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SENSITIVITY PROBLEMS FOR SOME SHELLS WITH EDGES
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Dedicated to O. A. Ladyzhenskaya

1. Introduction

1.1. We wish to present a family of two-dimensional boundary value prob-
lems which are linear but exhibit some strong instabilities, so as to make in
particular numerical computation impossible.

Although very singular, the problems considered here have a physical origin.
We begin by explaining that origin; we then proceed in this introduction to give
a more general idea of what are the instabilities mentioned above.

1.2. Physical origin of the problems. We are dealing with a class of
slightly curved shells that we now describe. Let Ω be a 2-dimensional domain,
bounded, with smooth boundary ∂Ω, simply connected or not. Consider a surface
S defined by a function

(1.1) (x1, x2) → θ(x1, x2)

from Ω to R2 where θ is of the form

(1.2) θ(x1, x2) = (x1, x2, ψ(x1, x2))

where ψ denotes a smooth function Ω → R satisfying

ψ(x1, x2) > 0 for (x1, x2) ∈ Ω,(1.3)

ψ(x1, x2) = 0 for (x1, x2) ∈ ∂Ω.(1.4)
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Note that this is a very particular kind of surface, which is intersected only once
by straight lines parallel to the x3 axis.

In order to define what we mean by “slightly curved shells”, we “flatten” the
surface S. More precisely, we consider the family of surfaces Sδ

(1.5) x3 = δψ(x1, x2)

where δ > 0 is a small parameter.
Of course, physically the shell has some thickness so that we have to introduce

a new small parameter ε and consider the set

(1.6) δψ(x1, x2)− ε < x3 < δψ(x1, x2) + ε.

We shall consider the case when the small parameters δ, ε satisfy

(1.7) ε� δ � 1,

which defines the slightly curved shells.

Remark 1.1. The case when δ is of order 1 (with ε � δ) is that of a
“classical shell”. The case ε ≈ δ � 1 constitutes the “shallow shells”.

In order to consider edges, we introduce a variant of the above framework by
considering the surface made of the two half-surfaces S±δ defined by

(1.8) x3 = ±δψ(x1, x2).

Let û = {û1, û2, û3} denote the displacements of the shell under the action
of appropriate forces. They are obviously functions of ε, δ, x1, x2, x3 defined for
small ε and δ (satisfying (1.7), (x1, x2) ∈ Ω, x3 satisfying (1.6)). Under appro-
priate hypotheses (in particular hypothesis H below), some formal asymptotic
expansions (Sanchez-Palencia [1994]) show that the leading terms (when ε and
δ tend to zero) have the form

(1.9)
ûα =

ε2

δ

(
uα −

∂u3

∂xα
ψ

)
+ . . . , α = 1, 2,

û3 =
ε2

δ2
u3 + . . .

where the dots denote lower order terms, and u1, u2, u3 are functions independent
of δ, ε, x3, defined for (x1, x2) ∈ Ω. Of course, in the context of (1.8), we will
have two expressions (1.9) for the S±δ .

We shall only consider symmetric displacement fields, i.e. satisfying

û+
α (x1, x2) = û−α (x1, x2), α = 1, 2,(1.10)

û+
3 (x1, x2) = −û−3 (x1, x2).(1.11)
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Obviously û+ and û− must coincide on the edge, so that

(1.12) û+
3 (x1, x2) = û−3 (x1, x2) = 0 for (x1, x2) ∈ ∂Ω.

Thus the symmetric displacements will be characterized by û+
1 , û

+
2 , û

+
3 satisfying

û+
3 = 0 on ∂Ω where ψ = 0. According to (1.9), they are expressed in terms of
u1, u2, u3 defined on Ω and satisfying

(1.13) u3(x1, x2) = 0 for (x1, x2) ∈ ∂Ω,

and no other boundary conditions. Note, in particular, that any u1, u2 on the
boundary are consistent with a symmetric displacement.

The problem is now to define a boundary value problem which characterizes
u1, u2, u3.

