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EQUIVARIANT DEGREE FOR ABELIAN ACTIONS
PART II: INDEX COMPUTATIONS
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Dedicated to Louis Nirenberg on his 70th birthday

Introduction

This paper represents the second part of the study of the equivariant degree
for abelian actions and constitutes another step towards the completion of our
rather long journey along the paths of equivariant homotopy and equivariant
degree theory initiated in [7]. A program of development of this theory was
announced in [8] and followed chronologically in [9] and [10].

Here, using the results of [10], we compute the equivariant degree for abelian
actions and use it in order to prove results on twisted orbits, Borsuk–Ulam type
theorems, symmetry breaking problems and applications to ODE’s.

Let us briefly subsume our definition of equivariant degree in the finite-
dimensional setting (see [8]). Let V and W be finite-dimensional spaces and
let Γ be a (not necessarily abelian) compact Lie group acting linearly (isomet-
rically) on both V and W (with possibly different actions). Let Ω ⊂ V be a
Γ-invariant open and bounded subset of V and let f : Ω → W be a continuous
Γ-equivariant map such that f(x) 6= 0 on the boundary ∂Ω of Ω. Now, our con-
struction is as follows. Take a sufficiently large ball B ⊂ V centered at the origin
such that Ω ⊂ B and let f̂ : B → W be a Γ-equivariant continuous extension
of f. Let N be a bounded, open and Γ-invariant neighborhood of ∂Ω such that
f̂(x) 6= 0 for any x ∈ N. Let F̂ : [0, 1] × B → R × W be the continuous map
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defined by F̂ (t, x) = (2t + 2φ(x)− 1, f̂(x)), where φ : B → [0, 1] is a Γ-invariant
Urysohn function such that φ(x) = 0 if x ∈ Ω and φ(x) = 1 if x 6∈ Ω ∪ N. We
assume, moreover, that Γ acts trivially on both [0,1] and R. Clearly, F̂ (t, x) = 0
only if x ∈ Ω, f̂(x) = f(x) = 0 and t = 1/2. Thus, F̂ can be regarded as a
Γ-equivariant map from SV ∼= ∂([0, 1]×B) into SW ∼= R×W \{0}. Following [8]
we define the Γ-degree of f, denoted by degΓ(f ; Ω), as the Γ-equivariant homo-
topy class [F̂ ]Γ considered as an element of the Γ-equivariant homotopy group of
spheres ΠΓ

SV (SW ). It is not hard to show that if Γ reduces to the trivial group,
Γ = {e}, then degΓ(f ; Ω) is nothing else but the classical Brouwer topological
degree of f.

The infinite-dimensional case, dim V = dim W = ∞, can be handled with
appropriate Γ-equivariant suspension theorems (cf. [10, Theorem 9.1]) after im-
posing the usual compactness assumptions on f. Thus, for example, if Γ = {e}
and f is a compact perturbation of the identity, our Γ-degree reduces to the
classical topological Leray–Schauder degree (see [8]).

Even though the above definition runs for any compact Lie group Γ, we shall
stick in this paper, as in [10], to the case when Γ is abelian.

A description of the structure of the present paper is in order. Section 0 is
essentially a collection of results from [10] (in some cases suitably reformulated)
that permit us to proceed efficiently towards further investigations. It also con-
tains the important assumption (H) that will hold true almost throughout this
paper. In Section 1 we refine some results of [10] related to the action of a torus
that allow us to recover some well-known results contained in [13]. In Section 2
we show that in some cases the computation of the Γ-degree may be reduced to
the computation of the classical degree of the corresponding Poincaré sections.
In Section 3 we compute the index of isolated orbits (see Theorem 3.2). As
a consequence we obtain interesting global bifurcation results involving period
doubling phenomena (see Corollary 3.1). In Section 4 we apply these degree
computations to Borsuk–Ulam type theorems. Section 5 deals with the index
of an isolated loop of stationary solutions and its applications to abstract Hopf
bifurcation. Section 6 treats the problem of symmetry breaking, products and
composition of mappings.

Finally, let us mention that [10] contains some misprints in the References.
For example references [1], [2], [3] should be cyclically permuted and reference
[16] should be split into two references: the one reported in [10] under [16] and
another one, say [16a], which is reference [3] of the present paper.

0. Preliminaries

In this section we shall collect the results from [10] which are most frequently
used in the present paper.
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Γ ∼= Tn × Zm1 × . . . × Zms
is a compact abelian Lie group acting linearly,

via isometries, on finite-dimensional spaces V and W (in the case of infinite-
dimensional spaces one has to reduce the study to maps which have the right
compactness properties). If BR is the ball of radius R centered at the origin in
V and t is in I = [0, 1], one considers the Γ-homotopy classes of Γ-equivariant
maps F (t, X) with F (t, γX) = γ̃F (t, X) from ∂(I ×BR) into R×W \ {0}. The
resulting abelian group was called ΠΓ

SV (SW ) in [8] and if f : V ⊃ Ω → W is a
Γ-equivariant map which is not zero on ∂Ω, where Ω is an open, bounded, and
Γ-invariant subset of V, then the Γ-degree of f is an element of ΠΓ

SV (SW ), as
recalled in the introduction.

In most of this paper, unless specified otherwise, we shall assume the following
standing hypothesis:

(H) V = Rk × U, and for any pair of isotropy subgroups H and K for U , one
has dimUH ∩ UK = dim WH ∩WK .

If (H) holds, then there is a “suspension” map from (V Γ)⊥ into (WΓ)⊥ given
by xj → x

lj
j , which is Γ-equivariant [10, Lemma 7.1]. Furthermore, ΠΓ

SV (SW ) ∼=
Πk−1 × Z× . . .× Z, where Πk−1 corresponds to the isotropy subgroups K with
dim Γ/K < k and there is one Z for each isotropy subgroup H with dim Γ/H = k

[10, Theorem 7.1]. There are explicit generators, [FH ]Γ, for each of the Z-
components. If [F ]Γ ∈ Π(H), defined as the set of Γ-homotopy classes of maps
such that FK = I ×BK

R → R×WK \ {0} for any K > H, then, if dim Γ/H = k,

one has Π(H) ∼= Z and [FH ]Γ is given by the “extension degree”, degE(F ), of
FH , defined on the “fundamental cell” C = {(t, x1, . . . , xl) ∈ I ×V H : 0 < t < 1,
|xj | < R, 0 < Arg xj < 2π/kj} where kj = |H̃j−1/H̃j | and H̃j = H1 ∩ . . . ∩Hj

with Hi being the isotropy subgroup of xi. In this case there are exactly k

variables, z1, . . . , zk, with kj = ∞ for j = 1, . . . , k. Furthermore, if BH
k =

{(t,X) ∈ I × BH
R : zj real and positive for j = 1, . . . , k}, then deg(FH ;BH

k ) =
(
∏

kj) degE(FH), where the product is taken over all finite kj ’s [10, Theorem 4.1].

If k = 0, then ΠΓ
SV (SW ) ∼= ΠΓ′

SV ′ (SW ′
) where Γ′ = Γ/Tn, V ′ = V T n

, W ′ =
WT n

, and if k = 1, then Π0 = ΠΓ′

SV ′ (SW ′
) =

∏
Π(H) with |Γ/H| < ∞ [10,

Corollary 5.1]. Furthermore, if Γ/H is a finite group and if for each zj with
kj > 1 there is another variable z′j with the same isotropy (two variables if zj is
real and Γ acts as Z2, i.e. a suspension result), then Π(H) is a finite group [10,
Theorem 8.2]. In particular, if V = R × W and Γ/H ∼= Zp1 × . . . × Zpm then
Π(H) ∼= Zq0×. . .×Zqm

with q0 = g.c.d.(2, p1, . . . , pm), qm = l.c.m.(2, p1, . . . , pm),
qj = kj/kj−1, where kj is the largest common factor of all possible products of
j of the pi’s. Hence, if any two pi, pj are relatively prime and odd, then Π(H) ∼=
Z2|Γ/H|. There are explicit generators ηj , η̃ such that 2η̃ = 0 and qj(ηj + η̃) = 0.

