FIXED POINT INDEX FOR G-EQUIVARIANT MULTIVALUED MAPS

ZdzisŁaw Dzedzej ${ }^{1}$ - Grzegorz Graff

Introduction

The goal of this paper is to extend the construction of the index, which was defined for a class of nonacyclic multivalued maps in [6], to the G-equivariant case (G is a finite group). Our index $\lambda_{G}(\Phi)$ is an element of the Burnside ring $A(G)$. We use some properties of the Burnside ring to prove several relations between the indices of the map Φ restricted to various sets of fixed points of a G-action.

We partially base on the ideas of Marzantowicz [10]. The congruences we obtain are similar to the results proved by Komiya [8] for single-valued maps.

The organization of this paper is as follows. In the first and second sections we review some of the standard facts on G-actions and multivalued maps. Section 3 contains a sketch of the definition of the index for a broad class of nonacyclic maps. Section 4 presents the construction of the G-chain approximation. In the last section we define the G-index (Def. (5.5)) and prove Komiya-type relations between indices.

1. Finite group actions

Let G be a finite group. If $H \subset G$ is a subgroup, we denote by G / H the space of left cosets $H g$.

[^0]Two subgroups H and K of G are conjugate if there exists $g \in G$ such that $K=g^{-1} H g$. The conjugacy class of H is denoted by (H). There is a partial order in the set of conjugacy classes of subgroups defined as follows: $(H) \geq(K)$ if there exist $\bar{H} \in(H)$ and $\bar{K} \in(K)$ such that $\bar{K} \subset \bar{H}$. We denote by S_{G} a complete set of representatives of conjugacy classes in G.

If K and H are subgroups of G then the set

$$
N(K, H)=\left\{g \in G: g^{-1} K g \subset H\right\}
$$

is the normalizer of K with respect to H.
A G-set is a pair (X, ξ), where X is a set and $\xi: G \times X \rightarrow X$ a map such that
(i) $\xi\left(g_{1}, \xi\left(g_{2}, x\right)\right)=\xi\left(g_{1} g_{2}, x\right)$ for $g_{1}, g_{2} \in G$ and $x \in X$,
(ii) $\xi(e, x)=x$ for $x \in X$, where $e \in G$ is the unit.

In the sequel we denote $\xi(g, x)$ by $g x$.
For each subgroup $H \subset G$ the set G / H is a G-set via the formula $g(\widetilde{g} H)=$ $g \widetilde{g} H$.

A G-space is a G-set (X, ξ) for which X is a topological space and ξ is continuous.

For $x \in X$, the subgroup $G_{x}=\{g \in G: g x=x\}$ of G is the isotropy group of X at x. We denote by $\operatorname{Iso}(X)$ the set of all isotropy types in X, i.e. the set of conjugacy classes of isotropy groups. The set $G x=\{g x: g \in G\}$ is called the orbit through x.

For a given subgroup $H \subset G$ we specify several subspaces of the G-space X :

$$
\begin{align*}
X_{H} & =\left\{x \in X: H=G_{x}\right\} \\
X_{(H)} & =\left\{x \in X:(H)=\left(G_{x}\right)\right\} \tag{1.1}
\end{align*}
$$

called the (H)-orbit bundle of X,

$$
X^{H}=\left\{x \in X: H \subset G_{x}\right\}
$$

the H-fixed point set of X, and

$$
X^{(H)}=\left\{x \in X:(H) \leq\left(G_{x}\right)\right\}
$$

A subset A of a G-space X is G-invariant (or a G-subspace) if $g y \in A$ for all $g \in G$ and $y \in A$.

Suppose X and Y are G-spaces. A continuous map $f: X \rightarrow Y$ is a G-map or a G-equivariant map if $f(g x)=g f(x)$ for all $g \in G$ and $x \in X$.

A G-complex is a simplicial complex X which is a G-set such that for all $g \in G$ the homeomorphism $g: X \rightarrow X$ is a simplicial map. A G-complex X is regular if the following condition is satisfied: For all $g_{0}, \ldots, g_{n} \in G$, if $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ and $\left(g_{0} v_{0}, g_{1} v_{1}, \ldots, g_{n} v_{n}\right)$ are two simplices in X, then there exists $g \in G$ such that
$g v_{i}=g_{i} v_{i}$. For any simplicial G-complex X, its second barycentric subdivision turns out to be a regular complex (see [3], III).

In the sequel we always assume G-complexes to be regular. One shows that for X a regular G-complex, X^{H} is a simplicial subcomplex and $X^{(H)}$ is a G subcomplex for each subgroup $H \subset G$.

Let $C_{*}(X)$ denote the oriented chain complex (with any coefficients). If X is a regular G-complex, then $C_{*}(X)$ is a G-set with the natural G-action given on simplices by $g\left(v_{0}, \ldots, v_{n}\right)=\left(g v_{0}, \ldots, g v_{n}\right)$.

2. Multivalued maps

Let X, Y be topological spaces. We say that $\Phi: X \rightarrow Y$ is a multivalued map if a compact, nonempty subset $\Phi(x)$ of Y is given for each $x \in X$. The image of a subset $A \subset X$ under Φ is the set $\Phi(A)=\bigcup_{x \in A} \Phi(x)$. A multivalued map $\Phi: X \rightarrow Y$ is upper semicontinuous (u.s.c.) provided for any open set $U \subset Y$ its small pre-image

$$
\Phi^{-1}(U)=\{x \in X \mid \Phi(x) \subset U\}
$$

is open in X. It is lower semicontinuous (l.s.c.) if for any open set $U \subset Y$ its large pre-image

$$
\Phi^{+1}(U)=\{x \in X \mid \Phi(x) \cap U \neq \emptyset\}
$$

is open in X. Finally, Φ is called continuous if it is both u.s.c. and l.s.c.
We call a compact space A acyclic if

$$
\check{H}_{i}(A ; F)= \begin{cases}0 & \text { for } i>0 \\ F & \text { for } i=0\end{cases}
$$

where $\check{H}(\cdot, F)$ is the Čech homology functor with coefficients in the field F.
(2.1) Definition. An u.s.c. map $\Phi: X \rightarrow Y$ is acyclic if $\Phi(x)$ is acyclic for all $x \in X$. The class of acyclic maps from X to Y is denoted by $A_{1}(X, Y)$.
(2.2) Definition. Let $m>1$ be an integer. We say that $\Phi: X \rightarrow Y$ belongs to the class $A_{m}(X, Y)$ if it is continuous and $\Phi(x)$ has either 1 or m acyclic components for any $x \in X$.

Example. Let \mathbb{C} be the complex plane. We define a multivalued map Φ : $\mathbb{C} \rightarrow \mathbb{C}$ by $\Phi(x)=\left\{z \in \mathbb{C}: z^{m}=x\right\}$. One easily checks that $\Phi \in A_{m}(\mathbb{C}, \mathbb{C})$.
(2.3) Definition. Let X, Y be two G-spaces. A multivalued map Φ : $X \rightarrow Y$ is G-equivariant provided
(i) $\Phi(g x)=g \Phi(x)$ for all $x \in X$ and $g \in G$,
(ii) if $y, g y \in \Phi(x)$ then $y=g y$.

