aij(x) ·

Diju = f , with aij ∈ L∞(Ω), Condition A is equivalent to ellipticity hypothesis:
M‖ξ‖2n ≥

∑
i,j aij(x)ξiξj ≥ ν‖ξ‖2n, for all ξ ∈ Rn (see [4]). Moreover, in [13] it

is proved that Condition A is stronger than the following condition: there exists
ε > 0 such that (when n > 1)( n∑

i=1

aii(x)
)2

≥ (n− 1 + ε)
n∑

i,j=1

a2
ij(x), a.e. in Ω.

This is a generalized form of the Cordes condition (see [6] and [10]).
The notion of near operator and Theorem 1.1 with a suitable version of Con-

dition A have also permitted to consider some problems about parabolic systems,
see [5] and [11]. While the following property proved in [12] has permitted to
study the existence of solutions of a class of non linear hyperbolic problems: “if
A is near B and B(X ) is dense in B then A(X ) is dense in B(X ).

We consider now the contents of this paper. Our main theorem, Theorem 2.1,
is an Implicit Function Theorem: indeed we study the existence of a function
implicitly defined by an equation of the type F (x, y) = 0, where F (x, · ) is “near”
an injective and open operator.

The features of Theorem 2.1 are: generality of the domain of the function
(it is a Cartesian product between a topological space and a set), and the low
regularity of the function. Moreover, the hypothesis of bijectivity of the Fréchet
differential of the function in the classic Hildebrandt–Graves Theorem (see [7])
is replaced by the hypothesis of nearness between the function and an open and
injective operator. Indeed we prove that the hypotheses of Hildebrandt–Graves
Theorem are a particular case of that of Theorem 2.1: if A is defined on a Banach
space, if its differential B in a point x0 is bijective, then a neighbourhood of x0

exists where A is near B (see Lemma 2.1 and Proposition 3.1). On the other
hand many of the F -differential generalizations in the literature makes possible
to prove an Implicit Function Theorem. For example, in [9], there is a survey of
these subjects and it is proved a generalization of Implicit Function Theorem.

2If m is a non negative integer, Hm(Ω, RN ) is the Sobolev space of functions v : Ω → RN

having finite norm:

‖v‖Hm(Ω,RN ) =

�Z
Ω

X
|β|≤m

‖Dβv‖2N dx

�
.
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In Section 3 it is proved that the hypotheses of the Implicit Function Theorem
of [9] also are a special case of Theorem 2.1 (see Theorem 3.2).

In Section 4 some examples of applications of the results of Section 2 are given
to solve two problems. The first problem concerns the existence and uniqueness
of the solution to the following system of differential equations

a(x,H(u)) + g(x, u)) = f.

The second one is an open mapping problem:

Let X be a set, B be a Banach space and A,B : X → B. If A is near B on X and
if B(X ) is a neighbourhood of B(x0) then A(X ) is a neighbourhood of A(x0).

The last proposition is also proved in [12] without using Implicit Function The-
orem. Finally, a simple example of operator between L2(Ω) and L2(Ω) that is
near the Identity map on L2(Ω) but not F -differentiable is given.

2. Generalizations of Implicit Function Theorem

Let X be a topological space, Z a Banach space normed with ‖ · ‖, Ω a
neighbourhood of z0 ∈ Z, Φ : X × Ω → Z.

Lemma 2.1. Let us suppose that
(2.1) (x0, z0) ∈ X × Ω exists such that Φ(x0, z0) = 0,

(2.2) the map x → Φ(x, z0) is continuous at x0,
(2.3) there exist positive numbers α, k, with k ∈ (0, 1), and a neighbourhood of

x0, U(x0) ⊆ X, such that:

‖z1 − z2 − α[Φ(x, z1)− Φ(x, z2)]‖ ≤ k‖z1 − z2‖, ∀x ∈ U(x0), ∀z1, z2 ∈ Ω.

Then the following are true: there exists a ball S(z0, σ) = {z ∈ Z : ‖z −
z0‖ < σ} ⊂ Ω, and a neighbourhood of x0, V (x0) ⊂ U(x0), such that there
is exactly one solution z = z(x) : V (x0) → S(z0, σ) of the following problem:

(2.4)

{
Φ(x, z(x)) = 0 for all x ∈ V (x0),

z(x0) = z0.

Moreover, function z = z(x) is continuous in x0.

Proof. Existence: let σ > 0 be such that S(z0, σ) ⊂ Ω. We set

(2.5) Ix(z) = z − αΦ(x, z), ∀x ∈ U(x0).

We prove that exists a neighbourhood V (x0) ⊂ U(x0) of x0, such that for all
x ∈ V (x0) the following are true:

(i) Ix : S(z0, σ) → S(z0, σ).
(ii) Ix is a contraction.
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Indeed, (i) follows from the next inequalities by (2.3) and Φ(x0, z0) = 0

‖Ix(z)− z0‖ = ‖z − αΦ(x, z)− z0‖
≤ ‖z − z0 − α[Φ(x, z)− Φ(x, z0)]‖+ α‖Φ(x, z0)‖
≤ k‖z − z0‖+ α‖Φ(x, z0)− Φ(x0, z0)‖.

We obtain from these inequalities and from (2.2) that for all ε > 0 there exists
V (x0) ⊆ U(x0) such that:

‖Ix(z)− z0‖ ≤ k‖z − z0‖+ αε, ∀x ∈ V (x0).

From this Ix(z) ∈ S(z0, σ), for all z ∈ S(z0, σ) if ε < (1− k)σ/α and x ∈ V (x0).
Proposition (ii) follows from (2.3): for all x ∈ U(x0) and all z1, z2 ∈ Ω we have

‖Ix(z1)− Ix(z2)‖ = ‖z1 − z2 − α[Φ(x, z1)− Φ(x, z2)]‖ ≤ k‖z1 − z2‖.

