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FIXED POINT INDEX
FOR G-EQUIVARIANT MULTIVALUED MAPS

Zdzis law Dzedzej1 — Grzegorz Graff

Introduction

The goal of this paper is to extend the construction of the index, which was
defined for a class of nonacyclic multivalued maps in [6], to the G-equivariant
case (G is a finite group). Our index λG(Φ) is an element of the Burnside ring
A(G). We use some properties of the Burnside ring to prove several relations
between the indices of the map Φ restricted to various sets of fixed points of a
G-action.

We partially base on the ideas of Marzantowicz [10]. The congruences we
obtain are similar to the results proved by Komiya [8] for single-valued maps.

The organization of this paper is as follows. In the first and second sections we
review some of the standard facts on G-actions and multivalued maps. Section 3
contains a sketch of the definition of the index for a broad class of nonacyclic
maps. Section 4 presents the construction of the G-chain approximation. In the
last section we define the G-index (Def. (5.5)) and prove Komiya-type relations
between indices.

1. Finite group actions

Let G be a finite group. If H ⊂ G is a subgroup, we denote by G/H the
space of left cosets Hg.
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Two subgroups H and K of G are conjugate if there exists g ∈ G such that
K = g−1Hg. The conjugacy class of H is denoted by (H). There is a partial
order in the set of conjugacy classes of subgroups defined as follows: (H) ≥ (K)
if there exist H ∈ (H) and K ∈ (K) such that K ⊂ H. We denote by SG a
complete set of representatives of conjugacy classes in G.

If K and H are subgroups of G then the set

N(K,H) = {g ∈ G : g−1Kg ⊂ H}

is the normalizer of K with respect to H.
A G-set is a pair (X, ξ), where X is a set and ξ : G ×X → X a map such

that

(i) ξ(g1, ξ(g2, x)) = ξ(g1g2, x) for g1, g2 ∈ G and x ∈ X,
(ii) ξ(e, x) = x for x ∈ X, where e ∈ G is the unit.

In the sequel we denote ξ(g, x) by gx.
For each subgroup H ⊂ G the set G/H is a G-set via the formula g(g̃H) =

gg̃H.

A G-space is a G-set (X, ξ) for which X is a topological space and ξ is
continuous.

For x ∈ X, the subgroup Gx = {g ∈ G : gx = x} of G is the isotropy group
of X at x. We denote by Iso(X) the set of all isotropy types in X, i.e. the set of
conjugacy classes of isotropy groups. The set Gx = {gx : g ∈ G} is called the
orbit through x.

For a given subgroup H ⊂ G we specify several subspaces of the G-space X:

XH = {x ∈ X : H = Gx},
X(H) = {x ∈ X : (H) = (Gx)},(1.1)

called the (H)-orbit bundle of X,

XH = {x ∈ X : H ⊂ Gx},

the H-fixed point set of X, and

X(H) = {x ∈ X : (H) ≤ (Gx)}.

A subset A of a G-space X is G-invariant (or a G-subspace) if gy ∈ A for all
g ∈ G and y ∈ A.

Suppose X and Y are G-spaces. A continuous map f : X → Y is a G-map
or a G-equivariant map if f(gx) = gf(x) for all g ∈ G and x ∈ X.

AG-complex is a simplicial complexX which is aG-set such that for all g ∈ G
the homeomorphism g : X → X is a simplicial map. A G-complex X is regular if
the following condition is satisfied: For all g0, . . . , gn ∈ G, if (v0, v1, . . . , vn) and
(g0v0, g1v1, . . . , gnvn) are two simplices in X, then there exists g ∈ G such that
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gvi = givi. For any simplicial G-complex X, its second barycentric subdivision
turns out to be a regular complex (see [3], III).

In the sequel we always assume G-complexes to be regular. One shows that
for X a regular G-complex, XH is a simplicial subcomplex and X(H) is a G-
subcomplex for each subgroup H ⊂ G.

Let C∗(X) denote the oriented chain complex (with any coefficients). If X
is a regular G-complex, then C∗(X) is a G-set with the natural G-action given
on simplices by g(v0, . . . , vn) = (gv0, . . . , gvn).

2. Multivalued maps

Let X, Y be topological spaces. We say that Φ : X → Y is a multivalued map
if a compact, nonempty subset Φ(x) of Y is given for each x ∈ X. The image
of a subset A ⊂ X under Φ is the set Φ(A) =

⋃
x∈A Φ(x). A multivalued map

Φ : X → Y is upper semicontinuous (u.s.c.) provided for any open set U ⊂ Y its
small pre-image

Φ−1(U) = {x ∈ X | Φ(x) ⊂ U}

is open in X. It is lower semicontinuous (l.s.c.) if for any open set U ⊂ Y its
large pre-image

Φ+1(U) = {x ∈ X | Φ(x) ∩ U 6= ∅}

is open in X. Finally, Φ is called continuous if it is both u.s.c. and l.s.c.
We call a compact space A acyclic if

Ȟi(A;F ) =

{
0 for i > 0,

F for i = 0,

where Ȟ(·, F ) is the Čech homology functor with coefficients in the field F .