For example, if Γ/H ∼= Zn, then Π(H) ∼= Z2 × Zn if n is even and Π(H) ∼= Z2n

if n is odd [10, Theorem 8.5].
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Finally, for all the above cases any element of Π(H) if dim Γ/H = k, or any
element of ΠΓ

SV (SW ) if k = 0 or 1, is achieved as the Γ-degree of a map from Ω
into W , provided ΩH 6= ∅ [10, Theorem 2.2]. We would also like to stress our
results on the suspension, [10, Theorem 9.1], which will automatically hold in
the present paper.

Remarks. 1) Some of the results listed above hold with weaker hypothe-
ses, as proved in [10]. In case of need we shall recall these hypotheses in the
appropriate places of the present paper.

2) In [10], Lemma 7.1, and hence Theorems 7.1, 8.2 and 9.2, were stated with
the hypothesis (H3): dim UH = dim WH , which is incomplete, as the following
example shows:

On C2, consider the following action of Zp2q, where p and q are relatively
prime. On (z1, z2) in U , Γ acts via (e2πik/p2

, e2πik/(pq)) for k = 0, . . . , p2q − 1,
and on (ξ1, ξ2) in W , Γ acts via (e2πik/p, e2πik/(p2q)). The isotropy subgroups for
U are H ∼= Zq for k a multiple of p2, and UH = {(z1, 0)},K ∼= Zp for k a multiple
of pq, and UK = {(0, z2)}, and U{e} = U. One has WH = WK = {(ξ1, 0)} and
(H3) holds but not (H). Also, (UH)⊥ = 0 × C, (WH)⊥ = 0 × C and there is no
non-zero equivariant map between these two last spaces, since (UH)⊥∩UK = UK

and (WH)⊥ ∩WK = {0}. Hence, hypothesis (H2) of [10] is not met.

Consider the equivariant map F (z1, z2) = (zp
1 + zq

2 , zα
1 zβ

2 ), where αq +βp = 1
(recall that a negative power is taken as a conjugate). The zeros of F − (ε, 0) are
at (0, ε1/qe2kπi/q) and (ε1/pe2kπi/p, 0) with index α and β respectively. Hence the
degree of F with respect to any neighborhood of (0, 0) is αq+βp = 1: deg F = 1.

Similarly deg FH = p, deg FK = q.

Note that we shall prove, in Section 4, that any equivariant map G from
I × B, with B = {(z1, z2) : |zi| < 2}, into R × C2 \ {0} is classified by [G]Γ =
dΓ[2t− 1, F ]Γ + dH [FH ]Γ + dK [FK ]Γ + de[Fe]Γ, where F is the above map, FH =
(2t + 1 − 2|z1|2, (zp2

1 − 1)zp
1 , zα

1 zβ
2 ), FK = (2t + 1 − 2|z2|2, (zpq

2 − 1)zq
2 , zα

2 , zα
1 zβ

2 )
and Fe = (2t + 1− 2|z1|2|z2|2, (zp2

1 − 1)zp
1 , zα

1 zβ
2 (zp

1z
q
2 − 1)).

It is then not difficult to show that
deg GΓ

deg GH

deg GK

deg G

 =


1 0 0 0
p p2 0 0
q 0 pq 0
1 βp2 αpq p2q




dΓ

dH

dK

de

 .

Lemma 7.1 of [10] is then replaced by

Lemma 0. Hypothesis (H) holds if and only if

(a) dim UH = dim WH ,
(b) there are integers lj such that the map F : (z1, . . . , zn) → (zl1

1 , . . . , zln
n ) is

Γ-equivariant.
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Proof. If (H) holds then, if H0 =
⋂

Hi, one has UH0 = U and one obtains
(a). Also, as in [10, Lemma 7.1] one gets det γ det γ̃ > 0, and one obtains FH

for any maximal H (on UΓ the identity is an appropriate map). Choose such a
maximal H and let K and L be isotropy subgroups for (UH)⊥. Then

dim (UH)⊥ ∩ UL ∩ (UH)⊥ ∩ UK = dim UL ∩ UK − dim UH ∩ UL ∩ UK .

Let H0 be the isotropy subgroup for UK∩UL, i.e. H0 is the intersection of the
isotropy subgroups for all the coordinates in that subspace. Then UK ∩ UL ⊂
UH0 . Since K and L are also intersections of the corresponding subgroups, it
is clear that K and L are subgroups of H0 and thus, UH0 ⊂ UK ∩ UL, that
is, UH0 = UK ∩ UL while WH0 ⊂ WK ∩ WL. Since, from (H), dimUH0 =
dim WH0 and dim UL∩UK = dim WL∩WK , one gets WH0 = WK ∩WL. Thus,
dim (UH)⊥ ∩ UK ∩ UL = dim (WH)⊥ ∩ WK ∩ WL, and one may repeat the
argument of Lemma 7.1 in [10] for a maximal isotropy subgroup for (UH)⊥.

Note that if Γ/H ∼= Z2 and Γ/K ∼= Z2 for H 6= K, then if x belongs to
UH ∩ UK , one has Γx > H ∪ K, and since H and K are maximal among
subgroups of Γ (not just among isotropy subgroups), Γx = Γ. Thus, for such
subgroups, hypothesis (a) is equivalent to (H).

Conversely, if the map F exists, then it is clear that dimUH ≤ dim WH , and
it is easy to give examples with a strict inequality. While, if (a) and (b) hold, it
is easy to see, by inspection, that (H) is true. �

1. Action of a torus

In [10, §1] we gave an explicit form for the action of an abelian group on an
irreducible representation. In the present section we collect some further results
on these actions.

Let Tn = {(φ1, . . . , φn) : 0 ≤ φj ≤ 2π} act on Cm = {z1, . . . , zm} via
exp i(

∑n
j=1 nl

jφj) for l = 1, . . . ,m. The isotropy subgroup Hl for zl will consist
of those (φ1, . . . , φn) with

∑
nl

jφj ≡ 0 (mod 2π). Assume that dim Tn/(H1 ∩
. . .∩Hm) = k. Then we have seen in [10, §2] that there are exactly k coordinates
(z1, . . . , zk) such that Tn/H1,H1/H1∩H2, . . . , (H1∩ . . .∩Hk−1)/(H1∩ . . .∩Hk)
are isomorphic to S1 and (H1 ∩ . . . ∩Hl−1)/(H1 ∩ . . . ∩Hl) are finite groups for
l > k. Note that without loss of generality we are taking z1, . . . , zk to be the first
k coordinates.

Lemma 1.1. Under the above circumstances there is an action of T k on
Cm, generated by Φ = (Φ1, . . . ,Φk), such that

∑n
j=1 nl

jφj =
∑k

j=1 N l
jΦj for

l = 1, . . . ,m and for some integers N l
j with N l

j = δjlNj if j = 1, . . . , k.

Proof. Let A be the m×n matrix given by (nl
j), l = 1, . . . ,m, j = 1, . . . , n.

The relation
∑n

j=1 nl
jφj = (Aφ)l = 0 gives a hyperplane in Rn. The hypothesis



374 J. Ize — A. Vignoli

on the isotropy subgroups implies that A has an (n− k)-dimensional kernel and
that if (Aφ)l = 0 for l = 1, . . . , k then (Aφ)j = 0 for j = k +1, . . . ,m since if not
one would have an S1-non-trivial action on the corresponding variable zj .