Note that in the case of a single-valued Φ the condition (ii) is superfluous. However, we need the natural fact:
(2.4) Proposition. If $\Phi: X \rightarrow Y$ is G-equivariant, then for each subgroup $H \subset G$,
(i) $\Phi\left(X^{H}\right) \subset Y^{H}$,
(ii) $\Phi\left(X^{(H)}\right) \subset Y^{(H)}$.

Proof. Let $x \in X^{H}, y \in \Phi(x)$ and $g \in H$. Then

$$
y \in \Phi(x)=\Phi\left(g^{-1} x\right)=g^{-1} \Phi(x)
$$

So $y \in \Phi(x)$ and $g y \in \Phi(x)$ and thus by (2.3)(ii), $y=g y$, i.e. $y \in Y^{H}$.
We denote by $D(X, Y)$ the set of all compositions of the form

$$
X=X_{0} \xrightarrow{\Phi_{1}} X_{1} \xrightarrow{\Phi_{2}} X_{2} \rightarrow \ldots \rightarrow X_{n-1} \xrightarrow{\Phi_{n}} X_{n}=Y
$$

where $\Phi_{i} \in A_{k}\left(X_{i-1}, X_{i}\right)$ for some $k=1,2, \ldots$
We can view elements of $D(X, Y)$ as morphisms. They determine u.s.c. maps. However, two different compositions may determine the same map (cf. [6]).

We say that $\Phi=\left(\Phi_{1}, \ldots, \Phi_{n}\right) \in D(X, Y)$ is G-equivariant if all the X_{i} are G-spaces and the Φ_{i} are G-equivariant maps.

We also consider an assumption stronger than acyclicity:
(S) Let $A \subset X$. For each component A_{i} of A and for each neighbourhood $A_{i} \subset U \subset X$ there exists a smaller neighbourhood V with $A_{i} \subset V \subset U$ such that the inclusion $i: V \rightarrow U$ induces the trivial homomorphism $i_{*}: H_{*}(V, \mathbb{Z}) \rightarrow H_{*}(U, \mathbb{Z})$.
Observe that if A_{i} has a trivial shape, then it satisfies (S). Denote by A_{i}^{S} the class of maps $\Phi \in A_{i}(X, Y)$ satisfying (S), and by $D_{\mathrm{S}}(X, Y)$ their compositions.

3. Chain approximations and index

In this section we sketch the fixed point theory for elements of $D(X, X)$ as given in [6]. We use the chain approximation technique developed in [12]. Let (K, τ) be a compact polyhedron with a fixed triangulation τ. Its nth barycentric subdivision is denoted by τ^{n}. A subset $U \subset K$ is polyhedral if there is an integer l such that τ^{l} induces a triangulation of the closure \bar{U} of U in K. The k th closed star of a subset B in K is defined recursively:

$$
\begin{gathered}
\operatorname{St}^{1}(B, \tau)=\operatorname{St}(B, \tau)=\bigcup\{\sigma \in \tau: \sigma \cap B \neq \emptyset\} \\
\operatorname{St}^{k}(B, \tau)=\operatorname{St}\left(\mathrm{St}^{k-1}(B, \tau), \tau\right)
\end{gathered}
$$

A simplex $\sigma \in \tau$ is always assumed to be closed. Let l be a natural number and F a field. We denote by $C_{*}\left(K, \tau^{l}\right)$ the oriented chain complex $C_{*}\left(K, \tau^{l} ; F\right)$
(see [14]). The carrier of $c \in C_{*}(K, \tau)$, carr c, is the smallest subpolyhedron $X \subset K$ such that $c_{*} \in C_{*}(X, \tau)$. We denote by $b: C_{*}(K, \tau) \rightarrow C_{*}\left(K, \tau^{l}\right)$ the standard barycentric subdivision map and by $\chi: C_{*}\left(K, \tau^{l}\right) \rightarrow C_{*}(K, \tau)$ any chain mapping induced by a simplicial approximation of the identity id : $\left(K, \tau^{l}\right) \rightarrow(K, \tau)$.
(3.1) Definition. Let $\Phi:(K, \tau) \rightarrow(L, \mu)$ be an u.s.c. multivalued map and l, k natural numbers. A chain map $\varphi: C_{*}\left(K, \tau^{l}\right) \rightarrow C_{*}\left(L, \mu^{k}\right)$ is called an (n, k)-approximation of Φ if for each simplex $\sigma \in \tau^{l}$ there exists a point $y(\sigma) \in K$ such that

$$
\sigma \subset \operatorname{St}^{n}\left(y(\sigma), \tau^{k}\right) \quad \text { and } \quad \operatorname{carr} \varphi \sigma \subset \operatorname{St}^{n}\left(\Phi(y(\sigma)), \mu^{k}\right)
$$

(3.2) Definition. A graded set $A(\Phi)=\left\{A(\Phi)_{j}\right\}_{j \in \mathbb{N}}$, where

$$
A(\Phi)_{j} \subset \operatorname{hom}\left(C_{*}\left(K, \tau^{j}\right), C_{*}\left(L, \mu^{j}\right)\right)
$$

is called an approximation system (A-system) for Φ if there is an integer $n=n(A)$ such that
(3.2.1) if $\varphi \in A(\Phi)_{j}$, then $\varphi=\varphi_{1} \circ b$, where φ_{1} is an (n, j)-approximation of Φ;
(3.2.2) for every $j \in \mathbb{N}$ there exists $j_{1} \in \mathbb{N}$ such that for $m \geq l \geq j_{1}$ and for all $\varphi=\varphi_{1} \circ b \subset A(\Phi)_{l}$ and $\psi=\psi_{1} \circ b \in A(\Phi)_{m}$ and $m_{1} \geq l_{1}$ the diagram

is homotopy commutative with a chain homotopy D satisfying the following smallness condition: for any simplex $\sigma \in \tau^{m_{1}}$ there exists a point $z(\sigma) \in K$ such that
(*)

$$
\sigma \subset \mathrm{St}^{n}\left(z(\sigma), \tau^{j}\right) \quad \text { and } \quad \operatorname{carr} D(\sigma) \subset \mathrm{St}^{n}\left(\Phi(z(\sigma)), \mu^{j}\right)
$$

The above definition looks a little sophisticated, but it allows us to define the index properly. Let $U \subset K$ be an open polyhedral subset and let $\Phi: \bar{U} \rightarrow K$ be an u.s.c. map such that $x \notin \Phi(x)$ for $x \in \partial U$. Let $A(\Phi)$ be an A-system for Φ. Then the index $\operatorname{ind}_{A}(K, \Phi, U) \in F$ is defined as follows: Denote by

$$
p_{U}: C_{*}\left(K, \tau^{k}\right) \rightarrow C_{*}\left(\bar{U}, \tau^{k}\right)
$$

the natural linear projection. Let $\varphi \in A(\Phi)_{k}$. Then the local Lefschetz number is defined by the formula

$$
\lambda\left(p_{U} \circ \varphi\right)=\sum_{i=0}^{\operatorname{dim} K}(-1)^{i} \operatorname{tr}\left(p_{U} \circ \varphi\right)_{i} .
$$

It is proved in [12] that for k_{0} sufficiently large the above element of F is independent of the choice of $\varphi \in A(\Phi)_{k}\left(k \geq k_{0}\right)$, since all the approximations are small homotopic (i.e. they satisfy $(3.2 .2)(*))$.
(3.3) Definition.

$$
\operatorname{ind}_{A}(K, \Phi, U):=\lambda\left(p_{U} \circ \varphi\right) \quad \text { for } \varphi \in A(\Phi)_{k}
$$

This index satisfies all the standard properties of a fixed point index (although it may depend on the choice of an A-system for Φ in general). For detailed proofs see [12].