(2.1) Definition. An u.s.c. map Φ : X → Y is acyclic if Φ(x) is acyclic for
all x ∈ X. The class of acyclic maps from X to Y is denoted by A1(X,Y ).

(2.2) Definition. Let m > 1 be an integer. We say that Φ : X → Y

belongs to the class Am(X,Y ) if it is continuous and Φ(x) has either 1 or m
acyclic components for any x ∈ X.

Example. Let C be the complex plane. We define a multivalued map Φ :
C → C by Φ(x) = {z ∈ C : zm = x}. One easily checks that Φ ∈ Am(C,C).

(2.3) Definition. Let X, Y be two G-spaces. A multivalued map Φ :
X → Y is G-equivariant provided

(i) Φ(gx) = gΦ(x) for all x ∈ X and g ∈ G,
(ii) if y, gy ∈ Φ(x) then y = gy.
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Note that in the case of a single-valued Φ the condition (ii) is superfluous.
However, we need the natural fact:

(2.4) Proposition. If Φ : X → Y is G-equivariant, then for each subgroup
H ⊂ G,

(i) Φ(XH) ⊂ Y H ,
(ii) Φ(X(H)) ⊂ Y (H).

Proof. Let x ∈ XH , y ∈ Φ(x) and g ∈ H. Then

y ∈ Φ(x) = Φ(g−1x) = g−1Φ(x).

So y ∈ Φ(x) and gy ∈ Φ(x) and thus by (2.3)(ii), y = gy, i.e. y ∈ Y H .
We denote by D(X,Y ) the set of all compositions of the form

X = X0
Φ1→ X1

Φ2→ X2 → . . .→ Xn−1
Φn→ Xn = Y,

where Φi ∈ Ak(Xi−1, Xi) for some k = 1, 2, . . .

We can view elements ofD(X,Y ) as morphisms. They determine u.s.c. maps.
However, two different compositions may determine the same map (cf. [6]).

We say that Φ = (Φ1, . . . ,Φn) ∈ D(X,Y ) is G-equivariant if all the Xi are
G-spaces and the Φi are G-equivariant maps.

We also consider an assumption stronger than acyclicity:

(S) Let A ⊂ X. For each component Ai of A and for each neighbourhood
Ai ⊂ U ⊂ X there exists a smaller neighbourhood V with Ai ⊂ V ⊂ U

such that the inclusion i : V → U induces the trivial homomorphism
i∗ : H∗(V,Z) → H∗(U,Z).

Observe that if Ai has a trivial shape, then it satisfies (S). Denote by AS
i the

class of maps Φ ∈ Ai(X,Y ) satisfying (S), and by DS(X,Y ) their compositions.

3. Chain approximations and index

In this section we sketch the fixed point theory for elements of D(X,X) as
given in [6]. We use the chain approximation technique developed in [12]. Let
(K, τ) be a compact polyhedron with a fixed triangulation τ . Its nth barycentric
subdivision is denoted by τn. A subset U ⊂ K is polyhedral if there is an integer
l such that τ l induces a triangulation of the closure U of U in K. The kth closed
star of a subset B in K is defined recursively:

St1(B, τ) = St(B, τ) =
⋃
{σ ∈ τ : σ ∩B 6= ∅},

Stk(B, τ) = St(Stk−1(B, τ), τ).

A simplex σ ∈ τ is always assumed to be closed. Let l be a natural number
and F a field. We denote by C∗(K, τ l) the oriented chain complex C∗(K, τ l;F )
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(see [14]). The carrier of c ∈ C∗(K, τ), carr c, is the smallest subpolyhedron
X ⊂ K such that c∗ ∈ C∗(X, τ). We denote by b : C∗(K, τ) → C∗(K, τ l)
the standard barycentric subdivision map and by χ : C∗(K, τ l) → C∗(K, τ)
any chain mapping induced by a simplicial approximation of the identity id :
(K, τ l) → (K, τ).

(3.1) Definition. Let Φ : (K, τ) → (L, µ) be an u.s.c. multivalued map
and l, k natural numbers. A chain map ϕ : C∗(K, τ l) → C∗(L, µk) is called an
(n, k)-approximation of Φ if for each simplex σ ∈ τ l there exists a point y(σ) ∈ K
such that

σ ⊂ Stn(y(σ), τk) and carrϕσ ⊂ Stn(Φ(y(σ)), µk).