1.3. Boundary value problem. We introduce the membrane elasticity
coefficients Aαβγδ satisfying the classical symmetry and positivity conditions:

(1.14) Aαβγδ = Aβαδγ = Aγδαβ ,

(1.15) Aαβγδξγδξαβ ≥ Cξαβξαβ , ∀ξαβ symmetric.

The expressions γαβ(v) which describe the variations of the first fundamental
form of the surface S+

δ are given by

(1.16) γαβ(v) = 1
2 (∂αvβ + ∂βvα)− ψ∂α∂βv3, α, β = 1, 2.

The deformation u of the shell (in fact, the physical deformation û is given by
(1.9)) is the function which minimizes

(1.17)
1
2

∫
Ω

Aαβγδγγδ(v)γαβ(v)−
∫

Ω

f ivi

over all functions v which are such that

(1.18) γαβ(v) ∈ L2(Ω)

and which satisfy the boundary condition (1.13).
In (1.17), the f i are properly scaled forces applied to the shell.
We then define the “configuration space of smooth functions” V (which will

later be completed to define a Hilbert space)

(1.19) V = {v = (v1, v2, v3) smooth Ω → R, satisfying v3 = 0 on ∂Ω}.

At this level, we make an important hypothesis:

Hypothesis (H). Let v ∈ V (defined in (1.19)). Then γαβ(v) = 0, α, β =
1, 2, implies v = {v1, v2, 0}, and {v1, v2} corresponds to a rigid displacement in
R2.
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Remark 1.2. (H) is a hypothesis concerning the geometric rigidity of the
surface. Notice that this hypothesis is independent of δ. If it is not satisfied, the
shell is called noninhibited, and the deformation has a structure different from
(1.9) (see Sanchez-Palencia [1994]), which will not be considered here.

1.4. Generalities on sensitivity. In the classical treatment of problems of
mechanics, linear theories are concerned with “small solutions”. Instabilities in
the linear theory lead to “large solutions”, which clearly need a nonlinear treat-
ment. This paper is concerned with a kind of highly unstable linear problems
called “sensitive problems” (Lions and Sanchez-Palencia [1994, 1996, 1997]), first
encountered in the theory of thin elastic shells.

Roughly speaking, the modelling of a physical problem defines a space V of
reasonably smooth solutions, a norm on this space (often an “energy norm”)
and a natural duality product, usually associated with the L2 scalar product (or
equivalently, duality between the space D of infinitely differentiable functions
with compact support and the space D′ of distributions). In order to handle
such a problem in the variational framework, we construct the Hilbert spaces V
and H obtained as the completions of V with the energy norm and the L2-norm
respectively. The usual situation is such that V ⊂ H, and we are led to the
classical situation

(1.20) V ⊂ H ≡ H ′ ⊂ V ′

where the prime denotes the dual space. But in certain cases, we have

(1.21) V 6⊂ H ≡ H ′ ⇔ H 6⊂ V ′.

The F. Riesz theorem defines an isomorphism between the “data space” V ′ and
the “solution space” V and there are “given forces” f ∈ H such that there is
no solution u in V . This situation is often encountered when the origin belongs
to the essential spectrum of the operator considered. Examples of this situation
appear in the theory of thin shells with folds (Geymonat and Sanchez-Palencia
[1995]).

A somewhat more pathological situation appears when

(1.22) V 6⊂ D′ ⇔ D 6⊂ V ′.

The problem is then said to be sensitive, as (1.3) implies that there are “forces”
f ∈ D such that there is no solution u (or at least u is not in V ). In other words,
there are (scaled) forces f which are infinitely small, smooth and with compact
support, such that the corresponding “solution” goes out of the energy space V
(which is “very large”. . .!).

Clearly, the existence of a scaled function f ∈ D \ V ′ implies a highly un-
stable phenomenon when the system is acted upon with that f . Moreover, the
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“number” of such f (i.e. the ”number of situations” leading to such an instability
phenomenon) may be considered as a “measure” of the instability of the system.
We shall prove in this paper that, for the problems under consideration, D ∩ V ′

is a somewhat “small set” in the sense that it is contained in a subspace of L2

with infinite codimension.