Therefore the existence of an index theory for any class of u.s.c. maps reduces to the existence of an A-system. For example, if Φ is a single-valued continuous map, then the set of all chain maps induced by simplicial approximations of Φ forms an A-system and by the uniqueness theorem it gives the classical Hopf fixed point index. In [12] the existence of A-systems for acyclic maps was also proved. Moreover, all A-systems for such maps are equivalent (see [12]). The existence of an A-system for elements of $D(X, X)$ is the main result of [6].

This index theory can be generalized to the more general situations where X is a compact ANR-space by using r-domination arguments (see [6] for detailed proofs).

4. Equivariant chain approximations

In this section we shall prove that a G-equivariant set-valued map from $A_{i}(X, Y)$ has equivariant chain approximations.

We adapt the proof from [6]. We start by recalling some notation (cf. [3]). Let G be a finite group and X, Y compact G-spaces.
(4.1) Definition. An open covering $\alpha \in \operatorname{Cov} X$ is a G-covering if
(i) $U \in \alpha$ implies that $g U \in \alpha$ for each $g \in G$,
(ii) $U \cap g U \neq \emptyset \Rightarrow U=g U$, for each $U \in \alpha$ and $g \in G$.
(4.2) Definition. A G-covering α of X is regular if for each subgroup $H \subset G$ the following condition holds: If $U_{0} \cap \ldots \cap U_{n} \neq \emptyset \neq h_{0} U_{0} \cap \ldots \cap h_{n} U_{n}$ for some $U_{i} \in \alpha$ and $h_{i} \in H$, then there exists $h \in H$ such that $h U_{i}=h_{i} U_{i}$ for $i=0,1, \ldots, n$.

Recall that the nerve $N(\alpha)$ of the covering $U \in \operatorname{Cov} X$ is a simplicial complex with all $U \in \alpha$ as vertices. $\left(U_{0}, \ldots, U_{n}\right)$ forms a simplex in $N(\alpha)$ if $U_{0} \cap \ldots \cap U_{n}$ $\neq \emptyset$. So U being a G-covering implies that $N(\alpha)$ is a G-complex, and U being regular implies that $N(\alpha)$ is a regular G-complex. Denote the family of all finite regular G-coverings of X by $\operatorname{Cov}_{G} X$.
(4.3) Proposition (see [3]). If X is a compact G-space then $\operatorname{Cov}_{G} X$ is a cofinal family in $\operatorname{Cov} X$.

Let $\alpha, \beta \in \operatorname{Cov}_{G} X$ and let α be a refinement of β. Then there exists a natural map $\Pi_{\beta}^{\alpha}: \alpha \rightarrow \beta$ which is equivariant, i.e. $U \subset \Pi_{\beta}^{\alpha}(U)$ and $\Pi_{\beta}^{\alpha}(g U)=g \Pi_{\beta}^{\alpha}(U)$. We denote by $N^{(n)}(\alpha)$ the n-skeleton of $N(\alpha)$ and by $C_{*}\left(N^{(n)}(\alpha)\right)$ the complex of oriented chains with coefficients in a field F. The Kronecker index of a 0 -chain $c=\sum c_{i} \sigma_{i} \in C_{0}\left(N^{(n)}(\alpha)\right)$ is the sum $\sum c_{i}$.
(4.4) Definition (see [6]). Let $\alpha, \bar{\alpha} \in \operatorname{Cov} X, \beta, \bar{\beta} \in \operatorname{Cov} Y$ and $\Phi \in$ $A_{m}(X, Y)$. A chain map

$$
\varphi: C_{*}\left(N^{(n)}(\bar{\alpha})\right) \rightarrow C_{*}\left(N^{(n)}(\bar{\beta})\right)
$$

is an (α, β)-approximation of Φ if
(i) φ multiplies the Kronecker index by m,
(ii) for each simplex $\sigma \in N^{(n)}(\bar{\alpha})$ there exists a point $p(\sigma) \in X$ such that

$$
\operatorname{supp} \sigma \subset \operatorname{St}(p(\sigma), \alpha), \quad \operatorname{supp} \varphi(\sigma) \subset \operatorname{St}(\Phi(p(\sigma)), \beta)
$$

(iii) for any vertex $v \in C_{0}(N(\bar{\alpha}))$,

$$
\operatorname{supp} \varphi(v) \cap \operatorname{St}\left(C_{j}, \beta\right) \neq \emptyset
$$

where the C_{j} are connected components of the set $\Phi(p(v))$.
The following theorem is an analogue of the classical simplicial approximation theorem.
(4.5) Theorem ([6], 4.3). Let X, Y be compact spaces, $\Phi \in A_{m}(X, Y)$ and $\alpha \in \operatorname{Cov} X, \beta \in \operatorname{Cov} Y$. For each $n \in \mathbb{N}$ there exist a refinement $\bar{\alpha}$ of α and an (α, β)-approximation $\varphi: C_{*}\left(N^{(n)}(\bar{\alpha})\right) \rightarrow C_{*}\left(N^{(n)}(\beta)\right)$ of Φ.

Our aim is to obtain a G-equivariant version of (4.5). We start with a technical result.
(4.6) Lemma. Let X, Y be two compact G-spaces and $\Phi \in A_{m}(X, Y)$ a G equivariant map. For any finite G-coverings $\alpha_{0} \in \operatorname{Cov}_{G} X$ and $\beta_{0} \in \operatorname{Cov}_{G} Y$ and $n \in \mathbb{N}$ there exist sequences of coverings $\alpha_{i} \in \operatorname{Cov}_{G} X$ and $\beta_{i} \in \operatorname{Cov}_{G} Y$ with

$$
\alpha_{n+1} \geq \alpha_{n} \geq \ldots \geq \alpha_{0}, \quad \beta_{n+1} \geq \beta_{n} \geq \ldots \geq \beta_{0}
$$