(3.2) Definition. A graded set A(Φ) = {A(Φ)j}j∈N, where

A(Φ)j ⊂ hom(C∗(K, τ j), C∗(L, µj)),

is called an approximation system (A-system) for Φ if there is an integer n = n(A)
such that

(3.2.1) if ϕ ∈ A(Φ)j , then ϕ = ϕ1 ◦ b, where ϕ1 is an (n, j)-approximation of Φ;
(3.2.2) for every j ∈ N there exists j1 ∈ N such that for m ≥ l ≥ j1 and for all

ϕ = ϕ1 ◦ b ⊂ A(Φ)l and ψ = ψ1 ◦ b ∈ A(Φ)m and m1 ≥ l1 the diagram

C∗(K, τ l1)
ϕ1−−−−→ C∗(L, µl)xχ xχ

C∗(K, τm1)
ψ1−−−−→ C∗(L, µm)

is homotopy commutative with a chain homotopy D satisfying the fol-
lowing smallness condition: for any simplex σ ∈ τm1 there exists a point
z(σ) ∈ K such that

(∗) σ ⊂ Stn(z(σ), τ j) and carrD(σ) ⊂ Stn(Φ(z(σ)), µj).

The above definition looks a little sophisticated, but it allows us to define
the index properly. Let U ⊂ K be an open polyhedral subset and let Φ : U → K

be an u.s.c. map such that x 6∈ Φ(x) for x ∈ ∂U . Let A(Φ) be an A-system for
Φ. Then the index indA(K,Φ, U) ∈ F is defined as follows: Denote by

pU : C∗(K, τk) → C∗(U, τk)

the natural linear projection. Let ϕ ∈ A(Φ)k. Then the local Lefschetz number
is defined by the formula

λ(pU ◦ ϕ) =
dimK∑
i=0

(−1)i tr(pU ◦ ϕ)i.
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It is proved in [12] that for k0 sufficiently large the above element of F is inde-
pendent of the choice of ϕ ∈ A(Φ)k (k ≥ k0), since all the approximations are
small homotopic (i.e. they satisfy (3.2.2)(∗)).

(3.3) Definition.

indA(K,Φ, U) := λ(pU ◦ ϕ) for ϕ ∈ A(Φ)k.

This index satisfies all the standard properties of a fixed point index (al-
though it may depend on the choice of an A-system for Φ in general). For
detailed proofs see [12].

Therefore the existence of an index theory for any class of u.s.c. maps reduces
to the existence of an A-system. For example, if Φ is a single-valued continuous
map, then the set of all chain maps induced by simplicial approximations of Φ
forms an A-system and by the uniqueness theorem it gives the classical Hopf
fixed point index. In [12] the existence of A-systems for acyclic maps was also
proved. Moreover, all A-systems for such maps are equivalent (see [12]). The
existence of an A-system for elements of D(X,X) is the main result of [6].

This index theory can be generalized to the more general situations where X
is a compact ANR-space by using r-domination arguments (see [6] for detailed
proofs).

4. Equivariant chain approximations

In this section we shall prove that a G-equivariant set-valued map from
Ai(X,Y ) has equivariant chain approximations.

We adapt the proof from [6]. We start by recalling some notation (cf. [3]).
Let G be a finite group and X,Y compact G-spaces.

(4.1) Definition. An open covering α ∈ CovX is a G-covering if

(i) U ∈ α implies that gU ∈ α for each g ∈ G,
(ii) U ∩ gU 6= ∅ ⇒ U = gU , for each U ∈ α and g ∈ G.

(4.2) Definition. A G-covering α of X is regular if for each subgroup
H ⊂ G the following condition holds: If U0 ∩ . . . ∩ Un 6= ∅ 6= h0U0 ∩ . . . ∩ hnUn
for some Ui ∈ α and hi ∈ H, then there exists h ∈ H such that hUi = hiUi for
i = 0, 1, . . . , n.

Recall that the nerve N(α) of the covering U ∈ CovX is a simplicial complex
with all U ∈ α as vertices. (U0, . . . , Un) forms a simplex in N(α) if U0 ∩ . . .∩Un
6= ∅. So U being a G-covering implies that N(α) is a G-complex, and U being
regular implies that N(α) is a regular G-complex. Denote the family of all finite
regular G-coverings of X by CovGX.
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(4.3) Proposition (see [3]). If X is a compact G-space then CovGX is a
cofinal family in CovX.

Let α, β ∈ CovGX and let α be a refinement of β. Then there exists a natural
map Πα

β : α → β which is equivariant, i.e. U ⊂ Πα
β(U) and Πα

β(gU) = gΠα
β(U).

We denote by N (n)(α) the n-skeleton of N(α) and by C∗(N (n)(α)) the complex
of oriented chains with coefficients in a field F . The Kronecker index of a 0-chain
c =

∑
ciσi ∈ C0(N (n)(α)) is the sum

∑
ci.