Therefore, it follows from (i) and (ii), by the fixed point theorem, that for all
x ∈ V (x0) exists exactly one z = z(x) ∈ S(z0, σ) such that z(x) = Ix(z(x)), that
is, from (2.5):

Φ(x, z(x)) = 0, ∀x ∈ V (x0).

On the other hand z → Φ(x, z) is a injective map in Ω, for all x ∈ U(x0), because
(2.3) implies that:

‖z1 − z2‖ ≤
α

1− k
‖Φ(x, z1)− Φ(x, z2)]‖, ∀z1, z2 ∈ Ω, ∀x ∈ U(x0).

Since Φ(x0, z(x0)) = 0 = Φ(x0, z0) we have z(x0) = z0, which completes the
proof of the existence of a solution to problem (2.4).

Uniqueness: it is a trivial consequence of the fact that z → Φ(x, z) is injective.
Continuity of z = z(x) in x0: it follows from (2.2) and from the inequality

(obtained from (2.3)):

‖z(x)− z(x0)‖ ≤
α

1− k
‖Φ(x, z(x))− Φ(x, z(x0))‖

=
α

1− k
‖Φ(x0, z0)− Φ(x, z0))‖. �

Remark 2.1. If a map Φ : X×Z → Z satisfies the hypotheses of Lemma 2.1,
and the hypothesis (2.3) holds for all z1, z2 ∈ Z and all x ∈ U(x0), then similarly
to what was previously done, we can prove that for all x ∈ U(x0) there exists
only one solution z : U(x0) → Z of problem (2.4). In particular, if (2.3) holds
for all x ∈ X, then we obtain a solution of the problem (2.4) defined on the
whole X.

Now we prove the following generalization of Implicit Functions Theorem.
Let X be a topological space, Y a set, Z a Banach space F : X × Y → Z,
B : Y → Z.
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Theorem 2.1. Let us suppose that:
(2.6) there exists (x0, y0) ∈ X × Y such that F (x0, y0) = 0,
(2.7) the map x → F (x, y0) is continuous in x = x0,
(2.8) there exist positive numbers α, k, with k ∈ (0, 1), and a neighbourhood

of x0, U(x0) ⊂ X, such that for all y1, y2 ∈ Y and all x ∈ U(x0)

‖B(y1)−B(y2)− α[F (x, y1)− F (x, y2)]‖ ≤ k‖B(y1)−B(y2)‖,

(2.9) B is injective,
(2.10) B(Y) is a neighbourhood of z0 = B(y0).
Then the following are true: there exists a ball S(z0, σ) ⊂ B(Y ) and a neigh-
bourhood of x0, V (x0) ⊂ U(x0), such that there is exactly one solution y = y(x) :
V (x0) → B−1(S(z0, σ)) of the following problem:

(2.11)

{
F (x, y(x)) = 0 ∀x ∈ V (x0),

y(x0) = y0.

Proof. Existence: we set

(2.12) Φ(x, z) = F (x,B−1(z)).

The map Φ satisfies the hypotheses of Lemma 2.1, with Ω = B(Y ), z0 = B(y0),
Φ(x0, z0) = F (x0, y0) = 0 and x → Φ(x, z0) = F (x, y0) continuous in x0. More-
over, if α and k are as in the hypothesis (2.8), setting z1 = B(y1) and z2 = B(y2)
we obtain that:

‖z1 − z2 − α[Φ(x, z1)− Φ(x, z2)]‖ = ‖B(y1)−B(y2)− α[F (x, y1)− F (x, y2)]‖
≤ k‖B(y1)−B(y2)‖ = ‖z1 − z2‖,

for all z1, z2 ∈ B(Y ) and all x ∈ U(x0). Hence Φ also satisfies hypothesis 2.3,
from this, as consequence of Lemma 2.1, we obtain that S(z0, σ) ⊂ Ω = B(Y )
and there exists V (x0) ⊂ U(x0) such that there is exactly one solution z =
z(x) ∈ S(x0, σ) of the following problem{

Φ(x, z(x)) = 0 ∀x ∈ V (x0),

z(x0) = z0.

From this and from (2.12), setting y(x) = B−1(z(x)) we obtain the proof of
existence.

Uniqueness: we observe that function y → F (x, y) is injective for all x ∈
U(x0) and all y ∈ Y , consequently to (2.9) and to the following inequality
(obtained from (2.8)):

‖B(y1)−B(y2)‖ ≤
α

1− k
‖F (x, y1)− F (x, y2)‖, ∀x ∈ U(x0), ∀y1, y2 ∈ Y.
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Hence, if y1 = y1(x) is another solution of the problem (2.9), and F (x, y1(x)) =
0 = F (x, y(x)), for all x ∈ V (x0), it follows that y1(x) = y(x), for all x ∈ V (x0).�

Remark 2.2. Let C : Y → Z be another map that satisfies hypotheses
(2.8)–(2.10). Then from Theorem 2.1 it follows that there exist S(z0, σ1) ⊂ C(Y )
and V1(x0) ⊂ U(x0) such that exactly one solution y1 = y1(x) ∈ C−1(S(z0, σ1))
of the problem exists: {

F (x, y1(x)) = 0 ∀x ∈ V1(x0),

y1(x0) = y0.

Therefore the injectivity of y → F (x, y) (see the proof of uniqueness in the
Theorem 2.1) implies that y1(x) = y(x), for all x ∈ V1(x0) ∩ V (x0).

Remark 2.3. If B(Y ) = Z, from the Remark 2.1, we obtain that the solution
of the problem (2.11) is defined on the whole U(x0). In particular, if for all x ∈ X

(by (2.8)) holds then y = y(x) is defined on the whole X.