Let A0 be the matrix obtained from A by taking the first k rows. Then
A0 is onto Rk and as such it has a k × k non-zero minor. Assume, without
loss of generality, that it corresponds to the determinant of A1 given by (nl

j),
l = 1, . . . , k, j = 1, . . . , k. It is clear that there are positive integers N1, . . . , Nk

such that

Ã−1
1 ≡ A−1

1

(
N1 0
0 Nk

)
has integer entries. Let Φj = (Aφ)j/Nj for j = 1, . . . , k. Then, if φT = (φ̃T , φ̂T )
with φ̃T = (φ1, . . . , φk), one has A0φ = A1φ̃ + Bφ̂ = (N1Φ1, . . . , NkΦk)T and
φ̃ = Ã−1

1 Φ−A−1
1 Bφ̂. Thus,

(Aφ)l =
n∑

j=1

nl
jφj =

k∑
j=1

N l
jΦj +

n∑
j=k+1

nl
j φ̂j −

k∑
j=1

nl
j(A

−1
1 Bφ̂)j .

The relation (Aφ)l = 0 if Φ1 = . . . = Φk = 0 implies that the last two sums
cancel each other. �

Another simple but useful observation is the following

Lemma 1.2. Let Tn act on V via exp i(
∑n

j=1 nl
jφj), l = 1, . . . ,m. Then there

is a morphism S1 → Tn given by φj = Njφ,Nj integers, such that
∑n

j=1 nl
jNj 6≡

0 (mod 2π) unless nl
j = 0 for all j’s, and V S1

= V T n

.

Proof. The congruences
∑

nl
jφj ≡ 0 (mod 2π) give families of hyperplanes

with normal parallel to (nl
1, . . . , n

l
n), if this vector is non-zero. From the dense-

ness of Q in R, it is clear that one may find integers (N1, . . . , Nn) such that
the direction {φj = Njφ} is not in any of the hyperplanes

∑
nl

jφj = 0 for
l = 1, . . . ,m. Thus,

∑
nl

jNj 6= 0 and, being an integer, this number cannot be
another multiple of 2π, unless all nl

j are zero and one is in V T n

. �

As a simple consequence of this last lemma, one may recover the following
well known results (see [13, Theorem 2.2]).

Theorem 1.1. Let Tn act on V and W such that dim V = dim W and
dim V T n

= dim WT n

. Let F be a Tn-equivariant map from I × V into R × W

which is non-zero on ∂(I ×B). Then

(a) There is a non-zero integer β, independent of F, such that

deg(F ; I ×B) = β deg(FT n

; I ×BT n

).
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(b) If H is any isotropy subgroup of Tn on V and deg(FT n

; I × BT n

) 6= 0,
then dim V H ≤ dim WH . In this case β = ±(

∏k
l=1 a′l)/(

∏k
l=1 al), where al is the

greatest common divisor of (nl
1, . . . , n

l
n) and similarly for a′l.

Proof. Choose an S1-action as in Lemma 1.2, for V and W. From [8, The-
orem 4.4], one has

deg(F ; I ×B) =

∏k
l=1(

∑n
j=1 n′lj Nj)∏k

l=1(
∑n

j=1 nl
jNj)

deg(FT n

; I ×BT n

),

where n′lj correspond to the action of Tn on W and k = dim V − dim V T n

. It is
clear that the quotient, β, is independent of the S1-action chosen. Furthermore,
the dimension inequality of part (b) also follows from the same reference since
FH maps ∂(I ×BH) into R×WH \ {0}.

If for any F one has deg(FT n

; I × BT n

) = 0, then one may as well choose
β to be 1. If there is an F with deg(FT n

; I × BT n

) = 1, then clearly β is an
integer. This is the case if hypothesis (H2)′ of [10] is satisfied, i.e. there is an
equivariant map F⊥ : (V T n

)⊥ \{0} → (WT n

)⊥ \{0}; then one may complement
F⊥ by any map of degree 1 from I×BT n

into itself. Note that under hypothesis
(H2)′, from [10, Corollary 5.1(a)], ΠT n

SV (SW ) ∼= Z and [F ]T n is characterized by
[FT n

], i.e. by deg(FT n

; I ×BT n

). Since F and (FT n

;F⊥) have the same degree
for their invariant part, we have [F ]T n = [(FT n

, F⊥)]T n .

If (H2)′ is not satisfied, let ml =
∑n

j=1 nl
jNj ,M =

∏
ml,M

′ =
∏

m′
l and

assume pα is a factor of |M | with p a prime number, and pα′ the corresponding
factor of |M ′|. Take the set of {ml} which are multiples of p and suppose there
are b1 of them which are multiples of pα1 , b2 which are multiples of pα2 , with
α2 < α1, not including the first set, and so on up to bk which are multiples of
pαk , with 1 ≤ αk < αk−1 < . . . < α1 and not included in the preceding sets.

Let b′1 be the number of j’s such that α1 ≤ α′j and p
α′j
j divides |m′

j |, b′i be the
number of j’s such that αi ≤ α′j < αi−1 for i = 1, . . . , k, and finally, b′k+1 the
number of j’s with 1 ≤ α′j < αk, in case αk > 1. Then α =

∑k
j=1 αjbj and

α′ =
∑k+1

j=1 α′j ≥
∑k

j=1 αjb
′
j + b′k+1.

Now, if Hj = {φ = 2πe/pαj : 0 ≤ e < pαj}, then the inequalities dim V Hj ≤
dim WHj and dim V S1

= dim WS1
imply the relations

∑i
j=1 bj ≤

∑i
j=1 b′j for

i = 1, . . . , k+1 (here we are taking bk+1 = 0 and αk+1 = 0). From the telescoping
sum,

∑k
j=1 αjbj =

∑k
j=1(αj −αj+1)

∑j
l=1 bl, one has α ≤ α′, which implies that

|M | divides |M ′| and β is an integer.
Now, under the above hypothesis, the integer β is independent of the Nj ’s,

provided no ml or m′
l is zero. Since the number of terms in the quotient is the

same, one sees that β is the same if one takes the Nj ’s to be rational (provided
the new ml’s and m′

l’s are non-zero) and, by denseness, for Nj real, we obtain
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the quotient of homogeneous polynomials of degree 1. Then for each l there
is a q, and conversely, such that

∑
n′lj Nj = clq

∑
nq

jNj for all Nj in R, where
clq is a constant. Thus, n′lj = cq

lqnj or else clqaq/a′l = m′
j/mj = m′/m for all

j = 1, . . . , n, where |m′| and |m| are relatively prime, nq
j = aqmj and n′lj = a′lm

′
j .

But then |m| divides all |mj |’s and |m′| divides |m′
j |, and since the |mj |’s are

relatively prime, we have |m| = |m′| = 1. Hence, n′lj = ηlq(a′l/aq)n
q
j for all j’s,

with |ηlq| = 1, and |β| = (
∏

a′l)/(
∏

aq), recovering the result of [13], where one
had the assumption nq

j , n
′l
j ≥ 0. �

Note that here we are not asking for the condition dim V H = dim WH . In
fact, one could have a strict inequality, hence a zero degree for FH , for all H’s
but the smallest: take n = 1 and an action on W of the form eiNϕ where N is a
multiple of all the nj ’s; then WH = W.

It is easy to show, from [8, Theorem 4.4], that if dimV = dim W but
dim V T n 6= dim WT n

then the degree of F is 0.

Note also that if R(ϕ) is the 2× 2 real matrix corresponding to the complex
action eiϕ of S1, then A =

(
1 0
0 −1

)
is such that R(ϕ)A = AR(−ϕ), i.e. the real

representations of S1 given by R(ϕ) and R(−ϕ) are equivalent and A corresponds
to conjugation [3, p. 110]. However, for the case of a higher dimensional torus,
one may not choose the nj ’s to be positive. In fact, there is no real invertible
matrix A such that R(ϕ1 + ϕ2)A = AR(ϕ1 − ϕ2): take ϕ1 = ϕ2 for example.