It should be pointed out that (fortunately!) not every shell problem is sensi-
tive. In fact, sensitivity is only concerned with some cases of the limit behavior
of shells when the parameter ε (which describes the ratio of the thickness to
the other of the shell) tends to zero. This limit behavior may be of two differ-
ent kinds, according to the geometric rigidity or lack of rigidity of the middle
surface, submitted to the kinetic boundary conditions. In the case of geomet-
ric ridigity (also called “inhibited case” as the pure bendings of the surface are
inhibited), the limit problem is concerned with the membrane approximation.
The corresponding system is of elliptic or hyperbolic type at elliptic or hyper-
bolic points of the surface, respectively. Then sensitivity is mainly concerned
with elliptic problems with a part of the boundary free of kinematic boundary
conditions as well as with certain surfaces with edges (see for instance Bernadou
and Ciarlet [1976] for a general framework and Sanchez-Palencia [1992] for the
limit behavior).

As for physical specific shells, it clearly appears that sensitivity-like insta-
bilities (and the corresponding difficulties of numerical computation) appear for
very small values of ε when the limit problem is sensitive.

At this point, it is worthwhile to point out some analogy with fluid mechan-
ics. Although the complete (i.e. including dissipative terms) equations of fluid
dynamics in the steady flow case are of elliptic type (at least in the incompress-
ible case, for which we refer to the classical works of J. Leray [1933, 1934] and
O. A. Ladyzhenskaya [1963]), the limit behavior as the dissipative terms tend
to zero is elliptic or hyperbolic at subsonic or supersonic points of the flow re-
spectively (Courant and Friedrichs [1948], Sect. 105, or von Mises [1958], Sect.
IV.16.3).

We now present, in a more precise fashion, the mathematical problems which
correspond to the above considerations. We study (Section 2) the elliptic case,
some generalizations being presented in Section 3. We conclude in Section 4 with
some further remarks.

2. Elliptic case

2.1. General remarks. We keep the notations of Section 1. We denote
by v = {v1, v2, v3} functions defined in Ω with values in R3. For the time being
they are assumed to be smooth in Ω. We define
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γ(v) = {γ11(v), γ22(v), γ12(v)},(2.1)

γ11(v) = ∂1v1 − ψ∂2
1v3,

γ22(v) = ∂2v2 − ψ∂2
2v3,(2.2)

γ12(v) = γ21(v) = 1
2 (∂1v2 + ∂2v1)− ψ∂1∂2v3.

The function ψ is given and smooth in Ω. More precisely, we shall assume that

(2.3) ψ ∈ C3(Ω), ψ = 0 on ∂Ω.

Remark 2.1. We have made no attempt to weaken hypothesis (2.3). But
ψ ∈ C2(Ω) would be enough. Whether it is possible to consider weaker assump-
tions on ψ is not clear.

Remark 2.2. Later on in this section, we shall make an “elliptic hypothesis”
on ψ. For the time being no further hypothesis is made. The remarks made here
will be used in Section 3.

We shall use the following result:

Lemma 2.1. The set of vectors v such that

(2.4) v = {v1, v2, 0}, γ(v) = 0

is given by

(2.5) v1 = α1 + βx2, v2 = α2 − βx1, αi, β ∈ R.

We shall denote by R this set. [It is the set of rigid displacements.]

Proof. This is physically obvious, as well as mathematically, since (2.4) is
equivalent to ∂1v1 = 0, ∂2v2 = 0 and ∂1v2 + ∂2v1 = 0, hence (2.5) follows. �

As we said in Section 1, in order to solve the equilibrium problem, we have
to introduce the functional (which is equivalent to the quadratic part of (1.17))

(2.6) E(v) = ‖γ11(v)‖2 + ‖γ22(v)‖2 + ‖γ12(v)‖2

where ‖f‖ = (
∫
Ω
f2 dx)1/2.

We now study the kernel of E(v).