Remark 2.4. (Approximating functions of the solution of problem (2.11)).
Let us assume the notations and the hypotheses of the Theorem 2.1. We can find
a sequence of approximating functions of the solution y = y(x) of problem 2.1,
in a suitable neighbourhood of x0, by simplified Newton’s method, as it happens
in the classic Implicit Funtions Theorem. Indeed, if we define {y(x)}n∈N ⊂ Y in
the following way:{

y0(x) = y0,

yn(x) = B−1[Byn−1(x)− αF (x, yn−1(x))] ∀x ∈ U(x0),

then limn→∞B(yn(x)) = B(y(x)) in Z, for all x ∈ U1(x0) ∩ V (x0), where
U1(x0) ⊂ U(x0).

Proof. Let ε ∈ (0, σ(1− k)/α), there exist U1(x0) ⊂ U(x0) and σ > 0 such
that the sequence {Byn(x)}n∈N is in S(z0, σ) ⊂ B(Y ), indeed:

‖B(yn(x))−B(y0)‖
≤‖B(yn−1(x))−B(y0)− α[F (x, yn−1(x))− F (x, y0(x))]‖+ α‖F (x, y0(x))‖
≤ k‖B(yn−1(x))−B(y0)‖+ α‖F (x, y0)‖

≤
( n−1∑

i=0

ki

)
α‖F (x, y0)‖ ≤

α

1− k
‖F (x, y0)− F (x0, y0)‖ ≤

εα

1− k
≤ σ,

for all x ∈ U1(x0) ⊂ U(x0). Moreover, for all x ∈ U1(x0), {zn(x)}n∈N =
B{(yn(x)}n∈N is a Cauchy sequence in Z, because, by (2.18), (if n > m) we have

‖B(yn(x))−B(ym(x))‖
≤ ‖B(yn−1(x))−B(ym−1(x))− α[F (x, yn−1(x))− F (x, ym−1(x))]‖
≤ k‖B(yn−1(x))−B(ym−1(x))‖ ≤ km‖B(yn−m(x))−B(y0(x)) ≤ kmσ,
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for all x ∈ U1(x0). Let z∞(x) ∈ S(z0, σ) be the limit of B(yn(x)) in Z and
y∞(x) ∈ Y such that B(y∞(x)) = z∞(x). We prove that the solution y(x) of
problem (2.11) coincides with y∞(x), for all x ∈ U1(x0) ∩ V (x0). In fact, by
(2.8), for all x ∈ U1(x0) it follows that

‖F (x, yn(x))− F (x, y∞(x))]‖ ≤ k + 1
α

‖B(yn(x))−B(y∞(x))‖.

Taking limits as n → ∞ we have F (x, y∞(x)) = 0, for all x ∈ U1(x0) (because
limn→∞ F (x, yn(x)) = 0, for all x ∈ U1(x0)). Hence the uniqueness of the
solution of the problem (2.11) implies that y(x) = y∞(x), for all x ∈ U1(x0) ∩
V (x0). In particular the definition of the sequence {yn(x)}n∈N implies y∞(x0) =
yn(x0) = y0 for all n ∈ N. �

We prove the following lemma about the regularity of the solution of prob-
lem (2.4).

Lemma 2.2. Let us assume the hypotheses of Lemma 2.1, if z : V (x0) →
S(z0, σ) is the solution of problem (2.4), then the following are true:

(i) if x → Φ(x, z) is injective on V (x0), for all z ∈ S(z0, σ), then x → z(x)
is injective on V (x0),

(ii) if x → Φ(x, z) is continuous on V (x0), for all z ∈ S(z0, σ), then x →
z(x) is continuous on V (x0),

(iii) if (X, d) is a metric space and if there exists M > 0 and α ∈ (0, 1] such
that

‖Φ(x1, z)− Φ(x2, z)‖ ≤ M [d(x1, x2)]α,

for all z ∈ S(z0, σ), and all x1, x2 ∈ V (x0), then the solution of the
problem (2.4) is α-Holder continuous on V (x0).

Proof. (i) We know that Φ(x1, z(x1)) = Φ(x2, z(x2)) = 0 for all x1, x2 ∈
V (x0). Then (2.3) implies the following:

α‖Φ(x1, z(x1))− Φ(x2, z(x1))‖ = α‖Φ(x2, z(x2))− Φ(x2, z(x1))‖
≤ ‖z(x1)− z(x2)− α[Φ(x2, z(x1))− Φ(x2, z(x2))]‖+ ‖z(x1)− z(x2)‖
≤ (k + 1)‖z(x1)− z(x2)‖.

Hence, if z(x1) = z(x2) then Φ(x1, z(x1)) = Φ(x2, z(x2)), which yields x1 = x2,
because x → Φ(x, z) is one-to-one.

(ii) and (iii). Condition (2.3) implies the following:

‖z(x1)− z(x2)‖ ≤
α

1− k
‖Φ(x1, z(x1))− Φ(x1, z(x2))‖

=
α

1− k
‖Φ(x2, z(x2))− Φ(x1, z(x2))‖, ∀x1, x2 ∈ V (x0).

Both results then follow easily. �



Implicit Function Theorem and Near Operators 123

We obtain the following regularity results of the solution of problem (2.11)
by the above Lemma.

Theorem 2.2 (Regularity of the solution). Let us assume the hypotheses of
Theorem 2.1. Let y = y(x): V (x0) → B−1(S(z0, σ)) be the solution of problem
(2.11). The following are true:

(i) if x → F (x, y) is injective on V (x0) then also x → y(x) is injective on
V (x0),

(ii) if Y is a topological space and B−1 is continuous in z0 then y = y(x) is
continuous in x0,

(iii) let Y be a topological space, B−1 continuous on S(z0, σ), if for all y ∈
B−1(S(z0, σ)) x → F (x, y) is continuous in V (x0) then y → y(x) is
continuous in V (x0),

(iv) if (X, d1) and (Y, d2) are metric spaces, B−1 is Holder continuous with
exponent β ∈ (0, 1] on S(z0, σ) and x → F (x, y) is Holder continuous
with exponent α ∈ (0, 1], on V (x0), then y = y(x) is Holder continuous
with exponent αβ on V (x0).