2. Poincaré sections

In some cases one may compute the Γ-degree of a map by reducing the
situation to the computation of ordinary degrees on Poincaré sections. This will
be the case with the “free part” of the Γ-degree when considering isolated orbits.

Recall that, under the standing hypothesis (H), one has ΠΓ
SV (SW ) ∼= A ×

Z × . . .× Z, where A corresponds to the isotropy subgroups H for V such that
dim W (H) < k and there is one Z for each isotropy subgroup for V such that
dim W (H) = k (see [10, Theorem 7.1]).

In particular, any element [F ]Γ in ΠΓ
SV (SW ) can be written as [F ]Γ =∑

dK [FK ]Γ + [F̃ ]Γ, where [F̃ ]Γ ∈ A, [FK ]Γ are the explicit generators given in
[10, p. 394] and dK are the free components in Z.

Now, we have seen in [10, §2] that if H is such that dim W (H) = k, then
there are exactly k complex coordinates z1, . . . , zk with corresponding isotropy
subgroups H1, . . . ,Hk such that Γ/H1,H1/H1 ∩H2,H1 ∩H2/H1 ∩H2 ∩H3, . . . ,

H1 ∩ . . .∩Hk−1/H1 ∩ . . .∩Hk are isomorphic to S1, i.e. these coordinates define
part of the “fundamental cell” for H. Let H0 = H1 ∩ . . . ∩ Hk. Then H0 is
one of the maximal isotropy subgroups for V with dim W (H0) = k. Let H0 be
such a maximal isotropy subgroup with the corresponding variables z1, . . . , zk.

Note that if H < H0 is an isotropy subgroup with dim W (H) = k, then H0
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acts on V H as a finite group: in fact, Γ/H ' (Γ/H0)(H0/H) and the fact that
dim Γ/H = dim Γ/H0 implies that H0/H is finite. Then, as in [10, p. 371],
the set {X ∈ V : |H0/(H0 ∩ ΓX)| < ∞} is the subspace V T n−k

, where Tn−k

is the maximal torus of H0, i.e. H0 = Tn−k × Zm1 × . . . × Zms
where Γ =

Tn × Zn1 × . . . × Znl
. In particular, there is a minimal H, corresponding to

V T n−k

, with H < H0 and dim Γ/H = k.

As a last preliminary step, recall that, under our standing hypothesis, for
any isotropy subgroups Hi < Hj , there is an equivariant map (x1, . . . , xn) →
(xl1

1 , . . . , xln
n ) from (V Hj )⊥Hi into (WHj )⊥Hi , the orthogonal complement of V Hj

(respectively WHj ) in V Hi (respectively in WHi), with index at zero equal to
βij =

∏
lk. Hence βij = 1 if V = Rk ×W. Let Bk ≡ {(t, X) : 0 < t < 1, ‖X‖ <

R, z1, . . . , zk real and positive}. If k = 0, Bk is just the ball I × BR = {(t, X) :
0 < t < 1, ‖X‖ < R}.

We shall consider equivariant maps F : I ×BR → R×W which are non-zero
on ∂(I × BR) and on the sets {zj = 0}, j = 1, . . . , k. For such a map and for
any isotropy subgroup H, FH is non-zero from ∂BH

k to I ×WH , where BH
k and

I × WH have the same dimension. Hence the degree of the Poincaré section
FH |BH

k
is well defined. On the other hand, [F ]Γ =

∑
dK [FK ]Γ + [F̃ ]Γ as above.

One has the following result:

Theorem 2.1. Under the above hypothesis, [F̃ ]Γ = 0, dK = 0 if K is not a
subgroup of H0, and

deg(FHi |
B

Hi
k

;BHi

k ) =
∑

Hi<Hj<H0

βijdj |H0/Hj |

for all H < Hi < H0 with dim Γ/Hi = k, k ≥ 0.

The case k = 0 was given in [10, Theorem 6.1]. For k > 0, the proof is not
straightforward since a Γ-homotopy on ∂(I × BR) does not imply, a priori, an
H0-homotopy on ∂Bk.

Proof of Theorem 2.1. If K is not a subgroup of H0, in particular if
dim Γ/K < k, then zj = 0 for some j = 1, . . . , k on V K . This implies that
FK 6= 0, in particular [F ]Γ ∈ Π(k), as defined in [10, p. 381], and [F̃ ]Γ = 0.

Furthermore, since 0 = [FK ]Γ =
∑

K<Hj
dj [FK

j ]Γ, as seen in [10, p. 388], and
noting that at this level the suspension is an isomorphism, one has dj = 0 if
K = Hj is maximal, in which case dj is the extension degree for FK . On the
other hand, if K is not maximal, then no Hj with K < Hj can be a subgroup of
H0 and it is easily seen that dj = 0 by solving the triangular relations [FHj ]Γ = 0.

One then has

[F ]Γ =
∑

H<Hj<H0

dj [Fj ]Γ,
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where Fj are the corresponding generators. Note that [FH0 ]Γ = dH0 [F0]Γ with
dH0 = deg(FH0 |

B
H0
k

;BH0
k ), according to [10, Theorem 4.1].

Let H < H0 with dim Γ/H = k. Then [FH ]Γ =
∑

H<Hj<H0
dj [FH

j ]Γ and on

V H there is an action of T k such that
∑n

j=1 nl
jϕj =

∑k
j=1 N l

jΦj with N l
j = δjlNj

if j = 1, . . . , k, as in Lemma 1.1. Furthermore, our standing hypothesis implies
that there is a Γ-equivariant map {xj} → {xlj

j } from (V Γ)⊥H into (WΓ)⊥H , the
orthogonal complements in V H and WH respectively. It is clear that such a map
implies that there is also an action of T k on WH , i.e. that the action of Tn can
be formulated in terms of Φ.

Let Ṽ H be a T k-space of the same dimension as V H and where the action of
T k differs only on the variables ξ1, . . . , ξk, where it is eiΦj , j = 1, . . . , k, instead
of eiNjΦj . Any T k-equivariant map F (X0, z1, . . . , zk, xj) from V H into WH will
generate a T k-equivariant map F̃ (X0, ξ1, . . . , ξk, xj) = F (X0, ξ

N1
l , . . . , ξNk

k , xj)
from Ṽ H into WH . Now, if K is an isotropy subgroup for the action of T k on
Ṽ H with K 6= {e}, then on Ṽ K one has ξj = 0 for some j in {1, . . . , k}, and
the original map F̃H as well as the generators F̃H

j are non-zero on Ṽ K . Thus,
[F̃H ]T k and [F̃H

j ]T k are elements of Π(e, T k), as defined in [10, Theorem 5.1].

Note that the existence of the Γ-equivariant map {xj} → {xlj
j } implies that

hypotheses (H) and (H2) of [10] are satisfied. Thus, [F̃H ]T k and [F̃H
j ]T k are

uniquely determined by their extension degrees on the corresponding funda-
mental cell C̃ in Ṽ H , defined by ξ1, . . . , ξk real and positive. Furthermore, if
B̃k ≡ {(t, X) : 0 < t < 1, ‖X‖ ≤ R, ξ1, . . . , ξk real and positive} then, from
[10, Theorem 4.1], these extension degrees are the usual degrees of the maps
restricted to B̃k.