such that for each simplex $s \in N\left(\alpha_{i}\right)$ there exist a point $a(s) \in X$ and a covering $\beta_{i-1}(s) \in \operatorname{Cov}_{G} Y\left(\beta_{i} \geq \beta_{i-1}(s) \geq \beta_{i-1}\right)$ with the following properties:
(i) $\operatorname{supp} s \subset \operatorname{St}\left(a(s), \alpha_{i-1}\right)$,
(ii) $a(g s)=g(a(s))$,
(iii) $\Phi\left(\operatorname{St}\left(\operatorname{supp} s, \alpha_{i}\right)\right) \subset \operatorname{St}\left(\Phi(a(s)), \beta_{i-1}(s)\right)$,
(iv) if $C_{j}(a(s))$ are the components of $\Phi(a(s))$, then the sets $\operatorname{St}^{2}\left(C_{j}(a(s))\right.$, $\beta_{i-1}(s)$) are pairwise disjoint,
(v) $\Phi(y) \cap \operatorname{St}\left(C_{j}(a(s)), \beta_{i-1}(s)\right) \neq \emptyset$ for all $y \in \operatorname{St}\left(\operatorname{supp} s, \alpha_{i}\right)$,
(vi) $\Pi_{\beta_{i-1}}^{\beta_{i-1}(s)}{ }^{2}: \check{H}_{*}\left(N\left(\left.\beta_{i-1}(s)\right|_{\mathrm{St}^{2}\left(C_{j}(a(s)), \beta_{i-1}(s)\right)}\right)\right.$

$$
\rightarrow \check{H}_{*}\left(\left.N\left(\beta_{i-1}\right)\right|_{\operatorname{St}\left(\Phi(a(s)), \beta_{i-1}\right)}\right)
$$

is a zero homomorphism of reduced homology spaces.
Proof. Let $n=0$. For each $x \in X$ every component C_{j} of $\Phi(x)$ is acyclic, so by continuity of the Čech homology functor there exists $\beta \geq \beta_{0}(x) \in \operatorname{Cov}_{G} X$ such that $\operatorname{St}^{2}\left(C_{j}, \beta_{0}(x)\right)$ are pairwise disjoint and

$$
\Pi_{\beta_{0}}^{\beta}: \check{H}_{*}\left(\left.N(\beta)\right|_{\mathrm{St}^{2}\left(C_{j}, \beta\right)}\right) \rightarrow \check{H}_{*}\left(\left.N\left(\beta_{0}\right)\right|_{\operatorname{St}\left(\Phi(x), \beta_{0}\right)}\right)
$$

are trivial homomorphisms (cf. [6], 1.3).
Since Φ is continuous, there exists a neighbourhood U_{x} of x such that
(i) $\Phi\left(U_{x}\right) \subset \operatorname{St}(\Phi(x), \beta)$,
(ii) $\Phi(y) \cap \operatorname{St}\left(C_{j}, \beta\right) \neq \emptyset$ for each $y \in U_{x}$.

Observe that the above property is nothing new whenever $\Phi(x)$ is acyclic, so the l.s.c. assumption is superfluous in that case.

Without loss of generality we can assume that the covering $\left\{U_{x}\right\}_{x \in X}$ is a regular G-covering and refines α_{0}. Now we choose a finite G-subcovering $\left\{U_{x_{i}}\right\}_{i=1}^{k}$ (with the property that if $x=x_{i}$, then $g x_{i}=x_{l}$ for some $l=1, \ldots, k$). Let α_{1} be a finite regular G-covering of X which is a star-refinement of $\left\{U_{x_{i}}\right\}$. For a simplex $s \in N\left(\alpha_{1}\right)$ we define $a(s):=x_{i}$ where $\operatorname{supp} s \subset U_{x_{i}}$, and $a(g s):=g x_{i}$.

Now set $\beta_{0}(s):=\beta_{0}\left(x_{i}\right)$ and let β_{1} be a common G-regular refinement of all $\beta_{0}\left(x_{i}\right)$. The same procedure works inductively for any n.
(4.7) Theorem. Let X, Y be two compact G-spaces, $\Phi \in A_{m}(X, Y)$ a G map, and $\alpha \in \operatorname{Cov}_{G} X, \beta \in \operatorname{Cov}_{G} Y$. For every $n \in \mathbb{N}$ there exist a refinement $\bar{\alpha} \in \operatorname{Cov}_{G} X$ of α and $a G$-equivariant (α, β)-approximation

$$
\varphi: C_{*}\left(N^{(n)}(\bar{\alpha})\right) \rightarrow C_{*}\left(N^{(n)}(\beta)\right) \quad \text { of } \Phi
$$

Proof. We take the sequences $\left(\alpha_{i}, \beta_{i}\right)$ from Lemma (4.6) with $\alpha_{0}=\alpha$, $\beta_{0}=\beta$ and define $\bar{\alpha}=\alpha_{n+1}$.

The desired chain map φ is constructed inductively. Since the proof is similar to [6], 4.3, we only present the first two steps.
$k:=0$: Let s_{0} be a vertex of $N(\bar{\alpha})$. By (4.6) we have a point $a\left(s_{0}\right) \in X$. For $\Phi\left(a\left(s_{0}\right)\right)$ connected we define $\varphi_{0} s_{0}:=m \bar{a}$, where \bar{a} is an arbitrary vertex of $N\left(\beta_{n+1}\right)$ with supp $\bar{a} \subset \operatorname{St}\left(\Phi\left(a\left(s_{0}\right)\right), \beta\left(s_{0}\right)\right)$.

If $\Phi\left(a\left(s_{0}\right)\right)$ consists of m components, then

$$
\varphi_{0} s_{0}:=a_{1}+\ldots+a_{m}
$$

where the a_{i} are vertices of $N\left(\beta_{n+1}\right)$ such that supp $a_{i} \subset \operatorname{St}\left(C_{i}\left(a\left(s_{0}\right)\right), \beta_{n}\left(s_{0}\right)\right)$. For a vertex $g s_{0}$ in the same orbit we have the same situation with $\Phi\left(a\left(g s_{0}\right)\right)=$ $\Phi\left(g a\left(s_{0}\right)\right)$ and we define $\varphi_{0} g s_{0}:=m g a$ or

$$
\varphi_{0} g s_{0}:=g a_{1}+\ldots+g a_{m}
$$

respectively. Then we extend it to a linear G-map $\varphi_{0}: C_{0}\left(N\left(\alpha_{n+1}\right)\right) \rightarrow$ $C_{0}\left(N\left(\beta_{n+1}\right)\right)$.
$k:=1$: Let s be a 1 -simplex in $N(\bar{\alpha})$ (the first one of a given orbit). Then $\partial s=s_{1}-s_{0}$. Since the points $a\left(s_{0}\right)$ and $a\left(s_{1}\right)$ belong to $\operatorname{St}\left(\operatorname{supp} s, \alpha_{n}\right)$, we have

$$
\left.\Phi\left(a\left(s_{0}\right)\right) \cup \Phi\left(a\left(s_{1}\right)\right) \subset \operatorname{St}\left(\Phi(a(s)), \beta_{n-1}(s)\right)\right)
$$

by (4.6)(iii). Let

$$
\varphi_{0} \partial s=\sum a_{i}-\sum b_{i}, \quad a_{i}, b_{i} \in C_{0}\left(N\left(\beta_{n+1}\right)\right)
$$