(4.4) Definition (see [6]). Let α, α ∈ CovX, β, β ∈ Cov Y and Φ ∈
Am(X,Y ). A chain map

ϕ : C∗(N (n)(α)) → C∗(N (n)(β))

is an (α, β)-approximation of Φ if

(i) ϕ multiplies the Kronecker index by m,
(ii) for each simplex σ ∈ N (n)(α) there exists a point p(σ) ∈ X such that

suppσ ⊂ St(p(σ), α), suppϕ(σ) ⊂ St(Φ(p(σ)), β),

(iii) for any vertex v ∈ C0(N(α)),

suppϕ(v) ∩ St(Cj , β) 6= ∅,

where the Cj are connected components of the set Φ(p(v)).

The following theorem is an analogue of the classical simplicial approximation
theorem.

(4.5) Theorem ([6], 4.3). Let X, Y be compact spaces, Φ ∈ Am(X,Y ) and
α ∈ CovX, β ∈ Cov Y . For each n ∈ N there exist a refinement α of α and an
(α, β)-approximation ϕ : C∗(N (n)(α)) → C∗(N (n)(β)) of Φ.

Our aim is to obtain a G-equivariant version of (4.5). We start with a
technical result.

(4.6) Lemma. Let X,Y be two compact G-spaces and Φ ∈ Am(X,Y ) a G-
equivariant map. For any finite G-coverings α0 ∈ CovGX and β0 ∈ CovG Y
and n ∈ N there exist sequences of coverings αi ∈ CovGX and βi ∈ CovG Y
with

αn+1 ≥ αn ≥ . . . ≥ α0, βn+1 ≥ βn ≥ . . . ≥ β0

such that for each simplex s ∈ N(αi) there exist a point a(s) ∈ X and a covering
βi−1(s) ∈ CovG Y (βi ≥ βi−1(s) ≥ βi−1) with the following properties:

(i) supp s ⊂ St(a(s), αi−1),
(ii) a(gs) = g(a(s)),
(iii) Φ(St(supp s, αi)) ⊂ St(Φ(a(s)), βi−1(s)),
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(iv) if Cj(a(s)) are the components of Φ(a(s)), then the sets St2(Cj(a(s)),
βi−1(s)) are pairwise disjoint,

(v) Φ(y) ∩ St(Cj(a(s)), βi−1(s)) 6= ∅ for all y ∈ St(supp s, αi),
(vi) Πβi−1(s)

βi−1 ∗ : Ȟ∗(N(βi−1(s)|St2(Cj(a(s)),βi−1(s)))

→ Ȟ∗(N(βi−1)|St(Φ(a(s)),βi−1))

is a zero homomorphism of reduced homology spaces.

Proof. Let n = 0. For each x ∈ X every component Cj of Φ(x) is acyclic,
so by continuity of the Čech homology functor there exists β ≥ β0(x) ∈ CovGX
such that St2(Cj , β0(x)) are pairwise disjoint and

Πβ
β0

: Ȟ∗(N(β)|St2(Cj ,β)) → Ȟ∗(N(β0)|St(Φ(x),β0))

are trivial homomorphisms (cf. [6], 1.3).
Since Φ is continuous, there exists a neighbourhood Ux of x such that

(i) Φ(Ux) ⊂ St(Φ(x), β),
(ii) Φ(y) ∩ St(Cj , β) 6= ∅ for each y ∈ Ux.

Observe that the above property is nothing new whenever Φ(x) is acyclic, so
the l.s.c. assumption is superfluous in that case.

Without loss of generality we can assume that the covering {Ux}x∈X is a
regularG-covering and refines α0. Now we choose a finiteG-subcovering {Uxi

}ki=1

(with the property that if x = xi, then gxi = xl for some l = 1, . . . , k). Let α1

be a finite regular G-covering of X which is a star-refinement of {Uxi
}. For a

simplex s ∈ N(α1) we define a(s) := xi where supp s ⊂ Uxi
, and a(gs) := gxi.

Now set β0(s) := β0(xi) and let β1 be a common G-regular refinement of all
β0(xi). The same procedure works inductively for any n.

(4.7) Theorem. Let X,Y be two compact G-spaces, Φ ∈ Am(X,Y ) a G-
map, and α ∈ CovGX, β ∈ CovG Y. For every n ∈ N there exist a refinement
α ∈ CovGX of α and a G-equivariant (α, β)-approximation

ϕ : C∗(N (n)(α)) → C∗(N (n)(β)) of Φ.

Proof. We take the sequences (αi, βi) from Lemma (4.6) with α0 = α,

β0 = β and define α = αn+1.