2.2. The kernel of E(v). We introduce the following notations:

(2.7) a1 = ∂2
1ψ, a2 = ∂2

2ψ, a3 = ∂1∂2ψ, a = {a1, a2, a3},
(2.8) Pw = −∂1(a2∂1w)− ∂2(a1∂2w) + ∂1(a3∂2w) + ∂2(a3∂1w).

Remark 2.3. One can write P in the nonvariational form

(2.9) Pw = −a2∂
2
1w − a1∂

2
2w + 2a3∂1∂2w.

We have



Sensitivity Problems for Shells 7

Lemma 2.2. Let v be a smooth vector function in Ω such that

(2.10) E(v) = 0.

Then

(2.11) Pv3 = 0.

Proof. Of course, (2.10) is equivalent to

(2.12) γ11(v) = γ22(v) = γ12(v) = 0.

We can eliminate the components v1, v2 by considering the combination

∂2
2γ11(v) + ∂2

1γ22(v)− 2∂1∂2γ12(v),

which equals 0 if (2.12) holds true. One easily verifies that

(2.13) ∂2
2γ11(v) + ∂2

1γ22(v)− 2∂1∂2γ12(v) = Pv3,

hence (2.11) follows. �

2.3. Boundary conditions on v3 and ellipticity hypothesis. We shall
assume in the next part of this section that

(2.14) P is an elliptic operator, in the sense that a1a2 − a2
3 ≥ γ > 0 in Ω.

We now introduce (according to what has been said in Section 1)

(2.15) V = {v smooth Ω → R3 such that v3 = 0 on ∂Ω}.

We have

Lemma 2.3. We assume that P is elliptic (see (2.14)). Then, for v ∈ V,

(2.16) E(v) = 0 is equivalent to v ∈ R.

[We recall that R is defined in Lemma 2.1 (rigid displacements).]

Proof. According to Lemma 2.2, if E(v) = 0 then Pv3 = 0. Since P as
defined in (2.8) is elliptic and v3 = 0 on ∂Ω, by the maximum principle, v3 = 0
in Ω.

Thus γ(v) = 0 is equivalent to ∂1v1 = ∂2v2 = ∂1v2 + ∂2v1 = 0 and hence the
result follows. �

We then introduce

(2.17) ‖v‖V = E(v)1/2

in the quotient space V/R and we define in this way a norm (a pre-Hilbertian
norm).
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We then introduce the Hilbert space V defined by

(2.18) V = completion of V/R for the norm (2.17).

The main point is now to study the structure of V . Before starting this study, a
few remarks are in order.

Remark 2.4. The key point of Lemma 2.3 is the following uniqueness prop-
erty:

(2.19) v ∈ V, Pv3 = 0 implies v3 = 0.

The hypotheses made in Lemma 2.3 are that P is elliptic and that v3 = 0 on
∂Ω. Then (2.19) is true. But of course one can have a similar conclusion under
completely different hypotheses. We shall return to this in Section 3.

Remark 2.5. There is a natural example of different structure where (2.19)
is still true (cf. Section 3). We assume again that P is elliptic and that

(2.20) V = {smooth vectors v such that v3 = ∂v3/∂n = 0 on Γ0 ⊂ ∂Ω}.

Then (2.19) holds true according to the Cauchy Uniqueness Theorem.

2.4. Continuous linear forms on V . As we said in the Introduction, the
equilibrium of the thin shell is given by the solution of

(2.21) inf
(

1
2E(v)− 〈ϕ, v〉

)
where v → 〈ϕ, v〉 is a continuous linear form on V , i.e. on V/R provided with
the norm E(v)1/2.

We then introduce the space

(2.22) {D(Ω)3,R} = {ϕ | ϕ ∈ D(Ω)3, 〈ϕ, r〉 = 0, ∀r ∈ R},

i.e.

(2.23) 〈ϕ1, 1〉 = 〈ϕ2, 1〉 = 0, 〈ϕ1, x2〉 − 〈ϕ2, x1〉 = 0.

We are now going to prove the following result:

Theorem 2.1. Assume that P is elliptic (i.e. (2.14) holds true). Let ϕ be
given in {D(Ω)3,R} (defined in (2.22)). Consider the linear form

(2.24) v → 〈ϕ, v〉 defined on V/R.