If $\Phi(a(s))$ is connected, then by $(4.6)(\mathrm{vi})$,

$$
\Pi_{\beta_{n-1}}^{\beta_{n+1}}\left(\sum\left(a_{i}-b_{i}\right)\right)=\sum \partial c_{i}, \quad \text { where } c_{i} \in C_{1}\left(N\left(\beta_{n-1}\right)\right)
$$

If $\Phi(a(s))=\bigcup_{i=1}^{m} C_{i}(a(s))$, then

$$
\operatorname{supp}\left(a_{i}-b_{i}\right) \subset \operatorname{St}\left(C_{i}(a(s)), \beta_{n-1}(s)\right)
$$

for each pair a_{i}, b_{i}. Thus

$$
\Pi_{\beta_{n-1}}^{\beta_{n+1}}\left(a_{i}-b_{i}\right)=\partial c_{i}, \quad \text { where } \operatorname{supp} c_{i} \subset \operatorname{St}\left(C_{i}(a(s)), \beta_{n-1}\right) .
$$

Now we can define $\varphi_{1} s:=\sum c_{i}$. For 1-simplices from the same orbit we define φ_{1} by equivariance: $\varphi_{1} g s:=\sum g c_{i}$. This definition is correct provided (4.6)(vi) is satisfied uniformly for all $g s$. We can assume this is the case by choosing sufficiently fine refinements.

We obtain a commutative diagram

where $\Pi_{\beta_{n-1}}^{\beta_{n+1}}$ is also G-equivariant. Therefore

$$
\varphi_{1}: C_{*}\left(N^{(1)}\left(\alpha_{n+1}\right)\right) \rightarrow C_{*}\left(N^{(1)}\left(\beta_{n-1}\right)\right)
$$

has been defined (on 0 -chains $\varphi_{1} c:=\left(\Pi \circ \varphi_{0}\right) c$). This procedure is now continued inductively and in the nth step one obtains the desired approximation which is G-equivariant by definition.

Now let (K, τ) be a compact polyhedron with a fixed triangulation τ. We associate a covering $\alpha(\tau)$ with τ :

$$
\alpha(\tau):=\left\{\xi: \xi=\operatorname{Int} \operatorname{St}\left(v_{i}, \tau\right)\right\}
$$

where the v_{i} are vertices of τ. There are simplicial maps $\Theta:(K, \tau) \rightarrow N(\alpha(\tau))$ and $\lambda: N(\alpha(\tau)) \rightarrow(K, \tau)$ defined on vertices by $\Theta(v):=\operatorname{St}(v, \tau)$ and $\lambda(\operatorname{St}(v, \tau))$ $:=v$. These maps define a canonical simplicial isomorphism between the complexes (K, τ) and $N(\alpha(\tau))$. Moreover,

$$
\operatorname{carr} s \subset \operatorname{supp} \Theta s \quad \text { and } \quad \operatorname{supp} \sigma \subset \operatorname{St}(\operatorname{carr} \lambda \sigma, \alpha(\tau))
$$

Let $\left(\Phi_{1}, \ldots, \Phi_{k}\right) \in D(K, L)$. Let τ be a triangulation of K and μ a triangulation of L. Define $A_{j}\left(\Phi_{1}, \ldots, \Phi_{k}\right)$ to be the set of chain maps $\varphi: C_{*}\left(K, \tau^{j}\right) \rightarrow$ $C_{*}\left(L, \mu^{j}\right)$ which are of the form $\varphi=\lambda \circ \varphi_{k} \circ \ldots \circ \varphi_{1} \circ \Theta \circ b$, where b is the standard subdivision map. The graded set $\left\{A_{j}\left(\Phi_{1}, \ldots, \Phi_{k}\right)\right\}_{j}$ is an A-system for the map Φ determined by $\left(\Phi_{1}, \ldots, \Phi_{k}\right)$ (see [6], 5.3).
(4.8) Theorem. Assume that K, L are compact G-polyhedra, and let $\Phi=$ $\left(\Phi_{1}, \ldots, \Phi_{k}\right) \in D(K, L)$. If all the spaces in the sequence

$$
X_{0}=L \xrightarrow{\Phi_{1}} X_{1} \rightarrow \ldots \rightarrow X_{k-1} \xrightarrow{\Phi_{k}} K
$$

are G-spaces, and the maps Φ_{i} are G-equivariant, then the above-defined A-system for Φ contains G-equivariant chain maps in each $A_{i}\left(\Phi_{1}, \ldots, \Phi_{k}\right)$.

Proof. It is enough to observe that the canonical maps Θ, λ, b are equivariant if K, L are G-complexes and use (4.7).
(4.9) Remark. Observe that if $\Phi \in D_{\mathrm{S}}(X, Y)$ then it admits chain approximations with integral coefficients. The same proof works.

5. Index of equivariant multivalued maps

Let G be a finite group.
(5.1) Definition (see [4], [5]). Let $B(G)$ be the semiring of all finite G sets (up to isomorphism) with disjoint union as addition and cartesian product as multiplication. The Burnside ring $A(G)$ of G is the universal ring of $B(G)$ in the sense of Grothendieck.

The additive structure of $A(G)$ is the free abelian group generated by the G-sets of the form $[G / H]$, where (H) runs through the elements of S_{G}. Let H be a subgroup of G and S, T finite G-sets. Denoting by $|X|$ the cardinality of the set X we have

$$
\left|(S+T)^{H}\right|=\left|S^{H}\right|+\left|T^{H}\right|, \quad\left|(S \times T)^{H}\right|=\left|S^{H}\right|\left|T^{H}\right| .
$$

Therefore the map $S \rightarrow\left|S^{H}\right|$ extends to a homomorphism $\chi^{H}: A(G) \rightarrow \mathbb{Z}$. Since for conjugate subgroups the above homomorphisms are the same, we can define

$$
\chi=\left(\chi^{H}\right): A(G) \rightarrow \prod_{(H) \in S_{G}} \mathbb{Z}
$$

(5.2) Theorem (see [4], [5]). The map χ is an injective ring homomorphism.

Let us recall the notion of the regular representation $\operatorname{reg}_{H}^{F}$ of the group G over a field F. As a linear space, $\operatorname{reg}_{H}^{F}$ has a basis $\left\{e_{[g]}\right\}$ indexed by elements of the G set G / H. A linear G-action is given by $\bar{g} e_{[g]}=e_{[\bar{g} g]}$. Let $M=k * \mathrm{reg}_{H}^{F}$. We denote by $M^{[K]}$ the subspace spanned by those elements $e_{[g]}$ for which $[g] \in(G / H)^{K}$.
(5.3) Theorem ([10]). Let M be the direct sum of a finite number of the spaces $\operatorname{reg}_{H}^{F}$, and let $f: M \rightarrow M$ be a G-equivariant homomorphism such that $f\left(M^{[K]}\right) \subset M^{[K]}$. Then

$$
\operatorname{tr} f \equiv 0 \bmod |G / H|, \quad \operatorname{tr}\left(\left.f\right|_{M^{[K]}}\right)=\frac{|N(K, H)|}{|G|} \operatorname{tr} f
$$

Proof. It is enough to calculate the trace of f restricted to one component $\operatorname{reg}_{H}^{F}$. Let

$$
f\left(e_{[g]}\right)=\sum_{[\hat{g}] \in G / H} c_{g, \widehat{g}} e_{[\hat{g}]}
$$