Finally, since [F̃H ]T k =
∑

dj [F̃H
j ]T k , as is easily seen from the corresponding

equality for FH and a Γ-action, and since the extension degree is a morphism
onto Π(l, T k) (the sum is defined on the t variable), one has, from [10, Theorem
4.3],

deg(F̃H |
eBH

k
; B̃H

k ) =
∑

dj deg(F̃H
j |

eBH
k

; B̃H
k ).

Since ξ
Nj

j is deformable to ξj on B̃k, the same relation holds on BH
k and, from

[10, p. 395], deg(FH
j |BH

k
;BH

k ) = (
∏

li)(
∏

ki) where
∏

ki = |H0/Hj | and li

corresponds to the “suspension map” of V Hj in V H as defined above, that is,∏
li = βij for H = Hi. �

Remark 2.1. Let V ∗ = Rk × V |Bk
, where one identifies homotopically the

set {zi real and positive} with R. Then F |Bk
is an H0-equivariant map and

defines an element of ΠH0
SV ∗ (SW ). Now, any isotropy subgroup H of Γ with H <

H < H0 gives an isotropy subgroup of H0, since if H = ΓX =
⋂

Hj then
H0X =

⋂
(Hj ∩ H0) = ΓX ∩ H0 = H, and conversely. Furthermore, one has
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dim V ∗H = dim WH . From [10, Theorem 6.1],

[F |Bk
]H0 =

∑
H′

j<H0

d′j [F
′
j ]H0 with dim H0/H ′

j = 0,

where {d′j} is obtained from the set of degrees deg(FH′
i |

B
H′

i
k

;BH′
i

k ). By applying

this argument to [F |Bk
]H0 −

∑
H<Hj<H0

dj [Fj |Bk
]H0 , one sees that the corre-

sponding degrees are all 0, from Theorem 2.1 and the fact that the sum of
the degrees is the degree of the sum. This implies that the corresponding
d′j are 0, since the triangular matrix for H0 is invertible; thus, [F |Bk

]H0 =∑
H<Hj<H0

dj [Fj |Bk
]H0 , since again the sum is well defined.

Hence, in this case the Γ-homotopy implies an H0-homotopy on V ∗.

Remark 2.2. Let F be as in Theorem 2.1, hence [F ]Γ =
∑

H<Hj<H0
dj [Fj ]Γ

with deg(FHi |
B

Hi
k

;BHi

k ) =
∑

εijβijdj |H0/Hj | for all H < Hi,Hj < H0 and

εij = 1 if Hi < Hj and 0 otherwise. Now, one may also consider the map F̃ =
(FH , F⊥

H ), where F⊥
H is the “suspension” map by {xlj

j } from (V H)⊥ to (WH)⊥.

It is clear that F̃Hi = FHi for any H < Hi < H0 and that these two maps have
the same set of degrees. Thus, the Γ-degrees of these maps are equal, i.e. the
dj ’s are the same, and F and F̃ are Γ-homotopic on ∂(I×BR). Furthermore, the
preceding remark implies that F |Bk

and F̃ |Bk
are H0-homotopic. In particular,

deg(F |Bk
;Bk) = deg(F̃ |Bk

;Bk) = (
∏

lj) deg(FH |Bk
;Bk), that is,

deg(F |Bk
;Bk) =

( ∏
lj

) ∑
βijdj |H0/Hj |.

Remark 2.3. The relations given in Theorem 2.1 may be expressed in the
form  deg(FH0 ;BH0

k )
deg(FHi ;BHi

k )
deg(FH ;BH

k )

 =

 1 0
βi1 |H0/Hj |
βs1 βsj |H0/Hj | |H0/H|

  d1

dj

ds

 .

Since the lower triangular matrix is invertible, the Γ-degree is completely
determined by the degrees of the Poincaré sections. One may give a compact
expression for the inverse by using the Möbius inversion formula, as in [11].

3. Index of an isolated orbit

Let f : Ω → W be a Γ-equivariant map, where Ω is an open bounded and
invariant subset of V = Rk×U. Assume that f−1(0) = ΓX0, with ΓX0 ≡ H such
that dim Γ/H = k. Then f has a well defined Γ-degree with respect to Ω, given
by the class of F (t, X) = (2t+2ϕ(X)−1, f̃(X)) in ΠΓ

SV (SW ). From the excision
property of the Γ-degree we may assume that Ω is a small invariant neighborhood
of the orbit ΓX0. Furthermore, X0 has coordinates z1, . . . , zk which are non-zero
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and with H0 = H1 ∩ . . . ∩ Hk such that dim W (H0) = k, as in the preceding
section.

Thus, Ω can be chosen such that zj |Ω 6= 0, j = 1, . . . , k, and ϕ(X) can be
constructed in such a way that ϕ|{zj=0} = 1 for j = 1, . . . , k: in fact, this can be
done for all the coordinates xj in V for which X0

j , the corresponding coordinate
of X0, is non-zero. This implies that F |V K 6= 0 for any K which is not a subgroup
of H (and not only of H0 as in the last section). As in the proof of Theorem 2.1,
one has degΓ(f ; Ω) =

∑
H<Hj<H dj [Fj ]Γ and

deg(fHi |
B

Hi
k

; ΩHi ∩Bk) =
∑

Hi<Hj<H

βijdj |H0/Hj |.

The fact that deg(FHi |
B

Hi
k

;BHi

k ) is the Brouwer degree of fHi on ΩHi ∩ Bk

follows from [8, p. 447]. Now, |H0/Hj | = |H0/H| · |H/Hj | and, as in [10, p. 377],
due to the H0-action on Bk, f−1(0)∩Bk has |H0/H| points, each with the same
index ij on V Hj ∩Bk. Hence, one may divide the above relation by |H0/H| and
obtain the following result.

Theorem 3.1. Let f be as above and let ij be the Poincaré index of fHj |Bk

at X0. Then
ij =

∑
H<Hj<H

εijβijdj |H/Hj |.

Assume now that f is C1 in a neighborhood of ΓX0. It is easy to see that
Df(X0) has a block-diagonal structure

DfHi(X0) =
(

DfH(X0) 0
0 Df⊥i(X0)

)
and that DfHi(X0)(XHi) is an H-equivariant map [6, p. 412]. Suppose also
that 0 is a regular value of f on Ω, that is, Df(X0)|Bk

is invertible. Then it
follows from [6, pp. 403–404] that the H-representations V ∩Bk and W ∩Bk are
equivalent. We shall then assume that V = Rk × W. This implies that βii = 1
and that ii = Sign detDfHi(X0)|Bk

= iH Sign det Df⊥i(X0).
On Ω∩Bk, f(X) is H-deformable to (DfH(X0)(XH−X0), Df⊥(X0)X⊥) and

one may compute the H-degree of the linearization Df(X0)|Bk
. From Remark

2.1, one has
[F |Bk

]H =
∑

H<Hj<H

dj [Fj |Bk
]H

for the map [2t + 2ϕ(X)− 1, f(X)]H . On the other hand,

[2t + 2ϕ(X)− 1, Df(X0)(X −X0)|Bk
]H =

∑
H<H′

j<H

d′j [F
′
j ]H

where F ′
j are the generators for the action of H on Bk. Now, we have seen

that H acts as a finite group on V ∗. If one decomposes V ∗ into equivalent
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irreducible representations, then Df(X0)|Bk
has a block-diagonal structure [6,

Chapter IV, Theorem 1.2, p. 407], where each block is a real matrix if H acts
as Z2 or a complex matrix if H acts as Zm,m ≥ 3. Furthermore, each block is
H-deformable to a matrix of the form

(
det A 0
0 I

)
if H acts as Z2 and to I if H acts

as Zm,m ≥ 3. This implies that Df(X0)|Bk
gives a suspension by the identity on

the irreducible representations where H acts as Zm,m ≥ 3, and degH(f |Bk
;Bk)

has to take into account only those H ′
j coming from coordinates where H acts

trivially or as Z2, since the suspension is an isomorphism. In other words, one
may consider H ′

j such that H/H ′
j
∼= Z2 × . . .× Z2 and d′j = 0 if H ′

j comes from
an irreducible representation with an action of H of the form Zm,m ≥ 3.