The desired chain map ϕ is constructed inductively. Since the proof is similar
to [6], 4.3, we only present the first two steps.

k := 0: Let s0 be a vertex of N(α). By (4.6) we have a point a(s0) ∈ X.

For Φ(a(s0)) connected we define ϕ0s0 := ma, where a is an arbitrary vertex of
N(βn+1) with supp a ⊂ St(Φ(a(s0)), β(s0)).

If Φ(a(s0)) consists of m components, then

ϕ0s0 := a1 + . . .+ am,
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where the ai are vertices of N(βn+1) such that supp ai ⊂ St(Ci(a(s0)), βn(s0)).
For a vertex gs0 in the same orbit we have the same situation with Φ(a(gs0)) =
Φ(ga(s0)) and we define ϕ0gs0 := mga or

ϕ0gs0 := ga1 + . . .+ gam,

respectively. Then we extend it to a linear G-map ϕ0 : C0(N(αn+1)) →
C0(N(βn+1)).

k := 1: Let s be a 1-simplex in N(α) (the first one of a given orbit). Then
∂s = s1 − s0. Since the points a(s0) and a(s1) belong to St(supp s, αn), we have

Φ(a(s0)) ∪ Φ(a(s1)) ⊂ St(Φ(a(s)), βn−1(s)))

by (4.6)(iii). Let

ϕ0∂s =
∑

ai −
∑

bi, ai, bi ∈ C0(N(βn+1)).

If Φ(a(s)) is connected, then by (4.6)(vi),

Πβn+1
βn−1

( ∑
(ai − bi)

)
=

∑
∂ci, where ci ∈ C1(N(βn−1)).

If Φ(a(s)) =
⋃m
i=1 Ci(a(s)), then

supp(ai − bi) ⊂ St(Ci(a(s)), βn−1(s))

for each pair ai, bi. Thus

Πβn+1
βn−1

(ai − bi) = ∂ci, where supp ci ⊂ St(Ci(a(s)), βn−1).

Now we can define ϕ1s :=
∑
ci. For 1-simplices from the same orbit we define

ϕ1 by equivariance: ϕ1gs :=
∑
gci. This definition is correct provided (4.6)(vi)

is satisfied uniformly for all gs. We can assume this is the case by choosing
sufficiently fine refinements.

We obtain a commutative diagram

C0(N(αn+1))
ϕ0 // C0(N(βn+1))

Π
βn+1
βn−1 //// C0(N(βn−1))

C1(N(αn+1))

∂

OO

ϕ1 // C1(N(βn−1))

∂

OO

where Πβn+1
βn−1

is also G-equivariant. Therefore

ϕ1 : C∗(N (1)(αn+1)) → C∗(N (1)(βn−1))

has been defined (on 0-chains ϕ1c := (Π◦ϕ0)c). This procedure is now continued
inductively and in the nth step one obtains the desired approximation which is
G-equivariant by definition.
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Now let (K, τ) be a compact polyhedron with a fixed triangulation τ. We
associate a covering α(τ) with τ :

α(τ) := {ξ : ξ = Int St(υi, τ)},

where the υi are vertices of τ. There are simplicial maps Θ : (K, τ) → N(α(τ))
and λ : N(α(τ)) → (K, τ) defined on vertices by Θ(υ) := St(υ, τ) and λ(St(υ, τ))
:= υ. These maps define a canonical simplicial isomorphism between the com-
plexes (K, τ) and N(α(τ)). Moreover,

carr s ⊂ suppΘs and suppσ ⊂ St(carrλσ, α(τ)).

Let (Φ1, . . . ,Φk) ∈ D(K,L). Let τ be a triangulation of K and µ a triangu-
lation of L. Define Aj(Φ1, . . . ,Φk) to be the set of chain maps ϕ : C∗(K, τ j) →
C∗(L, µj) which are of the form ϕ = λ◦ϕk ◦ . . .◦ϕ1◦Θ◦b, where b is the standard
subdivision map. The graded set {Aj(Φ1, . . . ,Φk)}j is an A-system for the map
Φ determined by (Φ1, . . . ,Φk) (see [6], 5.3).

(4.8) Theorem. Assume that K, L are compact G-polyhedra, and let Φ =
(Φ1, . . . ,Φk) ∈ D(K,L). If all the spaces in the sequence

X0 = L
Φ1→ X1 → . . .→ Xk−1

Φk→ K

are G-spaces, and the maps Φi are G-equivariant, then the above-defined A-sys-
tem for Φ contains G-equivariant chain maps in each Ai(Φ1, . . . ,Φk).

Proof. It is enough to observe that the canonical maps Θ, λ, b are equi-
variant if K,L are G-complexes and use (4.7).

(4.9) Remark. Observe that if Φ ∈ DS(X,Y ) then it admits chain approx-
imations with integral coefficients. The same proof works.