For each $[\bar{g}] \in G / H$ there is $h \in G$ such that $[\bar{g}]=[h g]$, therefore

$$
\begin{aligned}
f\left(e_{[\bar{g}]}\right) & =f\left(e_{[h g]}\right)=f\left(h e_{[g]}\right)=h f\left(e_{[g]}\right) \\
& =h\left(\sum_{[\hat{g}] \in G / H} c_{g, \widehat{g}} e_{[\hat{g}]}\right)=\sum_{[\hat{g}] \in G / H} c_{g, \widehat{g}} e_{[h \widehat{g}]} .
\end{aligned}
$$

Thus the coefficient $c_{g, g}$ is equal to $c_{\bar{g}, \bar{g}}$. Since the basis of $\operatorname{reg}_{H}^{F}$ consists of $|G / H|$ elements, we have $\operatorname{tr} f \equiv 0 \bmod |G / H|$. Now we find the dimension of the space $M^{[K]}$. We have

$$
\begin{aligned}
g \in N(K, H) & \Leftrightarrow g^{-1} K g \subseteq H \Leftrightarrow K g H \subseteq g H \\
& \Leftrightarrow g H \in(G / H)^{K} \Leftrightarrow[g] \in(G / H)^{K} \\
& \Leftrightarrow e_{[g]} \text { is an element of the basis of } M^{[K]} .
\end{aligned}
$$

(Incidentally, note the relation $|N(K, H)| /|H|=\left|(G / H)^{K}\right|$.) Thus the subspace $M^{[K]}$ is spanned by $k \cdot N(K, H) /|H|$ elements from the basis of M. The coefficients $c_{g, g}$ of the matrix of f corresponding to the basis elements from a given space $\operatorname{reg}_{H}^{F}$ are equal. By summing these diagonal coefficients we obtain

$$
\frac{|N(K, H)|}{|H|} \operatorname{tr} f=|G / H| \operatorname{tr}\left(\left.f\right|_{M^{[K]}}\right)
$$

which proves the second assertion of the theorem.
(5.4) Corollary. If $M_{*}=\bigoplus M_{i}$, where the M_{i} are as in (5.3), then we have similar relations for the Lefschetz numbers:
(i) $\lambda\left(f_{*}, M_{*}\right) \equiv 0 \bmod |G / H|$,
(ii) $\lambda\left(\left.f_{*}\right|_{M_{*}^{[K]}}, M_{*}^{[K]}\right)=\frac{|N(K, H)|}{|G|} \lambda\left(f_{*}, M_{*}\right)$, where $M_{*}^{[K]}=\bigoplus M_{i}^{[K]}$ and $f_{*}=\bigoplus f_{i}: M_{*} \rightarrow M_{*}$ is a graded G-equivariant map.

Now let (K, τ) be a compact G-polyhedron, and U an invariant open G subset of K. Let $\Phi \in D(\bar{U}, K)$ be G-equivariant and such that for any subgroup $H \subset G$ we have $x \notin \Phi(x)$ for $x \in \partial U^{H} \cup \partial U^{(H)}$. By (4.8) we know that for sufficiently large $j \geq j_{0}$ there are G-equivariant chain maps

$$
\varphi: C_{*}\left(\bar{U}, \tau^{j}\right) \rightarrow C_{*}\left(K, \tau^{j}\right)
$$

Since the linear projection

$$
p_{U}: C_{*}\left(K, \tau^{j}\right) \rightarrow C_{*}\left(\bar{U}, \tau^{j}\right)
$$

is G-equivariant, we can assume that the map $\psi=p_{U} \circ \varphi$ defining the index

$$
\operatorname{ind}_{A}(K, \Phi, U)=\lambda\left(p_{U} \circ \varphi\right)
$$

in (3.3) is G-equivariant. Assume for simplicity that the coefficient field F is \mathbb{Q}. Let L, N, H be subgroups of G. Observe that the G-endomorphism

$$
\psi=p_{U} \circ \varphi: C_{*}\left(\bar{U}, \tau^{j}\right) \rightarrow C_{*}\left(\bar{U}, \tau^{j}\right)
$$

maps the subspace $C_{*}\left(\bar{U}^{(H)}\right)$ into itself, and also the subset $C_{*}\left(\bigcup_{(L)>(H)} \bar{U}^{(L)}\right)$ into itself. Therefore we obtain a quotient map

$$
\psi_{(H)}: C_{*}\left(\bar{U}^{(H)}\right) / C_{*}\left(\bigcup_{(L)>(H)} \bar{U}^{(L)}\right) \rightarrow C_{*}\left(\bar{U}^{(H)}\right) / C_{*}\left(\bigcup_{(L)>(H)} \bar{U}^{(L)}\right)
$$

Note that

$$
C_{*}\left(\bar{U}^{(H)}, \bigcup_{(L)>(H)} \bar{U}^{(L)}\right)=C_{*}\left(\bar{U}^{(H)}\right) / C_{*}\left(\bigcup_{(L)>(H)} \bar{U}^{(L)}\right)
$$

We can draw the following commutative diagram with exact rows:

where ψ_{1}, ψ_{2} are restrictions of ψ.

By the additivity of the trace function, $\operatorname{tr} \psi_{1}=\operatorname{tr} \psi_{2}+\operatorname{tr} \psi_{(H)}$. Therefore we obtain the following equation for the Lefschetz numbers:

$$
\lambda\left(\psi_{(H)}\right)=\lambda\left(\psi_{1}\right)-\lambda\left(\psi_{2}\right)
$$

Observe that ψ_{1}, ψ_{2} define the indices of the restrictions of the map ϕ to the sets $\bar{U}^{(H)}$ and $\bigcup_{(L)>(H)} \bar{U}^{(L)}$, respectively (cf. (3.3)). Therefore

$$
\begin{aligned}
\lambda\left(\psi_{(H)}\right)= & \operatorname{ind}_{A}\left(K^{(H)}, \Phi, \operatorname{Int}\left(\bar{U}^{(H)}\right)\right) \\
& -\operatorname{ind}_{A}\left(\bigcup_{(L)>(H)} K^{(L)}, \Phi, \operatorname{Int}\left(\bigcup_{(L)>(H)} \bar{U}^{(L)}\right)\right) .
\end{aligned}
$$

We can now define an element $\lambda_{G}(\Phi) \in A(G) \otimes \mathbb{Q}$:
(5.5) Definition.

$$
\lambda_{G}(\Phi):=\sum_{H \in S_{G}} \frac{\lambda\left(\psi_{(H)}\right)}{|G / H|}[G / H] .
$$

Denote by $\psi^{H}: C_{*}\left(\bar{U}^{H}\right) \rightarrow C_{*}\left(\bar{U}^{H}\right)$ the restriction of ψ to this subspace.
(5.6) Theorem (cf. [10], 2.1). Let $\Phi \in D_{\mathrm{S}}(\bar{U}, K)$ and $H \subset G$ a subgroup. Then
(i) $\lambda_{G}(\Phi) \in A(G)$,
(ii) $\chi^{H}\left(\lambda_{G}(\Phi)\right)=\lambda\left(\psi^{H}\right)=\operatorname{ind}_{A}\left(K^{H}, \Phi, \operatorname{Int} \bar{U}^{H}\right)$.