Proof. (i) Let us assume the notation of the proof of Theorem 2.1. If we set
Φ(x, z) = F (x,B−1(z)), then Φ(x, z) satisfies the hypothesis (i) of Lemma 2.2,
consequently x → z(x) is injective, and so it is also y = y(x) = B−1(z(x)).

(ii) Let us assume the notation of Theorem 2.1. By Lemma 2.2 we know
that x → z(x) is continuous in x0, hence y(x) = B−1(z(x)) is continuous in x0

(B(y0) = z0 = z(x0)).

(iii) Φ(x, z) = F (x,B−1(z)) satisfies the hypothesis (ii) of Lemma 2.2, this
implies that x → z(x) is continuous in V (x0) hence, by continuity of B−1 in
S(z0, σ), it follows that also y = y(x) = B−1(z(x)) is continuous in V (x0).

(iv) Φ(x, z) = F (x,B−1(z)) verifies the hypothesis (iii) of Lemma 2.2, this
implies that x → z(x) is α-Holder continuous in V (x0), hence we have y(x) =
B−1(z(x)) is αβ-Holder continuous on V (x0) because B−1 is β-Holder continuous
on S(z0, σ). �

If we remove hypothesis (2.9), injectivity of B, from the Theorem 2.1, we
obtain a similar theorem, which however cannot be properly called “Implicit
Functions Theorem” because there is no uniqueness of the solution of prob-
lem (2.11).

Theorem 2.3. Let us suppose that

(2.14) there exists (x0, y0) ∈ X × Y such that F (x0, y0) = 0,

(2.15) the map x → F (x, y0) is continuous in x = x0,
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(2.16) there exist positive numbers α, k, with k ∈ (0, 1), and a neighbourhood of
x0, U(x0) ⊂ X, such that for all y1, y2 ∈ Y and all x ∈ U(x0)

‖B(y1)−B(y2)− α[F (x, y1)− F (x, y2)]‖ ≤ k‖B(y1)−B(y2)‖,

(2.17) B(Y ) is a neighbourhood of z0 = B(y0).
Then the following are true: there exist a ball S(z0, σ) ⊂ B(Y ) and a neighbour-
hood of x0, V (x0) ⊂ U(x0), such that for all x ∈ V (x0) there exists a subset
G(x) ⊂ B−1(S(z0, σ)) where F (x, y) = 0, for all y ∈ G(x).

Proof. Let us set, as in the proof of Theorem 2.1, Φ(x, z) = F (x, B−1(z)),
for all z ∈ B(Y ) and all x ∈ U(x0). Φ is well defined even if B is not invertible,
in fact we observe that if B(y1) = B(y2) = z then F (x, y1) = F (x, y2), because
(2.21) implies the following

α‖F (x, y1)− F (x, y2)]‖ = ‖B(y1)−B(y2)− α[F (x, y1)− F (x, y2)]‖
≤ k‖B(y1)−B(y2)‖ = 0, ∀x ∈ U(x0).

By proceeding as in the proof of Theorem 2.1 we can easily prove that Φ satisfies
the hypotheses of Lemma 2.1; in particular, concerning hypothesis (2.3), by
setting z1 = B(y1) and z2 = B(y2) we have

‖z1 − z2 − α[Φ(x, z1)− Φ(x, z2)]‖ = ‖B(y1)−B(y2)− α[F (x, y1)− F (x, y2)]‖
≤ k‖B(y1)−B(y2)‖ = k‖z1 − z2‖,

for all x ∈ U(x0) and all z1, z2 ∈ B(Y ). It follows that there exist S(z0, σ) ⊂
Ω = B(Y ) and V (x0) ⊂ U(x0) such that for all x ∈ V (x0) there exists exactly
one solution z = z(x) ∈ S(z0, σ) of the following

F (x,B−1(z(x)) = Φ(x, z(x)) = 0,

we set G(x) = B−1(z(x)) and obtain the thesis. �

3. Comparison with other Implicit Function Theorems

Now let us compare Theorem 2.1 with two known Implicit Function Theo-
rems: the classic Hildebrandt and Graves Theorem [7], and the recent Robinson
Theorem [9]. We are going to prove that these theorems are particular cases of
Theorem 2.1.

Lemma 3.1. Let X, Y , Z be Banach spaces normed with ‖ · ‖X , ‖ · ‖Y , ‖ · ‖Z ,
and F : U(x0, y0) → Z a function defined in a neighbourhood U(x0, y0) ⊂ X×Y

of (x0, y0), which satisfies the following

(i) there exists a partial F-derivative Fy(x, y), with respect to the second
variable y in U(x0, y0), continuous in (x0, y0),

(ii) Fy(x0, y0) : Y → Z is bijective.
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Then there exists a neighbourhood of (x0, y0), W (x0, y0) ⊂ U(x0, y0) such that
Fy(x, y) : Y → Z is bijective for all (x, y) ∈ W (x0, y0).

Proof. By Banach open mapping Theorem, the hypothesis (i) above on
Fy(x0, y0) implies that

(3.1) ∃δ > 0 : ‖v‖Y ≤ ‖Fy(x0, y0)v‖Z

δ
, ∀v ∈ Y.

Moreover, from the continuity of Fy(x, y) in (x0, y0), it follows that, for ε ∈ (0, δ),
there exists W (x0, y0) such that for all (x, y) ∈ W (x0, y0) we have3

(3.2) ‖Fy(x0, y0)v−Fy(x, y)v‖Z ≤ ‖Fy(x0, y0)−Fy(x, y)‖L(Y,Z)‖v‖Y ≤ ε‖v‖Y .