In order that this form be continuous for the norm E(v)1/2 it is necessary that

(2.25) 〈ϕ, σ〉 = 0

for an infinite number of independent functions σ in L2(Ω)3.
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Remark 2.6. Condition (2.25) will be made more explicit in the proof to
follow. The condition that we obtain seems to be sufficient.

Proof of Theorem 2.1.

Step 1. We consider the mapping v → γ(v) (defined in (2.1)) from V/R to
(L2(Ω))3. By extension by continuity it defines an isometry from V to a closed
subspace of L2(Ω)3 = γ(V ). Now, if the linear form (2.24) is continuous then

ω → 〈γ−1(ω), ϕ〉

is continuous on γ(V ) ⊂ L2(Ω)3. If O ∈ L2(Ω)3 is an extension of this mapping,
we have

〈γ−1(ω), ϕ〉 = (O, ω)L2(Ω)3 ,

i.e. there exists O ∈ L2(Ω)3 such that

(2.26) (O, γ(v)) = 〈ϕ, v〉 ∀v ∈ V/R.

We are now going to show that if O exists then ϕ necessarily satisfies an
infinite number of conditions (2.25).

Step 2. We choose first v = {v1, 0, 0} ∈ V. Then (2.26) should hold true for
v + r, r ∈ R, and it reduces to

(2.27) (O1, ∂1v1) +
(
O3,

1
2∂2v1

)
= (ϕ1, v1).

Therefore

(2.28) −∂1O1 − 1
2∂2O3 = ϕ1 in Ω.

If n = {n1, n2} denotes the unit normal to ∂Ω oriented towards the exterior
of Ω, it follows from O ∈ L2(Ω)3 and (2.28) that n1O1 + 1

2n2O3|∂Ω is defined
(in H−1/2(∂Ω); cf. J. L. Lions and E. Magenes [1968]). Since in (2.27), v1 is
arbitrary in Ω, it follows that

(2.29) n1O1 + 1
2n2O3 = 0 on ∂Ω.

In a similar way, we take v = {0, v2, 0} ∈ V in (2.26), which leads to

−∂2O2 − 1
2∂1O3 = ϕ2 in Ω,(2.30)

n2O2 + 1
2n1O3 = 0 on ∂Ω.(2.31)

We now take in (2.26)

(2.32)
v = {0, 0, v3}, v3 smooth in Ω,

v3 = 0 on ∂Ω.

We obtain

(2.33) −∂2
1(ψO1)− ∂2

2(ψO2)− ∂1∂2(ψO3) = ϕ3.
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We transform (2.33) as follows. It can be written equivalently as

−∂1

(
ψ

(
∂1O1 + 1

2∂2O3

))
− ∂2

(
ψ

(
∂2O2 + 1

2∂1O3

))
(2.34)

− (∂1ψ)
(
∂1O1 + 1

2∂2O3

)
− (∂2ψ)

(
∂2O2 + 1

2∂1O3

)
−O1∂

2
1ψ −O2∂

2
2ψ −O3∂1∂2ψ = ϕ3.

Using (2.28), (2.30) and the notation (2.7), (2.34) gives

∂1(ψϕ1) + ∂2(ψϕ2) + (∂1ψ)ϕ1 + (∂2ψ)ϕ2 − (a1O1 + a2O2 + a3O3) = ϕ3.

We set

(2.35) ϕ∗3 = ϕ3 − ∂1(ψϕ1)− ∂2(ψϕ2)− (∂1ψ)ϕ1 − (∂2ψ)ϕ2.

Then

(2.36) aO = −ϕ∗3 where aO = a1O1 + a2O2 + a3O3.

No surface integral appears because of (2.29), (2.31) and of v3 = 0 on ∂Ω.
Therefore, if (2.24) is continuous for ‖v‖V , then there exists O ∈ L2(Ω)3 such

that (2.28), (2.30), (2.36) hold true with the boundary conditions (2.29), (2.31).
We are now going to show in the following two steps that this is in general

impossible, i.e. it is not true for every ϕ ∈ {D(Ω)3,R}.
Step 3. We introduce % = {%1, %2, %3} smooth in Ω such that

(2.37)

∂1%1 + a1%3 = 0,

∂2%2 + a2%3 = 0,
1
2 (∂2%1 + ∂1%2) + a3%3 = 0 in Ω.