Proof. Let $T \subset G$ be a subgroup. Observe that $\bar{U}^{(T)}-\bigcup_{(L)>(T)} \bar{U}^{(L)}$ is a G-space with only one orbit type (T). Thus the space $C_{i}\left(\bar{U}^{(T)}, \bigcup_{(L)>(T)} \bar{U}^{(T)}\right)$ is of the form $\bigoplus_{G \sigma} \mathrm{reg}_{T}^{\mathbb{Q}}$, where the sum runs over the orbits of i-dimensional simplices. Moreover, the space

$$
C_{i}\left(\left(\bar{U}^{(T)}\right)^{H},\left(\bigcup_{(L)>(T)} \bar{U}^{(L)}\right)^{H} ; \mathbb{Q}\right)
$$

is generated by those simplices from each orbit $G \sigma$ which belong to $\left(G / G_{\sigma}\right)^{H}=$ $(G / T)^{H}$. Now we apply Corollary (5.4) with

$$
\begin{aligned}
M_{i} & =C_{i}\left(\bar{U}^{(T)}, \bigcup_{(L)>(T)} \bar{U}^{(L)} ; \mathbb{Q}\right), \\
M_{i}^{[H]} & =C_{i}\left(\left(\bar{U}^{(T)}\right)^{H},\left(\bigcup_{(L)>(T)} \bar{U}^{(L)}\right)^{H} ; \mathbb{Q}\right) .
\end{aligned}
$$

The maps f_{i} are defined by ψ. Since $\Phi \in D_{\mathrm{S}}$, we can assume that ψ is given by an integer matrix.

By (5.4)(i), $\lambda\left(\psi_{(T)}\right) \equiv 0 \bmod |G / T|$. Therefore $\lambda_{G}(\Phi) \in A(G)$.
By (5.4)(ii) we have

$$
\lambda\left(\psi_{(T)}^{H}\right)=\frac{|N(H, T)|}{|G|} \lambda\left(\psi_{(T)}\right)
$$

On the other hand,

$$
\chi^{H}([G / T])=\left|(G / T)^{H}\right|=\frac{|N(H, T)|}{|T|} .
$$

Therefore

$$
\begin{aligned}
\chi^{H}\left(\lambda_{G}(\Phi)\right) & =\chi^{H}\left(\sum_{T \in S_{G}} \frac{\lambda\left(\psi_{(T)}\right)}{|G / T|}[G / T]\right)=\sum_{T \in S_{G}} \frac{\lambda\left(\psi_{(T)}\right)}{|G / T|} \cdot \frac{|N(H, T)|}{|T|} \\
& =\sum_{T \in S_{G}} \lambda\left(\psi_{(T)}^{H}\right)=\lambda\left(\psi^{H}\right)=\operatorname{ind}_{A}\left(K^{H}, \Phi, \operatorname{Int} \bar{U}^{H}\right) .
\end{aligned}
$$

This ends the proof.
(5.7) Corollary. If $|G / H| \equiv 0 \bmod r$ for each subgroup $H \subset G$ such that $\bar{U}_{(H)} \neq \emptyset$, then $\operatorname{ind}_{A}(K, \Phi, U) \equiv 0 \bmod r$.

Proof. From (5.6) we know that $\lambda_{G}(\Phi) \in A(G)$ and $\lambda\left(\psi_{(H)}\right) /|G / H| \in \mathbb{Z}$. On the other hand,

$$
\chi^{e}\left(\lambda_{G}(\Phi)\right)=\lambda\left(\psi^{e}\right)=\operatorname{ind}(K, \Phi, U)
$$

and, by definition of $\chi^{e}, \chi^{e}([G / H])=|G / H|$. Therefore

$$
\begin{aligned}
\operatorname{ind}_{A}(K, \Phi, U) & =\lambda(\psi)=\chi^{e}\left(\lambda_{G}(\Phi)\right) \\
& =\sum_{H \in S_{G}} \frac{\lambda\left(\psi_{(H)}\right)}{|G / H|} \chi^{e}([G / H]) \equiv 0 \bmod r .
\end{aligned}
$$

(5.8) Corollary. If G is a p-group, then

$$
\operatorname{ind}_{A}(K, \Phi, U) \equiv \operatorname{ind}_{A}\left(K^{G}, \Phi, \bar{U}^{G}\right) \bmod p
$$

Proof. For G a p-group we have the following relation in $A(G)$:

$$
\chi^{G}(\alpha) \equiv \chi^{e}(\alpha) \bmod p \quad \text { for each } \alpha \in A(G)
$$

(see [13], Th. 10.3). Therefore

$$
\begin{aligned}
\operatorname{ind}_{A}(K, \Phi, U) & =\lambda(\psi)=\chi^{e}\left(\lambda_{G}(\psi)\right) \\
& \equiv \chi^{G}\left(\lambda_{G}(\psi)\right) \bmod p \\
& =\lambda\left(\psi^{G}\right)=\operatorname{ind}_{A}\left(K^{G}, \Phi, \bar{U}^{G}\right)
\end{aligned}
$$

The above corollaries correspond to relations given in [10] for Lefschetz numbers of single-valued maps.

The following formula has been obtained by Komiya [8] for single-valued maps.
(5.9) Corollary. For each $L \in S_{G}$ we have

$$
\operatorname{ind}_{A}\left(K^{L}, \Phi, \operatorname{Int} \bar{U}^{L}\right)=\sum_{(H) \geq(L)} \frac{|N(L, H)|}{|H|} a_{(H)}(\Phi)
$$

where the $a_{(H)}(\Phi)$ are integers.

Proof. By (5.6) we have

$$
\operatorname{ind}_{A}\left(K^{L}, \Phi, \operatorname{Int} \bar{U}^{L}\right)=\chi^{L}\left(\lambda_{G}(\Phi)\right)=\sum_{H \in S_{G}} \frac{\lambda\left(\psi_{(H)}\right)}{|G / H|} \cdot \frac{|N(L, H)|}{|H|}
$$

Moreover, $\lambda\left(\psi_{(H)}\right) /|G / H| \in \mathbb{Z}$ and $(G / H)^{L}=\emptyset$ if $(H) \geq(L)$ does not hold. By setting $a_{(H)}(\Phi)=\lambda\left(\psi_{(H)}\right) /|G / H|$ we obtain the desired formula.