From (3.2), (3.3), for k = ε/δ, it follows that

‖Fy(x0, y0)v − Fy(x, y)v‖Z ≤ k‖Fy(x0, y0)v‖Z ∀(x, y) ∈ W (x0, y0), ∀v ∈ Y.

Hence Fy(x, y) is near Fy(x0, y0), for all (x, y) ∈ W (x0, y0), in Y (see Defini-
tion 1.1), with α = 1. It follows that, for all (x, y) ∈ W (x0, y0), Fy(x, y) is
bijective between Y and Z because so Fy(x0, y0) is (see Theorem 1.1). �

Lemma 3.2. Let us assume for F : U(x0, y0) → Z the hypotheses of Lem-
ma 3.1. Moreover, let us suppose that there exists a neighbourhood of (x0, y0),
U1(x0, y0) ⊂ U(x0, y0), where y → Fy(x, y) is continuous. Then there exist r1,
r2 > 0 and k ∈ (0, 1) such that S(x0, r1)× S(y0, r2) ⊂ U1(x0, y0) and

‖Fy(x, y0)(y1 − y2)− [F (x, y1)− F (x, y2)]‖Z ≤ k‖Fy(x, y0)(y1 − y2)‖Z ,

for all x ∈ S(x0, r1) and all y1, y2 ∈ S(y0, r2).

Proof. By Lemma 3.1 there exists a neighbourhood of (x0, y0), W (x0, y0) ⊂
U(x0, y0) where Fy(x, y) is bijective. We set W1(x0, y0) = W (x0, y0)∩U1(x0, y0).
Let S(x0, σ1) and S(y0, σ2) be such that S(x0, σ1) × S(y0, σ2) ⊂
W1(x0, y0). Then Fy(x, y0) is bijective for all x ∈ S(x0, σ1), while t → Fy(x, y1 +
t(y2 − y1)) is continuous in [0, 1], for all x ∈ S(x0, σ1) and all y1, y2 ∈ S(y0, σ2).
Then we can consider, for all x ∈ S(x0, σ1) and for all y1, y2 ∈ S(y0, σ2), the
following4

‖Fy(x, y0)(y1 − y2)− [F (x, y1)− F (x, y2)]‖z(3.3)

=
∥∥∥∥Fy(x, y0)(y1 − y2)−

[ ∫ 1

0

Fy(x, y2 + t(y1 − y2))dt

]
(y1 − y2)

∥∥∥∥
Z

3‖ · ‖L(Y,Z) is the norm in the space of linear operators between Y and Z.
4Iz is the identity function on Z.
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=
∥∥∥∥(

IZ −
[∫ 1

0

Fy(x, y2 + t(y1 − y2))dt

]
[Fy(x, y0)]−1

)
· Fy(x, y0)(y1 − y2)

∥∥∥∥
Z

≤
∥∥∥∥IZ −

[∫ 1

0

Fy(x, y2 + t(y1 − y2))dt

]
[Fy(x, y0)]−1

∥∥∥∥
L(Z,Z)

· ‖Fy(x, y0)(y1 − y2)‖Z .

The above inequality implies the thesis of the lemma if we find k ∈ (0, 1) such
that for all x and for all y1, y2 belonging to suitable neighbourhoods, respectively,
of x0 and y0, it yields

(3.4) M(x, y1, y2)

=
∥∥∥∥IZ −

[∫ 1

0

Fy(x, y2 + t(y1 − y2))dt

]
[Fy(x, y0)]−1

∥∥∥∥
L(Z,Z)

≤ k.

Set y = [Fy(x, y0)]−1z; (3.4) is equivalent to the following

M(x, y1, y2) = sup
y∈Y
y 6=0

∥∥∥Fy(x, y0)y −
[∫ 1

0
Fy(x, y2 + t(y1 − y2))dt

]
y
∥∥∥

Z

‖Fy(x, y0)y‖Z
≤ k.

We observe that for all ε > 0 there exist ρ ∈ (0, σ1) and r2 ∈ (0, σ2) such that:∥∥∥∥Fy(x, y0)−
∫ 1

0

Fy(x, y2 + t(y1 − y2)) dt

∥∥∥∥
L(Y,Z)

(3.5)

=
∥∥∥∥∫ 1

0

[Fy(x, y2 + t(y1 − y2))− Fy(x, y0)] dt

∥∥∥∥
L(Y,Z)

≤
∫ 1

0

∥∥∥∥[Fy(x, y2 + t(y1 − y2))− Fy(x, y0)]
∥∥∥∥
L(Y,Z)

dt

≤
∫ 1

0

∥∥∥∥[Fy(x, y2 + t(y1 − y2))− Fy(x0, y0)]
∥∥∥∥
L(Y,Z)

dt

+
∥∥∥∥Fy(x0, y0)− Fy(x, y0)

∥∥∥∥
L(Y,Z)

< ε,

for all x ∈ S(x0, ρ) and for all y ∈ S(y0, r2) the last inequality follows from
continuity of Fy(x, y) in (x0, y0). By Banach open mapping Theorem, the given
hypothesis on Fy(x0, y0) implies that there exist δ > 0, ε1 ∈ (0, δ) and r ∈ (0, σ1)
such that

δ‖y‖Y ≤ ‖Fy(x0, y0)y‖Z(3.6)

≤ ‖Fy(x0, y0)− Fy(x, y0)‖L(Y,Z)‖y‖Y + ‖Fy(x, y0)y‖Z

≤ ε1‖y‖Y + ‖Fy(x, y0)y‖Z , ∀y ∈ Y, ∀x ∈ S(x0, r).
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From (3.4), (3.5) and (3.6), choosing ε ∈ (0, δ − ε1), we obtain that there exist
ρ, r, r2 > 0 such that:

(3.7) M(x, y1, y2) ≤ ε sup
y∈Y
y 6=0

‖y‖Y

‖Fy(x, y0)y‖Z
≤ ε

δ − ε1
< 1,

for all x ∈ S(x0, r1) (with r1 = min(r, ρ)), for all y1, y2 ∈ S(y0, r2). Thus the
proof is completed. �

We obtain the following result as a particular case of Lemma 3.2.