5. Index of equivariant multivalued maps

Let G be a finite group.

(5.1) Definition (see [4], [5]). Let B(G) be the semiring of all finite G-
sets (up to isomorphism) with disjoint union as addition and cartesian product
as multiplication. The Burnside ring A(G) of G is the universal ring of B(G) in
the sense of Grothendieck.

The additive structure of A(G) is the free abelian group generated by the
G-sets of the form [G/H], where (H) runs through the elements of SG. Let H
be a subgroup of G and S, T finite G-sets. Denoting by |X| the cardinality of
the set X we have

|(S + T )H | = |SH |+ |TH |, |(S × T )H | = |SH ||TH |.
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Therefore the map S → |SH | extends to a homomorphism χH : A(G) → Z.
Since for conjugate subgroups the above homomorphisms are the same, we can
define

χ = (χH) : A(G) →
∏

(H)∈SG

Z.

(5.2) Theorem (see [4], [5]). The map χ is an injective ring homomor-
phism.

Let us recall the notion of the regular representation regFH of the group G over
a field F . As a linear space, regFH has a basis {e[g]} indexed by elements of the G-
setG/H. A linearG-action is given by ge[g] = e[gg]. LetM = k∗regFH . We denote
by M [K] the subspace spanned by those elements e[g] for which [g] ∈ (G/H)K .

(5.3) Theorem ([10]). Let M be the direct sum of a finite number of the
spaces regFH , and let f : M → M be a G-equivariant homomorphism such that
f(M [K]) ⊂M [K]. Then

tr f ≡ 0 mod |G/H|, tr(f |M [K]) =
|N(K,H)|

|G|
tr f.

Proof. It is enough to calculate the trace of f restricted to one component
regFH . Let

f(e[g]) =
∑

[bg]∈G/H

cg,bge[bg].

For each [g] ∈ G/H there is h ∈ G such that [g] = [hg], therefore

f(e[g]) = f(e[hg]) = f(he[g]) = hf(e[g])

= h

( ∑
[bg]∈G/H

cg,bge[bg]

)
=

∑
[bg]∈G/H

cg,bge[hbg].

Thus the coefficient cg,g is equal to cg,g. Since the basis of regFH consists of |G/H|
elements, we have tr f ≡ 0 mod |G/H|. Now we find the dimension of the space
M [K]. We have

g ∈ N(K,H) ⇔ g−1Kg ⊆ H ⇔ KgH ⊆ gH

⇔ gH ∈ (G/H)K ⇔ [g] ∈ (G/H)K

⇔ e[g] is an element of the basis of M [K].

(Incidentally, note the relation |N(K,H)|/|H| = |(G/H)K |.) Thus the subspace
M [K] is spanned by k ·N(K,H)/|H| elements from the basis of M . The coeffi-
cients cg,g of the matrix of f corresponding to the basis elements from a given
space regFH are equal. By summing these diagonal coefficients we obtain

|N(K,H)|
|H|

tr f = |G/H| tr(f |M [K]),

which proves the second assertion of the theorem.
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(5.4) Corollary. If M∗ =
⊕
Mi, where the Mi are as in (5.3), then we

have similar relations for the Lefschetz numbers:

(i) λ(f∗,M∗) ≡ 0 mod |G/H|,
(ii) λ(f∗|M [K]

∗
,M

[K]
∗ ) = |N(K,H)|

|G| λ(f∗,M∗), where M
[K]
∗ =

⊕
M

[K]
i and

f∗ =
⊕
fi : M∗ →M∗ is a graded G-equivariant map.

Now let (K, τ) be a compact G-polyhedron, and U an invariant open G-
subset of K. Let Φ ∈ D(U,K) be G-equivariant and such that for any subgroup
H ⊂ G we have x 6∈ Φ(x) for x ∈ ∂UH ∪ ∂U (H). By (4.8) we know that for
sufficiently large j ≥ j0 there are G-equivariant chain maps

ϕ : C∗(U, τ j) → C∗(K, τ j).

Since the linear projection

pU : C∗(K, τ j) → C∗(U, τ j)

is G-equivariant, we can assume that the map ψ = pU ◦ ϕ defining the index

indA(K,Φ, U) = λ(pU ◦ ϕ)

in (3.3) is G-equivariant. Assume for simplicity that the coefficient field F is Q.
Let L,N,H be subgroups of G. Observe that the G-endomorphism

ψ = pU ◦ ϕ : C∗(U, τ j) → C∗(U, τ j)

maps the subspace C∗(U (H)) into itself, and also the subset C∗(
⋃

(L)>(H) U
(L))

into itself. Therefore we obtain a quotient map

ψ(H) : C∗(U (H))
/
C∗

( ⋃
(L)>(H)

U (L)

)
→ C∗(U (H))

/
C∗

( ⋃
(L)>(H)

U (L)

)
.