Now, if Hi < H, then, as we have already seen, Hi gives an isotropy subgroup
of H on V ∗ and conversely. Furthermore, since (z1, . . . , zk) are the first variables,
the fundamental cell for Hi as a subgroup of H is the restriction to Bk of the
fundamental cell for Hi as a subgroup of Γ. If Fi is the generator corresponding
to Hi, then it is easy to see that, by construction, Fi|V Hj∩Bk

6= 0 for all Hj > Hi.

Hence the relation [Fi|Bk
]H =

∑
dij [F ′

j ]H reduces to [Fi|Bk
]H = d[F ′

i ]H where
d is the extension degree of Fi|Bk

, that is, d = deg(Fi|Bk
;Bk)/

∏
kj , as in [10,

Theorem 4.1]. But then it is easy to see directly that d = 1, that is, [Fi|Bk
]H

= [F ′
i ]H .

The above arguments imply that d′j = dj and that dj = 0 if Hj = H ∩Hi1 ∩
. . . ∩Hip (Hil

corresponding to the irreducible representation of H on V ∗) and
one of these is such that H/Hil

∼= Zm, m ≥ 3.

It remains to compute the other dj ’s. It is easy to see that dH = iH and, from
iK = dH +2dK , that dK = (iK − iH)/2 for any maximal K, i.e. with H/K ∼= Z2.

If K is not maximal, with H/K ∼= Z2× . . .×Z2, then Df(X0)K |Bk
has the form

diag(AH , A⊥K1 , . . . , A⊥Ks ) with iH = Sign det AH and iKj
= iH Sign det A⊥Kj ,

where H/Kj
∼= Z2. Hence, iK = iH

∏s
j=1(iKj

/iH) and Theorem 3.1 gives∑
Hi<Hj

dj |H/Hj | = iH

[ ∏
(iKe

/iH)− 1−
∑

(iKe
/iH − 1)

]
where on the left side one has a sum over those Hj which are not maximal, i.e.
different from K1, . . . , and on the right the product and the sum are over all
maximal Ke with Hi < Ke.

These relations give a lower triangular matrix which is invertible (one may use
the Möbius inversion formula for example) and the right hand side is completely
determined by iH and iK for all maximal K’s. We have proved the following
result.

Theorem 3.2. Let V = Rk × W and 0 be a regular value of f on Ω with
an isolated orbit ΓX0 such that dim Γ/ΓX0 = k and isotropy ΓX0 = H. Then
the Γ-index of the orbit is given by (dH , dK1 , . . .) such that dH = iH , dKj

=
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(iKj
− iH)/2 if H/Kj

∼= Z2, dK is completely determined by the above integers
if H/K ∼= Z2 × . . . × Z2 with more than one Z2 factor, and dK = 0 otherwise.
Here iK is the Poincaré index of fK at X0.

Remark 3.1. If Γ = S1 and k = 1, these index computations were given in
[9, Proposition 5.2]. In this case H ∼= Zm and H/K cannot be a product.

Remark 3.2. A similar result is given in [5, Proposition 4.7] and in [15].

Remark 3.3. As an example one may consider the action of Z2 × Z2 on
R3 given by (γ1x, γ2y, γ1γ2z) with γ2

1 = Id, γ2
2 = Id and f(x, y, z) = −(x, y, z)

(see [15, p. 85]). One has the following isotropy subgroups and corresponding
subspaces: H0 = Z2×Z2 and (0, 0, 0), H1 = Z2×{1} and (0, y, 0), H2 = {1}×Z2

and (x, 0, 0),H3 = {(1, 1), (−1,−1)} and (0, 0, z),H4 = {(1, 1)} and R3. By
adding 2t− 1, with index i0 equal to 1 at t = 1/2, one has

i0
i1
i2
i3
i4

 =


1 0 0 0 0
1 2 0 0 0
1 0 2 0 0
1 0 0 2 0
1 2 2 2 4




d0

d1

d2

d3

d4

 .

Hence, i0 = d0 = 1, ij = dj = −1 for j = 1, 2, 3, i4 = −1 = i1i2i3 and so d4 = 1.

As an easy consequence of Theorem 3.2, one may obtain an abstract bifurca-
tion and period doubling result of the following sort: assume f(λ, X) is a family
of Γ-equivariant functions from Rk × W into W , with 0 as a regular value for
λ 6= λ0. If X0(λ) is the corresponding curve in V H , where H = ΓX0(λ0) with
dim Γ/H = k, it is easy to see that iK(λ) and dK(λ) are well defined for λ 6= λ0

and any K as above.

Corollary 3.1. (a) If iH(λ) changes sign at λ0, then one has a global
bifurcation at λ0 in V H .

(b) If iH(λ) is constant and iK(λ) changes sign at λ0 for some K with
H/K ∼= Z2, then there is a global bifurcation at λ0 in V K , i.e. with a period
doubling. Topologically all bifurcations are in maximal isotropy subgroups, i.e.
with H/K ∼= Z2.

Proof. By global bifurcation we mean the existence of a continuum in V ×R
going to infinity or returning to the set (X0(λ), λ), for λ 6= λ0, or going to points
where the hypothesis of the corollary does not apply any more (see [6]). The last
sentence of the corollary means that if iH and iK , for all K’s with H/K ∼= Z2, do
not change, then there will be no other changes for smaller isotropy subgroups.
As is well known this does not hold for non-abelian actions. �

Our last result in this section relates the Γ-index to the “Floquet multipliers”
in the generic case of a “hyperbolic orbit” as in [8, p. 474] and [9, p. 106].
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We shall take the following setting: V = Rk×W,F (λ, X) = X−f(λ, X) from
V into W is C1 and f(λ, X) is a compact map with F (λ0, X0) = 0, and ΓX0 = H

is such that W (H) has dimension k. As before we choose the orientation of W in
such a way that the first variables z1, . . . , zk have an isotropy subgroup H0 with
Γ/H0

∼= T k, generated by Φ1, . . . ,Φk, as in Section 1, and action on zj given by
eiNjΦj .

Since F (λ0, γX0) = 0, one has d
dΦj

F (λ0, X0) = 0 = FX(λ0, X0)AjX0, where
Aj is the generator of the action of Φj . In other words, {AjX0} generate the
Lie algebra of Γ/H. Note that AjX0 has iNjz

0
j as its jth coordinate, hence the

elements {AjX0} are linearly independent. Here z0
j is the jth coordinate of X0,

which will be taken, without loss of generality, real and strictly positive.

Definition 3.1. Let K < H. Then (λ0, X0) is said to be K-hyperbolic if
and only if

(a) dim ker(I − fK
X (λ0, X0)) = k,

(b) fλ(λ0, X0) : Rk → W is one-to-one, and
(c) Range fλ(λ0, X0) ∩ Range(I − fK

X (λ0, X0)) = {0}.

Similarly (λ0, X0) is said to be K-simply-hyperbolic if (λ0, X0) is K-hyperbolic
and the algebraic multiplicity of 0 as eigenvalue of I − fk

X(λ0, X0) is k.

Note that since X0 is in V H , it follows that F (λ, X0) belongs to WH , and
thus, fλ(λ0, X0)µ belongs to WH . Similarly, since ΓX0 ⊂ V H , AjX0 belongs to
V H . We have seen that fK

X (λ0, X0) has the diagonal structure(
fH

X (λ0, X0) 0
0 f⊥K

X (λ0, X0)

)
,

hence it is easy to see that one has the following result.