Proposition 3.1. Let A : V (y0) → Z, where V (y0) ⊂ Y is a neighbourhood
of y0. We assume that A ∈ C1(V (y0)) and A′(y0) is bijective between Y and Z.
Then there exists σ > 0 such that S(y0, σ) ⊂ V (y0) and A is near A′(y0) in
S(y0, σ) (see the Definition 1.1).

Lemma 3.3. Let F : U(x0, y0) → Z be such that

(i) there exists the partial F-derivative Fy(x, y), with respect to the second
variable y in U(x0, y0), and it is continuous in (x0, y0),

(ii) Fy(x0, y0) : Y → Z is bijective,
(iii) there exists a neighbourhood of (x0, y0), U1(x0, y0) ⊂ U(x0, y0), where

y → Fy(x, y) is continuous.

Then there exists ρ1, ρ2 > 0 and k ∈ (0, 1) such that S(x0, ρ1) × S(y0, ρ2) ⊂
U1(x0, y0) and for all x ∈ S(x0, ρ1) and all y1, y2 ∈ S(y0, ρ2)

‖Fy(x0, y0)(y1 − y2)− [F (x, y1)− F (x, y2)]‖Z ≤ k‖Fy(x0, y0)(y1 − y2)‖Z .

Proof.

‖Fy(x0, y0)(y1 − y2)− [F (x, y1)− F (x, y2)]‖Z

≤‖[Fy(x0, y0)− Fy(x, y0)](y1 − y2)‖Z

+ ‖Fy(x, y0)(y1 − y2)− [F (x, y1)− F (x, y2)]‖Z .

Hence, by Lemma 3.2, there exist r1, r2 > 0 and k1 ∈ (0, 1) such that

S(x0, r1)× S(y0, r2) ⊂ U1(x0, y0)

and

‖Fy(x0, y0)(y1 − y2)− [F (x, y1)− F (x, y2)]‖Z(3.8)

≤ ‖[Fy(x0, y0)− Fy(x, y0)](y1 − y2)‖Z + k1‖Fy(x, y0)(y1 − y2)‖Z

≤ (k1 + 1)‖[Fy(x0, y0)− Fy(x, y0)](y1 − y2)‖Z

+ k1‖Fy(x0, y0)(y1 − y2)‖Z , ∀x ∈ S(x0, r1), ∀y1, y2 ∈ S(y0, r2).

From (ii), by Banach open mapping Theorem, there exists δ > 0 such that:

(3.9) ‖y‖Y ≤ δ‖Fy(x0, y0)y‖Y , ∀y ∈ Y.
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From (3.8) and (3.9), choosing ε < 1− k1/δ(1 + k1) and using (i), we know that
there exist ρ1 and ρ2 > 0, with ρ1 ≤ r1, ρ2 ≤ r2, such that

‖Fy(x0, y0)(y1 − y2)− [F (x, y1)− F (x, y2)]‖Z

≤ ε(k1 + 1)‖y1 − y2‖Y + k1‖Fy(x0, y0)(y1 − y2)‖Z

≤ [εδ(k1 + 1) + k1]‖Fy(x0, y0)(y1 − y2)‖Z ,

for all x ∈ S(x0, ρ1) and all y1, y2 ∈ S(y0, ρ2). Hence we complete the proof
choosing k = εδ(k1 + 1) + k1. �

We prove the following Hildebrandt–Graves Theorem by means of Theo-
rem 2.1.

Theorem 3.1. Let F : U(x0, y0) → Z be defined in an open neighbourhood
of (x0, y0), U(x0, y0) ⊂ X × Y , with F (x0, y0) = 0, which satisfies the following
hypotheses
(3.10) F is continuous in (x0, y0),
(3.11) there exists the partial F-derivative Fy in U(x0, y0),
(3.12) Fy(x0, y0) : Y → Z is bijective,
(3.13) y → Fy(x, y) is continuous in a open neighbourhood of (x0, y0), U1(x0, y0)

⊂ U(x0, y0).
Then there exist σ1, σ2 > 0, such that there is exactly one solution y = y(x) :
S(x0, σ1) → S(y0, σ2) of the following problem

(3.14)

{
F (x, y(x)) = 0 ∀x ∈ S(x0, σ1),

y(x0) = y0.

Moreover, the solution of problem (3.14) is continuous in S(x0, σ1).

Proof. It follows by proving that the hypotheses of Theorem 2.1 hold true.
We set B = Fy(x0, y0). Lemma 3.3 implies that there exist ρ1, ρ2 > 0 and
k ∈ (0, 1) such that S(x0, ρ1)× S(y0, ρ2) ⊂ U1(x0, y0) and

‖B(y1)−B(y2)− [F (x, y1)− F (x, y2)]‖Z

≤‖Fy(x0, y0)(y1 − y2)− [F (x, y1)− F (x, y2)]‖Z

≤ k‖Fy(x0, y0)(y1 − y2)‖Z

= ‖B(y1)−B(y2)‖Z , ∀x ∈ S(x0, ρ1), ∀y1, y2 ∈ S(y0, ρ2).