Note that

C∗

(
U (H),

⋃
(L)>(H)

U (L)

)
= C∗(U (H))

/
C∗

( ⋃
(L)>(H)

U (L)

)
.

We can draw the following commutative diagram with exact rows:

0 −−−−→ Ci(
⋃

(L)>(H) U
(L)) −−−−→ Ci(U (H)) −−−−→xψ2

xψ1

0 −−−−→ Ci(
⋃

(L)>(H) U
(L)) −−−−→ Ci(U (H)) −−−−→

−−−−→ Ci(U (H),
⋃

(L)>(H) U
(L)) −−−−→ 0xψ(H)

−−−−→ Ci(U (H),
⋃

(L)>(H) U
(L)) −−−−→ 0

where ψ1, ψ2 are restrictions of ψ.
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By the additivity of the trace function, trψ1 = trψ2 + trψ(H). Therefore we
obtain the following equation for the Lefschetz numbers:

λ(ψ(H)) = λ(ψ1)− λ(ψ2).

Observe that ψ1, ψ2 define the indices of the restrictions of the map φ to the
sets U (H) and

⋃
(L)>(H) U

(L), respectively (cf. (3.3)). Therefore

λ(ψ(H)) = indA(K(H),Φ, Int(U (H)))

− indA

( ⋃
(L)>(H)

K(L),Φ, Int
( ⋃

(L)>(H)

U (L)

))
.

We can now define an element λG(Φ) ∈ A(G)⊗Q:

(5.5) Definition.

λG(Φ) :=
∑
H∈SG

λ(ψ(H))
|G/H|

[G/H].

Denote by ψH : C∗(UH) → C∗(UH) the restriction of ψ to this subspace.

(5.6) Theorem (cf. [10], 2.1). Let Φ ∈ DS(U,K) and H ⊂ G a subgroup.
Then

(i) λG(Φ) ∈ A(G),
(ii) χH(λG(Φ)) = λ(ψH) = indA(KH ,Φ, IntUH).

Proof. Let T ⊂ G be a subgroup. Observe that U (T ) −
⋃

(L)>(T ) U
(L) is a

G-space with only one orbit type (T ). Thus the space Ci(U (T ),
⋃

(L)>(T ) U
(T ))

is of the form
⊕

Gσ regQ
T , where the sum runs over the orbits of i-dimensional

simplices. Moreover, the space

Ci

(
(U (T ))H ,

( ⋃
(L)>(T )

U (L)

)H
; Q

)
is generated by those simplices from each orbit Gσ which belong to (G/Gσ)H =
(G/T )H . Now we apply Corollary (5.4) with

Mi = Ci

(
U (T ),

⋃
(L)>(T )

U (L); Q
)
,

M
[H]
i = Ci

(
(U (T ))H ,

( ⋃
(L)>(T )

U (L)

)H
; Q

)
.

The maps fi are defined by ψ. Since Φ ∈ DS, we can assume that ψ is given by
an integer matrix.

By (5.4)(i), λ(ψ(T )) ≡ 0 mod |G/T |. Therefore λG(Φ) ∈ A(G).
By (5.4)(ii) we have

λ(ψH(T )) =
|N(H,T )|

|G|
λ(ψ(T )).
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On the other hand,

χH([G/T ]) = |(G/T )H | = |N(H,T )|
|T |

.

Therefore

χH(λG(Φ)) = χH
( ∑
T∈SG

λ(ψ(T ))
|G/T |

[G/T ]
)

=
∑
T∈SG

λ(ψ(T ))
|G/T |

· |N(H,T )|
|T |

=
∑
T∈SG

λ(ψH(T )) = λ(ψH) = indA(KH ,Φ, IntUH).

This ends the proof.

(5.7) Corollary. If |G/H| ≡ 0 mod r for each subgroup H ⊂ G such that
U (H) 6= ∅, then indA(K,Φ, U) ≡ 0 mod r.

Proof. From (5.6) we know that λG(Φ) ∈ A(G) and λ(ψ(H))/|G/H| ∈ Z.
On the other hand,

χe(λG(Φ)) = λ(ψe) = ind(K,Φ, U)

and, by definition of χe, χe([G/H]) = |G/H|. Therefore

indA(K,Φ, U) = λ(ψ) = χe(λG(Φ))

=
∑
H∈SG

λ(ψ(H))
|G/H|

χe([G/H]) ≡ 0 mod r.

(5.8) Corollary. If G is a p-group, then

indA(K,Φ, U) ≡ indA(KG,Φ, UG) mod p.