Proposition 3.1. (λ0, X0) is K-hyperbolic if and only if (λ0, X0) is H-
hyperbolic and I − f⊥K

X is invertible.

Note that Range fλ(λ0, X0) has the right dimension to complement Range(I−
fH

X (λ, X0)) in WH . Let

K(µ, Y ) = (µ1 − Im z1, . . . , µk − Im zk, fλ(λ0, X0)µ + fX(λ0, X0)Y ).

Then K is a compact linear operator on V and on V K , for all K < H.

Proposition 3.2. (λ0, X0) is H-hyperbolic if and only if I−KH is invertible.

Proof. If (I − K)(µ, Y ) = 0 then Im zj = 0, fλµ = 0 and hence µ = 0, Y

belongs to ker(I − fH
X ), i.e. Y =

∑
αjAjX0. By looking at Im zj = αjNjz

0
j , one

concludes that αj = 0 and I − K is one-to-one. Since K is compact, I − K is
invertible.
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Conversely, if dim ker(I − fH
X ) > k, let Y0 be in this kernel and linearly

independent of AjX0. Replacing Y0 by Y0 −
∑

(Im yj/(Njz
0
j ))AjX0 where yj

is the jth coordinate of Y0, one may assume that Im yj = 0 and (0, Y0) is in
ker(I − KH). Similarly if fλ(λ0, X0)µ = 0, then (µ,

∑
(µj/(Njz

0
j ))AjX0) is in

ker(I − KH), i.e. fλ must be one-to-one. Finally, if fλµ = −(I − fH
X )Y, then

(µ, Y −
∑

((yj − µj)/(Njz
0
j ))AjX0) is in ker(I −KH), where yj is the jth coor-

dinate of y. �

Let iK be the index on the Poincaré section given by Re zj > 0, Im zj = 0,

of the map X − fK(λ, X) at (λ0, X0), for X in WK . Since the identity map
(λ1, . . . , λk,Re z1, Im z1, . . . ,Re zk, Im zk, . . .), with the natural orientation on
Rk × WK , is homotopic to ((−1)k+1 Im z1, (−1)k+2 Im z2, . . . , (−1)k+k Im zk,

λ1, . . . , λk,Re z1, . . . ,Re zk, . . .) via a series of permutations, one has

iK = (−1)k(3k+1)/2 Index((Im z1, . . . , Im zk, X − fK(λ, X)); (λ0, X0)),

where this Leray–Schauder index is with respect to the natural orientation on
V K . Now, by standard approximation arguments, this index is the index of
(0, 0) for the operator (I − K)(µ, Y ). Here µ = λ − λ0 and Y = X − X0, since
Im X0

j = 0. From this last statement one has iK = iH(−1)n′K , where n′K is the
number, counted with multiplicity, of real eigenvalues of f⊥K

X which are larger
than 1.

Note that n′K is even if H/K is not a product of Z2’s. In fact, if H acts
as S1 or Zm,m ≥ 3, on a set of equivalent irreducible representations, then the
H-equivariant linear map f⊥K

X preserves these representations and can be seen
as

(A + iB)(X + iY ) ≡
(

A −B

B A

) (
X

Y

)
,

as a real operator. Since(
A −B

B A

)
= P

(
A + iB B

0 A− iB

)
P−1 with P =

(
I I

−iI iI

)
,

it follows that

det
(

A− λI −B

B A− λI

)
= |det(A− λI + iB)|2 > 0

and the algebraic multiplicity of any real eigenvalue is even. Similarly, if (X, Y )T

is an eigenvector with real eigenvalue, then (Y,−X)T is also an eigenvector and
the geometric multiplicity is even.

It is thus enough to compute iH . Let WH = ker (I−fH
X )m⊕Range (I−fH

X )m,

where the first term is the generalized eigenspace. Then Y H = u⊕ v and I− fH
X

leaves each subspace invariant. Choose a basis for the first term in such a way
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that I − fH
X is in Jordan form on it, i.e., uT = (u1, . . . , uk)T , uT

j = (x1
j , . . . , x

αj

j ),
with

∑
αj = α, the algebraic multiplicity, and maxαj = m. Then

(I − fH
X )uj = Jαj Uj where J =


0 1

. . . . . .
. . . 1

0

 .

Since AjX0 is written in this basis as uT
j = (1, 0, . . . , 0), ul = 0 for l 6= j, we have

u =
∑

x1
jAjX0 + w, where w corresponds to the other variables. Then

(I −KH)(µ, Y )

= (x1
jNjz

0
j + Im(wj + vj), Jα1u1 − f1µ, . . . , Jαk

uk − fkµ, (I − fH
X )v − fvµ),

where (f1µ, . . . , fkµ, fvµ) are the components of fλµ in the basis. Furthermore,
(fjµ)T = (f1

j µ, . . . , f
αj

j µ) componentwise. Let Λ be the k × k matrix with jth
row given by f

αj

j . One has the following result.

Theorem 3.3. Let (λ0, X0) be K-hyperbolic. Then:

(a) iK = (−1)n′K iH , where n′K is the number of eigenvalues of f⊥K

X , counted
with algebraic multiplicity, which are larger than 1.

(b) The matrix Λ is invertible and iH = (−1)k(k+1)/2(−1)nH Sign det Λ,
where nH is the number of eigenvalues of fH

X , counted with algebraic multiplicity,
which are larger than or equal to 1.

Proof. If µ belongs to kerΛ, then one obtains an element in ker(I − KH)
by taking v = (I − fH

X )−1fvµ,wl
j = f l

jµ for 1 ≤ l ≤ αj − 1 and x1
j = − Im(wj +

vj)/(Njz
0
j ).

Thus, is order to compute the index, one may deform linearly, to 0, the terms
fv, f l

j for 1 ≤ l ≤ αj − 1, and then Im(vj + wj) to 0 and Njz
0
j to 1. One is left

with the map

(µ1, . . . , µk, x1
1, x

2
1, . . . , x

α1
1 , x1

2, . . . , x
α2
2 , . . . , x1

k, . . . , xαk

k , v)

→ (x1
1, . . . , x

1
k, x2

1, . . . , x
α1−1
1 ,−fα1

1 , x2
2, . . . ,−fα2

2 , . . . , x2
k, . . . ,−fαk

k , (I − fH
X )v).

Via permutations, this map is homotopic to the map

(−(−1)α1fα1
1 ,−(−1)α2fα2

2 , . . . ,−(−1)αkfαk

k , x1
1, . . . , x

α1
1 , . . . x1

k, xαk

k , (I − fH
X )v).

One may decompose Range (I − fH
X )m into

∑
ker (I − τlf

H
X )ml ⊕ W, where

τl are the characteristic values of fH
X with 0 < τl < 1. On each Jordan block

for I − τlf
H
X of the form J, I − fH

X has the form −I(1 − τl)/τl + J/τl, which is
deformable to −I. On the other hand, on W , the operator I − fH

X is deformable
to the identity. Hence

IH = (−1)k(3k+1)/2(−1)α(−1)k(−1)Σnl Sign det Λ,
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where nl = dim ker(I−τlf
H
X ). Since k(3k+1)/2+k = 3k(k+1)/2 has the parity

of k(k + 1)/2, one obtains the result. �

Remark 3.4. In [8, Prop. 4.15, p. 475] and [9, Prop. 5.5, p. 112], a similar
result was stated for the case Γ = S1 and k = 1, where Λ was given in terms
of generators of a complement of Range(I − fH

X ). By comparing the formulae
it is easy to see that there is a difference of (−1) between the previous results
and the one given here. This is due to the fact that in those papers we used the
index of the Poincaré section given by (X, λ) with Re z1 > 0, Im z1 = 0, while
here the section is given by (λ, X): the difference is an orientation factor of (−1),
corresponding to the permutation of λ and Re z1.