Hence the hypothesis (2.8) is verified by setting Y = S(y0, ρ2). Moreover, (3.12)
implies that B is injective. Finally, the Banach open mapping theorem and
(3.12) imply that B(Y ) is a neighbourhood of z0 = 0. To sum up, (iii) and
Theorem 2.2 imply that the solution y = y(x) is continuous. �

Finally, we deduce also the Robinson Theorem (see [9], Theorem 3.2) from
Theorem 2.1.
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Theorem 3.25. Let X, Y be normed spaces, Z be a Banach space, (x0, y0) ∈
X × Y , U(x0) be a neighbourhood of x0 in X, V (y0) be a neighbourhood of y0

in Y .
Let F : U(x0) × V (y0) → Z be such that F (x0, y0) = 0, and f : V (y0) → Z

be such that f(y0) = 0. Moreover, we suppose that
(3.15) f ≈y F in (x0, y0)6.
(3.16) For all y ∈ V (y0), x → F (x, y) is Lipschitzian in U(x0) with modulus φ.
(3.17) f(V (y0)) is a neighbourhood of 0 in Z.
(3.18) δ(f, V (y0)) = d0 > 07.
Then there exist two neighbourhoods of x0 and y0, respectively, U1(x0) ⊂ U(x0)
and V1(y0) ⊂ V (y0), such that there exist only one solution y = y(x) : U1(x0) →
V1(y0) of the following problem:

(3.19)

{
F (x, y(x)) = 0 ∀x ∈ U1(x0),

y(x0) = y0.

Moreover, for all λ > φ/d0, there exists a neighbourhood x0, U2(x0) ⊂ U1(x0),
such that y is Lipschitzian on U2(x0) with modulus λ.

Proof. It follows by verifying in turn each of the hypotheses of Theorem 2.1.
Setting B(y) = f(y), we observe that (3.17) above implies that B(Y ) is a neigh-
bourhood of 0 in Z. Moreover, (3.18) above implies that

‖f(y1)− f(y2)‖Z ≥ d0‖y1 − y2‖Y , ∀y1, y2 ∈ V (y0).

Hence f is injective and therefore B is injective on V (y0).
It remains to prove that B verifies the hypothesis (2.8). If we choose ε ∈

(0, d0), by (3.15) above, there exist U(x0) and V(y0) such that, for all x ∈ U(x0)
and for all y ∈ V(y0), by (3.18) we have:

‖B(y1)−B(y2)− [F (x, y1)− F (x, y2)]‖Z

= ‖f(y1)− f(y2)− [F (x, y1)− F (x, y2)]‖Z

≤ ε‖y1 − y2‖Y ≤ ε

d0
‖f(y1)− f(y2)‖Z

=
ε

d0
‖B(y1)−B(y2)‖Z .

Setting Y = V(y0), we verify hypothesis (2.8) with k = ε/d0. Thus Theorem 2.1
implies the existence and uniqueness of the solution of problem (3.19). From

5We remark that in the Theorem proved in [9] Y is a Banach space and Z is a normed

space.
6We say that f strongly approximates F , with respect to y, at (x0, y0) (written: f ≈y F

in (x0, y0)) if for all ε > 0 there exist two neighbourhoods of x0 and y0, respectively, U(x0)
and V(y0), such that: ‖f(y1)−f(y2)− [F (x, y1)−F (x, y2)]‖Z ≤ ε‖y1−y2‖Y , for all x ∈ U(x0)

and all y1, y2 ∈ V(y0).
7δ(f, V (y0)) = inf{‖f(y1)− f(y2)‖Z/‖y1 − y2‖Y , y1 6= y2, y1, y2 ∈ V (y0)}
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the hypothesis (3.18) above, it follows that B−1 = f−1 is Lipschitzian, while for
(3.16) above also x → F (x, y) is Lipschitzian. Hence by (iv) of Theorem 2.2 we
obtain that y = y(x) is Lipschitzian in a neighbourhood of x0. We make the
calculation of Lipschitz modulus λ by using hypotheses (3.15), (3.16) and (3.18)
and by proceeding in the same way as in the proof of Theorem 3.2 of [9]. �

4. Some examples

Example 4.1. (An application of Implicit Function Theorem to a class of
non variational elliptic systems).

Let g(x, v) be a map, Ω × RN → RN , measurable in x and continuous in v

with the following properties
(4.1) g(x, 0) = 0 a.e. in Ω.
(4.2) There exists a real constant c, with c < λ0 (where λ0 is the first eigenvalue

of the Laplace operator −∆) such that, for all v, w ∈ RN

0 ≤ (g(x, v)− g(x,w)|v − w)N a.e. in Ω,

‖g(x, v)− g(x, w)‖N ≤ c‖v − w‖N a.e. in Ω.

We consider the following problem: given f : Ω → RN , find u such that

(4.3)

{
u ∈ H2 ∩H1

0 (Ω, RN ),

a(x,H(u)) + g(x, u) = f(x), a.e. in Ω.

We use Theorem 2.1 for solving this problem and prove the following

Proposition 4.1. Let us assume that conditions (1.2)–(1.3) on a and (4.1)–
(4.2) on g hold, with c < 1− (γ + δ)/αλ0, if f ∈ L2(Ω, RN ) then problem (4.3)
has one and only one solution.

We are going to use the notations of Theorem 2.1 and set

F (f, u) = a(x,H(u)) + g(x, u)− f, X = L2(Ω, RN ),

B(u) = ∆u + αg(x, u), Y = H2 ∩H1
0 (Ω, RN ),

C(u) = ∆u, B = L2(Ω, RN ).

The proof of Proposition 4.1 is preceeded by the following Lemmas.

Lemma 4.1. If αc < λ0 then B is near to C in X, i.e.

(4.4) ‖C(u)− C(v)− [B(u)−B(v)]‖B ≤ k1‖C(u)− C(v)‖B, ∀u, v ∈ X,

where k1 = αc/λ0 < 1.
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Proof. By (4.2) we have

‖C(u)− C(v)− [B(u)−B(v)]‖2B = α2

∫
Ω

‖g(x, u)− g(x, v)‖2N dx

≤ α2c2

∫
Ω

‖u− v‖2N dx.