Proof. For G a p-group we have the following relation in A(G):

χG(α) ≡ χe(α) mod p for each α ∈ A(G)

(see [13], Th. 10.3). Therefore

indA(K,Φ, U) = λ(ψ) = χe(λG(ψ))

≡ χG(λG(ψ)) mod p

= λ(ψG) = indA(KG,Φ, UG).

The above corollaries correspond to relations given in [10] for Lefschetz num-
bers of single-valued maps.

The following formula has been obtained by Komiya [8] for single-valued
maps.

(5.9) Corollary. For each L ∈ SG we have

indA(KL,Φ, IntUL) =
∑

(H)≥(L)

|N(L,H)|
|H|

a(H)(Φ),

where the a(H)(Φ) are integers.
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Proof. By (5.6) we have

indA(KL,Φ, IntUL) = χL(λG(Φ)) =
∑
H∈SG

λ(ψ(H))
|G/H|

· |N(L,H)|
|H|

.

Moreover, λ(ψ(H))/|G/H| ∈ Z and (G/H)L = ∅ if (H) ≥ (L) does not hold. By
setting a(H)(Φ) = λ(ψ(H))/|G/H| we obtain the desired formula.

In order to obtain further congruences we apply Möbius inversion. Let (P,≤)
be a partially ordered set. For x, y ∈ P an interval [x, y] is the set all elements
w ∈ P such that x ≤ w ≤ y. The set P is locally finite if the number of elements
in any interval is finite. There is a unique Möbius function µ defined on all pairs
(x, y) such that x ≤ y and satisfying

µ(x, x) = 1 for all x ∈ P,

µ(x, y) = −
∑

x≤z<y

µ(x, z) = −
∑

x<z≤y

µ(z, y) if x < y.

A function F : P → R is summable if for each x ∈ P the number of nonzero
components in the sum G(x) =

∑
y: y≤x F (y) is finite.

(5.10) Theorem (see e.g. [9]). Let P = (P,≤) be a locally finite partially
ordered set and F= : P → R a summable function. Define

F≥(x) =
∑
y: y≥x

F=(y).

Then

F=(x) =
∑
y: y≥x

F≥(y)µ(x, y),

where µ is the Möbius function.

(5.11) Proposition. Let G be a finite abelian group. Then∑
L:H⊂L

µ(H,L) indA(KL,Φ, IntUL) ≡ 0 mod |G/H|

for each H ⊂ G, where µ is the Möbius function on SG.

Proof. Since G is abelian,

N(L,H) = G, (H) = H, H ≤ L⇔ H ⊂ L.

So by (5.9) we have∑
H≥L

|G/H|a(H)(Φ) = indA(KL,Φ, IntUL)

for each L ⊂ G. Applying (5.10) we obtain

a(H)(Φ)|G/H| =
∑

L:H⊂L
µ(H,L) indA(KL,Φ, IntUL),

and thus (5.11) must hold.
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Example 1. Let G = Zm be a cyclic group of order m. Then SZm
= {Za :

a |m} and µ(Za, Zb) = µ(b/a) for a | b, where µ(b/a) is the classical Möbius
function, i.e.

µ(n) =


1 if n = 1,

(−1)k if n = p1 . . . pk, pi different primes,

0 otherwise.

By (5.11) we have the formula∑
b:a|b|m

µ(b/a) indA(KZb ,Φ, IntUZb) ≡ 0 mod m/a

for each a dividing m. Here the sum runs over all b such that a | b and b |m.

Example 2. Let m = pk and a = pn be powers of a prime p. Then the
above congruences reduce to

indA(KZpn ,Φ, IntUZpn )− indA(KZpn+1 ,Φ, IntUZpn+1 ) ≡ 0 mod pk−n.

Example 3. Taking m = 12, a = 1, we obtain

indA(K,Φ, U)− indA(KZ2 ,Φ, IntUZ2)

− indA(KZ3 ,Φ, IntUZ3)

+ indA(KZ6 ,Φ, IntUZ6) ≡ 0 mod 12.

Remarks.

(1) Let us point out that all the above results remain true if we consider
Φ ∈ DS(U,X), where X is a compact G-ANR. The proofs are by a
standard reduction to the G-polyhedral case (cf. [11]) and therefore are
omitted.

(2) The results of Komiya [8] are given for G a compact Lie group. Our
method of proof, based on simplicial techniques, is effective only for a
finite group. But even in the case of single-valued maps it is alternative
to [8].

(3) We were able to prove all the congruences only for maps Φ ∈ DS(U,X).
It is still an open question whether they are true for Φ ∈ D(U,X).
They should hold at least for Z-acyclic maps because of the uniqueness
of index (see [1]).

(4) Similar congruences for iterates were proved in [2].
(5) In [7] the G-chain approximation technique was developed for a larger

class of maps with multiplicity in the case of G = Z2 in order to obtain
Borsuk–Ulam type theorems.
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