In order to obtain further congruences we apply Möbius inversion. Let (P, \leq) be a partially ordered set. For $x, y \in P$ an interval $[x, y]$ is the set all elements $w \in P$ such that $x \leq w \leq y$. The set P is locally finite if the number of elements in any interval is finite. There is a unique Möbius function μ defined on all pairs (x, y) such that $x \leq y$ and satisfying

$$
\begin{aligned}
& \mu(x, x)=1 \quad \text { for all } x \in P, \\
& \mu(x, y)=-\sum_{x \leq z<y} \mu(x, z)=-\sum_{x<z \leq y} \mu(z, y) \quad \text { if } x<y .
\end{aligned}
$$

A function $F: P \rightarrow \mathbb{R}$ is summable if for each $x \in P$ the number of nonzero components in the sum $G(x)=\sum_{y: y \leq x} F(y)$ is finite.
(5.10) Theorem (see e.g. [9]). Let $P=(P, \leq)$ be a locally finite partially ordered set and $F_{=}: P \rightarrow \mathbb{R}$ a summable function. Define

$$
F_{\geq}(x)=\sum_{y: y \geq x} F_{=}(y)
$$

Then

$$
F_{=}(x)=\sum_{y: y \geq x} F_{\geq}(y) \mu(x, y),
$$

where μ is the Möbius function.
(5.11) Proposition. Let G be a finite abelian group. Then

$$
\sum_{L: H \subset L} \mu(H, L) \operatorname{ind}_{A}\left(K^{L}, \Phi, \operatorname{Int} \bar{U}^{L}\right) \equiv 0 \bmod |G / H|
$$

for each $H \subset G$, where μ is the Möbius function on S_{G}.
Proof. Since G is abelian,

$$
N(L, H)=G, \quad(H)=H, \quad H \leq L \Leftrightarrow H \subset L .
$$

So by (5.9) we have

$$
\sum_{H \geq L}|G / H| a_{(H)}(\Phi)=\operatorname{ind}_{A}\left(K^{L}, \Phi, \operatorname{Int} \bar{U}^{L}\right)
$$

for each $L \subset G$. Applying (5.10) we obtain

$$
a_{(H)}(\Phi)|G / H|=\sum_{L: H \subset L} \mu(H, L) \operatorname{ind}_{A}\left(K^{L}, \Phi, \operatorname{Int} \bar{U}^{L}\right),
$$

and thus (5.11) must hold.

Example 1. Let $G=Z_{m}$ be a cyclic group of order m. Then $S_{Z_{m}}=\left\{Z_{a}\right.$: $a \mid m\}$ and $\mu\left(Z_{a}, Z_{b}\right)=\mu(b / a)$ for $a \mid b$, where $\mu(b / a)$ is the classical Möbius function, i.e.

$$
\mu(n)= \begin{cases}1 & \text { if } n=1 \\ (-1)^{k} & \text { if } n=p_{1} \ldots p_{k}, p_{i} \text { different primes } \\ 0 & \text { otherwise }\end{cases}
$$

By (5.11) we have the formula

$$
\sum_{b: a|b| m} \mu(b / a) \operatorname{ind}_{A}\left(K^{Z_{b}}, \Phi, \operatorname{Int} \bar{U}^{Z_{b}}\right) \equiv 0 \bmod m / a
$$

for each a dividing m. Here the sum runs over all b such that $a \mid b$ and $b \mid m$.
Example 2. Let $m=p^{k}$ and $a=p^{n}$ be powers of a prime p. Then the above congruences reduce to

$$
\operatorname{ind}_{A}\left(K^{Z_{p^{n}}}, \Phi, \operatorname{Int} \bar{U}^{Z_{p^{n}}}\right)-\operatorname{ind}_{A}\left(K^{Z_{p^{n+1}}}, \Phi, \operatorname{Int} \bar{U}^{Z_{p^{n+1}}}\right) \equiv 0 \bmod p^{k-n}
$$

Example 3. Taking $m=12, a=1$, we obtain

$$
\begin{aligned}
\operatorname{ind}_{A}(K, \Phi, U) & -\operatorname{ind}_{A}\left(K^{Z_{2}}, \Phi, \operatorname{Int} \bar{U}^{Z_{2}}\right) \\
& -\operatorname{ind}_{A}\left(K^{Z_{3}}, \Phi, \operatorname{Int} \bar{U}^{Z_{3}}\right) \\
& +\operatorname{ind}_{A}\left(K^{Z_{6}}, \Phi, \operatorname{Int} \bar{U}^{Z_{6}}\right) \equiv 0 \bmod 12 .
\end{aligned}
$$

Remarks.

(1) Let us point out that all the above results remain true if we consider $\Phi \in D_{\mathrm{S}}(U, X)$, where X is a compact G-ANR. The proofs are by a standard reduction to the G-polyhedral case (cf. [11]) and therefore are omitted.
(2) The results of Komiya [8] are given for G a compact Lie group. Our method of proof, based on simplicial techniques, is effective only for a finite group. But even in the case of single-valued maps it is alternative to [8].
(3) We were able to prove all the congruences only for maps $\Phi \in D_{\mathrm{S}}(U, X)$. It is still an open question whether they are true for $\Phi \in D(U, X)$. They should hold at least for \mathbb{Z}-acyclic maps because of the uniqueness of index (see [1]).
(4) Similar congruences for iterates were proved in [2].
(5) In [7] the G-chain approximation technique was developed for a larger class of maps with multiplicity in the case of $G=\mathbb{Z}_{2}$ in order to obtain Borsuk-Ulam type theorems.

References

[1] R. Bielawski, Fixed point index for acyclic maps on ENR's, Bull. Acad. Polon. Sci. 35 (1987), 487-499.
[2] S. A. Bogaty, Indices of iterates of a multivalued map, C. R. Acad. Bulgare Sci. 41 (1988), no. 2, 13-16. (Russian)
[3] G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972.
[4] T. том Dieck, Transformation Groups, de Gruyter, Berlin, 1987.
[5] , Transformation Groups and Representation Theory, Springer-Verlag, Berlin, 1979.
[6] Z. Dzedzej, Fixed point index for a class of nonacyclic multivalued maps, Dissertationes Math. 153 (1985).
[7] F. von Haeseler and G. Skordev, Borsuk-Ulam theorem, fixed point index and chain approximations for maps with multiplicity, Pacific J. Math. 153 (1992), 369-396.
[8] K. Kомiya, Fixed point indices of equivariant maps and Möbius inversion, Invent. Math. 81 (1988), 129-135.
[9] W. Lipski and W. Marek, Combinatorial Analysis, PWN, Warszawa, 1986. (Polish)
[10] W. Marzantowicz, Lefschetz numbers of maps commuting with group actions, Ph.D. thesis, Warszawa, 1976. (Polish)
[11] M. Murayama, On G-ANR's and their G-homotopy types, Osaka J. Math. 20 (1982), 479-512.
[12] H. W. Siegberg and G. Skordev, Fixed point index and chain approximations, Pacific J. Math. 102 (1982), 455-486.
[13] J. P. Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1971.
[14] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

ZdZisŁaw Dzedzej
Institute of Mathematics
University of Gdańsk
Wita Stwosza 57
80-952 Gdańsk, POLAND

Grzegorz Graff
Department of Applied Mathematics
Technical University of Gdańsk
Gabriela Narutowicza 11/12
80-952 Gdańsk, POLAND

[^0]: 1991 Mathematics Subject Classification. Primary 55M20; Secondary 54H25.
 ${ }^{1}$ Research partially supported by KBN grant 2/1123/91.