From the following known inequalities and from (4.5) the results follow if αc < λ0:

λ0

∫
Ω

‖u‖2Ndx ≤
∫

Ω

‖Du‖2Nn dx, λ0

∫
Ω

‖Du‖2Nndx ≤
∫

Ω

‖∆u‖2Ndx. �

Lemma 4.2. If αc < λ0 and u, v ∈ H2 ∩H1
0 (Ω, RN ) then:

(4.6)
∫

Ω

‖∆(u− v)‖2Ndx ≤ k2(c)
∫

Ω

‖∆(u− v) + α[g(x, u)− g(x, v)]‖2N dx

where k2(c) = λ2
0/(λ0 − αc)2.

Proof. From (4.4) we obtain:

‖C(u)− C(v)‖B ≤ ‖C(u)− C(v)− [B(u)−B(v)]‖B + ‖B(u)−B(v)‖B
≤ k1‖C(u)− C(v)‖B + ‖B(u)−B(v)‖B.

From this the result follows easily. �

Lemma 4.3. If u ∈ H2 ∩H1
0 (Ω, RN ) then (see [9], [11])

(4.7)
∫

0

‖H(u)‖2n2N dx ≤
∫

Ω

‖∆u‖2N dx.

Proof of Proposition 4.1. F (f, u) and B satisfy the assumptions of The-
orem 2.1. In particular by Theorem 1.1, B is bijective between Y and B. In-
deed, by Lemma 4.1, B is near C, which is bijective between Y and B. It
remains to prove the nearness hypothesis (2.8). If f ∈ L2(Ω, RN ) and u ∈
H2(Ω) ∩H1

0 (Ω, RN ) then by Condition A and Lemmas 4.38 and 4.2 we have

‖B(u)−B(v)− α[F (f, u)− F (f, v)‖2B

=
∫

Ω

‖∆(u− v)− α[a(x, H(u))− a(x, H(v))]‖2N dx

≤
∫

Ω

(γ‖H(u)−H(v)‖n2N + δ‖∆(u− v)‖N )2 dx

≤ γ(γ + δ)
∫

Ω

‖H(u)−H(v)‖n2Ndx + δ(γ + δ)
∫

Ω

‖∆(u− v)‖2N dx

≤ (γ + δ)2
∫

Ω

‖∆(u− v)‖2N dx

≤ (γ + δ)2k2(c)
∫

Ω

‖∆(u− v) + α[g(x, u)− g(x, v)]‖2N dx.

8It follows from: (γG+δD)2 ≤ γ(γ +δ)G2 +δ(γ +δ)D2 for all G, D ∈ R, for all γ, δ ∈ R+.
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If c < λ01− (γ + δ)/α then (γ + δ)2k2(c) = (γ + δ)2λ2
0/(λ0 − αc)2 < 1. The

thesis of Proposition follows from Theorem 2.1 and Remark 2.3. �

Remark 4.1. We also obtain the following known proposition by Lemma 4.1
and Theorem 2.1 (or Theorem 1.1): if (4.1), (4.2) hold in g, then ∆u + g(x, u)
is bijective between H2 ∩H1

0 (Ω, RN ) and L2(Ω, RN ).

Remark 4.2. From Proposition 4.1 it also follows: if c < 1− (γ + δ)/αλ0

then there are no bifurcation points for the operator G(λ, u) = a(x, H(u)) + λu

when λ < c.

Example 4.2 (An open mapping Theorem). Let X be a set and B be a
Banach space with norm ‖ · ‖; let A,B : X → B. We prove the following open
mapping theorem.

Theorem 4.1. Let A be near B in X . Let y0 ∈ X such that B(X ) is a
neighbourhood of B(y0) then A(X ) is a neighbourhood of A(y0).

Proof. With the notation of Section 2 we are going to apply Theorem 2.3:

X = B, Y = X , Z = B,

F (f, y) = A(y)− f, f ∈ X, y ∈ Y,

A(y0) = f0, (then F (f0, y0) = 0), B(y0) = z0,

f → F (f, y0) is continuous.

It remains to prove hypothesis (2.8):

‖B(y1)−B(y2)− α[F (f, y1)− F (f, y2)]‖
= ‖B(y1)−B(y2)− α[A(y1)−A(y2)]‖ ≤ k‖B(y1)−B(y2)‖.

The hypotheses of Theorem 2.3 are proved. Hence there exist S(z0, σ) ⊆ B(X )
and a neighbourhood V (f0) ⊆ B such that for all f ∈ V (f0) there exists a subset
G(f) ⊆ B−1S(z0, σ), where F (f, y) = 0, for all y ∈ G(f). Thus: A(y) − f = 0.
So the neighbourhood V (f0) ⊆ A(X ). �

Example 4.3. (A operator near to identity on L2(Ω) but not F -differen-
tiable). Let A : L2(Ω) → L2(Ω) be such that A(u) = f(u(x)), where f(t) =
t(1 + arctg t2/2), t ∈ R. It is trivial to prove that there exists k ∈ (0, 1) such
that: ‖u − v − [A(u) − A(v)]‖L2(Ω) ≤ k‖u − v‖L2(Ω), for all u, v ∈ L2(Ω). A is
near identity on L2(Ω) but is not F -differentiable on L2(Ω), because:

(4.8) |f(t)| ≤
(
1 +

π

4

)
|t|, |f ′(t)| ≤ 2.

Indeed, if f satisfies (4.8) and A is F -differentiable then A must be linear (see,
for example, [1, Theorem 3.6]).
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Università di Pisa
Via F. Buonarroti 2,

I–56127 Pisa, ITALY

E-mail address: tarsia@dm.unipi.it

TMNA : Volume 11 – 1998 – No 1