We shall show in Step 4 that such a choice is possible in infinitely many ways.
We multiply (2.28), (2.30), (2.36) by %1, %2, %3 respectively.
Let us set for the moment

(2.38) λ = (ϕ1, %1) + (ϕ2, %2)− (ϕ∗3, %3).

Then(
− ∂1O1− 1

2∂2O3, %1

)
+

(
− ∂2O2− 1

2∂1O3, %2

)
+ (a1O1 + a2O2 + a3O3, %3) = λ.

Using the boundary conditions (2.29), (2.31) and the properties (2.37) it follows
that λ = 0. Therefore the linear form (2.24) may be continuous for the norm
‖v‖V only if ϕ ∈ {D(Ω)3,R} satisfies λ = 0, i.e.

(2.39) (ϕ1, %1) + (ϕ2, %2)− (ϕ∗3, %3) = 0 ∀% satisfying (2.37).

Step 4. We introduce the space

(2.40) Z = {w | w ∈ H1(Ω), Pw = 0}.
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We define in this way an infinite-dimensional space. Indeed, given g ∈ H1/2(∂Ω),
we can solve

(2.41) Pw = 0, w = g on ∂Ω

which admits a unique solution in H1(Ω). Therefore

(2.42) Z is isomorphic to H1/2(∂Ω)

(the isomorphism being defined through (2.41)).
We now choose

(2.43) %3 = w ∈ Z.

We then choose %2 such that

(2.44) ∂2%2 = −a2%3, ∂2
1%2 = ∂2(a1%3)− 2∂2(a3%3).

This is possible since ∂2
1(−a2%3) = ∂2(∂2(a1%3)− 2∂1(a3%3)), which is equivalent

to P%3 = 0. Then we choose %1 such that

∂1%1 + a1%3 = 0, 1
2 (∂2%1 + ∂1%2) + a3%3 = 0.

This is possible since ∂2(a1%3) = ∂1(2a3%3 + ∂1%2), which is (2.44)2.
Therefore,

(2.45) for any g ∈ H1/2(∂Ω) there exists % ∈ (H1(Ω))3 such that (2.37) holds.

(In fact, we have a little more regularity on % than being in H1(Ω)3 but this is
not useful.)

We can now conclude the proof. We write (2.39) as (2.25) where

σ = {σ1, σ2, σ3},
σ1 = %1 − ψ∂1%3 + (∂1ψ)%3,

σ2 = %2 − ψ∂2%3 + (∂2ψ)%3,

σ3 = %3,

where %3 spans the infinite-dimensional space Z (cf. (2.40), (2.42)).
The proof is complete. �

3. Some generalizations

3.1. Abstract result. We introduce

(3.1) VB = {v | v smooth vectors Ω → R3 which satisfy the boundary

conditions Bv3 = 0 on ∂Ω}

where
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(3.2) B is a linear operator from smooth functions in Ω to C(∂Ω) or C(∂Ω)2,
where C(∂Ω) = space of continuous functions on ∂Ω.

We notice that the boundary conditions involve only v3.
We shall assume (using the notations (2.7), (2.8))

(3.3) Pv3 = 0, Bv3 = 0 implies v3 = 0

and

(3.4) the space {w | w smooth in Ω, Pw = 0 in Ω} is infinite-dimensional.

We can verify, following the steps of the proof of Theorem 2.1, that the result
of Theorem 2.1 still holds true, namely

Theorem 3.1. Assume that (3.3) and (3.4) hold true. Denote by VB the
completion of VB/R for the norm (2.17). Consider the linear form

v → 〈ϕ, v〉 defined on V/R.

In order that this form be continuous for the norm E(v)1/2, it is necessary that

〈ϕ, σ〉 = 0

for an infinite number of independent functions σ in L2(Ω)3.

3.2. Applications of Theorem 3.1

Example 3.1. We assume as in Section 2 that P is elliptic (strongly elliptic
in the sense of (2.14)) and that

(3.5) Bw = {w, ∂w/∂n} on Γ0 ⊂ ∂Ω.

Then (3.3), (3.4) hold true.

Remark 3.1. Example 3.1 has a physical interpretation. It corresponds,
after symmetrization (see (1.10), (1.11)), to the case when

• we impose on a part Γ0 of the edge the condition that the angle of S+

and S− remains invariant under the deformation (in addition to the
classical condition û+ = û−),

• the two lips of the edge are free on ∂Ω \ Γ0. In this case, (1.4) is only
assumed to hold on Γ0.

4. Concluding remarks

Remark 4.1. System (1.16) (or (2.2), which is more explicit) is non-Kovalev-
skian. It appears that the principal symbol obtained by the substitution ∂1 →
iξ1, ∂2 → iξ2, with ξ = (ξ1, ξ2) ∈ R2 \ {O}, has a determinant which vanishes
identically. At each point (x1, x2), the characteristic directions are normal to
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the ξ for which this determinant vanishes. Thus, any curve of the plane is
characteristic and the Cauchy–Kovalevskaya theorem never applies.

Remark 4.2. A consequence of the non-Kovalevskian character of system
(2.2) is that when eliminating v1, v2 one gets a second (not fourth!) order equa-
tion in v3 (see (2.8) and (2.13)). This property of the lowering of the order by
elimination is shared by several systems issuing from differential geometry (cf.
Janet [1929]).

Remark 4.3. The characteristic directions of the operator P (see (2.8)) at
each point (x1, x2) coincide with the asymptotic directions of the surface S (or
Sδ) at the corresponding point (x1, x2, ψ(x1, x2)). Thus the surface and the
operator are of the same type (elliptic or hyperbolic) at corresponding points.

Remark 4.4. We proved that, under the appropriate hypothesis, the space
V is not contained in D′(Ω)3/R (Theorems 2.1 and 3.1). Consequently, there
exist sequences vn of smooth functions (contained in V) such that

(4.1) γn
αβ ≡ γαβ(vn) converges in L2(Ω), α, β = 1, 2,

but

(4.2) vn does not converge in D′(Ω)3/R.

In particular,

(4.3) vn
3 does not converge in D′(Ω).

On the other hand, vn
3 is the solution of the Dirichlet problem (see (2.13))

(4.4) Pvn
3 = ∂2

2γ
n
11 + ∂2

1γ
n
22 − 2∂1∂2γ

n
12,

(4.5) vn
3 = 0 on ∂Ω,

where P denotes the second order operator defined in (2.8). It should be noticed
that according to (4.1) the right hand side of (4.4) converges in H−2(Ω), and
this does not imply that vn

3 converges in a space of distributions on Ω.
Indeed, let us consider in general the problem

(4.6) Pu = f, u = 0 on ∂Ω,

where f is given in H−2(Ω). Using the transposition method, as in J. L. Lions
and E. Magenes [1968], one solves first

(4.7) P ∗ϕ = ψ, ϕ = 0 on ∂Ω,

where ψ is in a “suitable” function space and then one “defines” u by

(4.8) 〈u, ψ〉 = 〈f, ϕ〉.
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If ψ → 〈f, ϕ〉 is a continuous linear form on the space Ψ of functions ψ, then
(4.8) defines u as an element of Ψ′, the dual space of Ψ. If f can be an arbitrary
element of H−2(Ω), then in order that the form ψ → 〈f, ϕ〉 be continuous, we
must have

(4.9) ψ → ϕ is a continuous mapping from Ψ to H2
0 (Ω) (= dual space of H−2).

But if we choose Ψ = D(Ω) then ϕ is C∞ in Ω; it can be C∞(Ω) if the coefficients
of P (or P ∗) are C∞ and if Γ = ∂Ω is C∞; of course ϕ = 0 on Γ; in general
∂ϕ/∂n is not 0 on Γ.

Other conditions, of a global nature, are needed on ψ ∈ D(Ω) in order to have
∂ϕ/∂n = 0 on Γ. Therefore, except if f satisfies (infinitely many) conditions of
a global nature, the solution u of (4.6) is not a distribution on Ω.

The present remark is independent of the boundary conditions which can be
imposed on v1 or on v2.

It gives a new proof of the fact that, in the elliptic case, the space V is not
a space of distributions on Ω, if one can check that

∂2
2γ11 + ∂2

1γ22 − 2∂1∂2γ12

can be any element of H−2(Ω), or, at least, can be an element of H−2(Ω) so
that (4.6) has no distribution solution. Actually, we need a sequence of “good”
functions which approximate (cf. (4.1)) such an element of H−2(Ω).

Remark 4.5. We now give an explicit example of a Cauchy sequence vn of
V which does not converge in D′(Ω)/R. In fact, we shall prove that vn

3 does not
converge in D′(Ω) (vn

3 tends to ∞ on compact subsets of Ω), giving an example
of the situation considered in Remark 4.4.

Let Ω be the unit circle and let S be the elliptic paraboloid

(4.10) ψ = 1
2 (x2

1 + x2
2 − 1) = 1

2 (r2 − 1)

where r2 = x2
1 + x2

2; for the sake of simplicity, we shall not change the name of
the functions when expressing them in cartesian or polar coordinates: ϕ(x1, x2)
or ϕ(r) are the two expressions in (4.10).

Let g(r) be an increasing function defined on [0, 1], vanishing for r ≤ 1/2 and
tending to ∞ as (1− r)−β with 0 < β < 1/2 for r → 1. Let us also define

(4.11) gn(r) =

{
g(r) for r < 1− 1/n,

g(1− 1/n) for r > 1− 1/n.

Clearly, gn ∈ L2(Ω) (and even H1(Ω)) and

(4.12) gn → g in L2(Ω).
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Now, we shall construct (vn
1 , v

n
2 , v

n
3 ) such that the corresponding γn

αβ ≡ γαβ(vn)
(see (2.2)) are

(4.13) γn
11 = gn(r), γn

22 = gn(r), γn
12 = 0.

In other words, we wish to construct (vn
1 , v

n
2 , v

n
3 ) satisfying

(4.14)

∂1v
n
1 − ψ∂2

1v
n
3 = gn(r),

∂2v
n
2 − ψ∂2

2v
n
3 = gn(r),

1
2 (∂2v

n
1 + ∂1v

n
2 )− ψ∂1∂2v

n
3 = 0,

with the boundary condition

(4.15) vn
3 = 0 on ∂Ω.

In order to solve (4.14), (4.15), we eliminate vn
1 and vn

2 and we obtain (see (2.13)
and (2.8) with a1 = a2 = 1, a3 = 0, if necessary)

(4.16) −∆vn
3 = ∆gn,

so that vn
3 is uniquely defined by (4.15), (4.16). (Note that this is a classical

problem as gn ∈ H1(Ω).)
The solution only depends on r and is

(4.17) vn
3 (r) = −gn(r) + gn(1).

When vn
3 is defined in this way, (4.14) defines vn

1 , v
n
2 up to a rigid displacement

in the plane (this is a classical property of kinematics of continuous media, which
is easily checked as (4.16) is the compatibility condition for (4.13) considered as
a system for the unknowns vn

1 , v
n
2 ). On account of (4.12), the sequence vn =

(vn
1 , v

n
2 , v

n
3 ) constitutes a Cauchy sequence in the space V defined in (2.18).

Nevertheless, vn
3 does not converge in D′(Ω); indeed,

(4.18) vn
3 =

{
−g(r) + g(1− 1/n) for r < 1− 1/n,

0 for r > 1− 1/n,

tends to ∞ on any compact subset of Ω.
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Paris, 1929.

[5] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow,

Gordon and Breach, New York, 1963.
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vol. 1, Dunod, Paris, 1968.

[9] J. L. Lions et E. Sanchez-Palencia, Problèmes aux limites sensitifs, C. R. Acad.
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