Example 3.1 (Twisted orbits). Consider the problem of finding 2π-periodic
solutions to the equation dX/dt = f(X, ν), where ν could be the frequency, X is
in RN and f is equivariant with respect to the abelian group Γ0 = Tn × Zm1 ×
. . .× Zmm

. This problem has been extensively studied (see e.g. [4]) but here we
shall give a less algebraic presentation of it.

Let X(t) =
∑

Xneint be the Fourier series for X(t) in V , an appropriate
space of 2π-periodic functions. The action of Γ0 on RN induces a natural action
on CN such that one may find a basis for it such that on the jth coordinate of
CN ,Γ0 acts as exp[2πi(〈Kj/M,L〉 + 〈Nj ,Φ〉)], where the vector Kj/M stands
for (k1

j /m1, . . . , k
m
j /mm)T with 0 ≤ ki

j < mi, L is in Zm, Nj in Zn and Φ in [0, 1]
(see [10, Lemma 1.1]). Then Γ ∼= Γ0 × S1 acts on X(t) as γX(t + φ) and on
the jth coordinate of Xn as exp[2πi(〈Kj/M,L〉+ 〈Nj ,Φ〉)+ inφ]. Let Hjn be its
isotropy subgroup, i.e. the set of {L,Φ, φ} such that the above exponential is 1.

Note that, by [10, Lemma 1.1], Γ/Hjn
∼= S1 if n 6= 0 or Nj 6= 0. Hence, for a

fixed ν, the only relevant isotropy subgroups for the equivariant degree are those
for which n = 0 and Nj = 0, i.e. those for V T n×S1

, which give stationary (in
time and with respect to Tn) solutions. We shall leave this case to the reader
and concentrate on the case of a free parameter ν.

Now, Hjn = {(L,Φ, φ) : nφ/(2π) + 〈Kj/M,L〉 + 〈Nj ,Φ〉 ∈ Z}, in particular
Hj0 = Hj×S1, where Hj is the isotropy subgroup of Γ0 in RN . In order to apply
Theorem 3.2 to Hjn we need to identify V jn, the isotropy subspace for Hjn, and
all isotropy subgroups K of Γ such that Hjn/K ∼= Z2. Note that K =

⋂
Hlk

for l and k such that (Xk)l is in V K and K < Hlk ∩ Hjn < Hjn. Thus, either
Hlk ∩Hjn = Hjn and Hjn < Hlk, i.e. (Xk)l is in V jn, or Hlk ∩Hjn = K with
Hjn/K ∼= Z2, i.e. if (L,Φ, φ) is in Hjn then (2L, 2Φ, 2φ) is in K and in Hlk.

Then, if Hj0 < Hlk, one requires kφ/(2π) + 〈Kl/M,L〉 + 〈Nl,Φ〉 to be in Z for
all (L,Φ) in Hj and all φ’s. Taking L = KlM and Φ = 0, this is impossible
unless k = 0 and Hj < Hl. A similar argument with (2L, 2Φ, 2φ) gives that the
only possibility for Hj0/K ∼= Z2 is for k = 0 and Hj/Hj ∩ Hk

∼= Z2. Thus,
V j0 ⊂ V K ⊂ RN , and we are dealing with stationary solutions.
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If n 6= 0, then Hjn < Hlk implies

〈(kKj − nKl)/M,L〉+ 〈kNj − nNl,Φ〉 = ak − bn

for integers a and b and all (L,Φ). Hence kKj/M − nKl/M = kA − nB and
kNj = nNl. For K, upon taking (2L, 2Φ, 2φ), the coordinates in V K have to
satisfy 2kKj/M − 2nKl/M = 2kA − nB and kNj = nNl. This last equality
implies that there are a finite number of modes, i.e. of k’s, in V K unless Nj =
Nl = 0, i.e. with a trivial action of Tn. Note also that the element (0, 0, 2π/n)
in Hjn will be in Hlk only if k/n is an integer, and its double will be in Hlk only
if 2k/n is an integer.

If Nj 6= 0, let Y (t) = A(t)X(t), where A(t) = diag(e−ik1t, . . . , e−ikN t), with
kl such that klNl = nNj and 0 otherwise, for the finite number of modes which
satisfy the above relation. Here A(t) is written in the representation induced by
Γ0 on RN , i.e. A(t) is in fact a real matrix, but written this way for convenience.
Then

Y ′(t) = A′(t)A−1(t)Y (t) + A(t)f(A−1Y (t), ν) = A′(0)Y (t) + f(Y (t), ν)

since f is Γ0-equivariant (take t = −2πn〈Nj ,Φ〉). Thus, the equation is also
Γ-equivariant and Y0l = Xkll, i.e. one has frozen the rotating wave (see [4]), and
one is back to the study of time stationary solutions. Hence, we shall assume
Nj = 0.

Take the set of (k, l)’s such that 2k/n is an integer and Kl = (2k/n)Kj/2 +
(Dl/2)M + ElM, where Dl has components 0 or 1 and El is an integer-valued
vector (they depend on k): these will contribute to V K , while for V jn one has
(k, l) with k/n an integer and Dl = 0. Let ki

j/mi = ki′
j /m′

i with ki′
j and m′

i

relatively prime (if ki
j = 0 replace it by mi and then these numbers are both 1).

If mj = l.c.m.(m′
1, . . . ,m

′
m), then there is an Lj such that any L can be written

as cLj + Q with 0 ≤ c < 2mj , 〈Kj/(2M), Lj〉 ≡ 1/(2mj) and 〈Kj/(2M), Q〉 is
an integer (see [10, Lemma 1.1] where those Q for which 〈Kj/M,Q〉 is odd are
replaced by Q−mjLj and we allow c to go up to 2mj).

Thus, 〈Kl/M,L〉 = c(2k/n)/(2mj) + 〈Dl, cLj + Q〉/2. In these terms one
has Hjn = {(c,Q, φ) : 0 ≤ c < 2mj , 〈Kj/M,Q〉 is an even integer and φ/(2π) =
−c/(nmj)+2d/n} and Hlk∩Hjn = K = {(c,Q, φ) : φ as above and 〈Dl, cLj +Q〉
even}. Thus, if (L, φ) is in K, then 〈Dl, L〉 is even for all k and l. Now, if
〈Dl0 , Lj〉 is odd for some (k0, l0), then any L can be written as L = dLj + L′

with 〈Dl0 , L
′〉 even (hence 〈Dl, L

′〉 is even for all (k, l)), d is the parity of c and
〈Dl, cLj + Q〉 ≡ c〈Dl, Lj〉 (mod 2). On the other hand, if for all (k, l) one has
〈Dl, Lj〉 even and not all Dl are 0, then there is an L0 such that L = dL0 + L′

with 〈Dl, L
′〉 even for all (k, l) and an independent Z2-action on V K . However,
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we shall see that this is never the case unless nmj is odd and 〈Dl, Lj〉 is even for
all l’s.

Fix l and let Al = {k > 0 : 2k/n ∈ Z, Kl = (2k/n)Kj/2 + DlM/2 + ElM}.
If K ′

j = (k1′
j , . . . , km′

j ),M ′ = (m′
1, . . . ,m

′
m) and ki′

l = ki
lm

′
i/mj , then 2K ′

l =
(2k/n)K ′

j + DlM
′ + 2ElM

′. Note that if k is in Al, then so is k + dnmj for
any integer d, with the same Dl. If Al = ∅, then the corresponding coordinate
does not enter in V K . Furthermore, if k and k1 are in Al then 2(k1 − k)/n =
(2ei + (d′i − di)m′

i)/ki′
j for all i’s. Since m′

i and ki′
j are relatively prime, one has

2(k1 − k)/n = cim
′
i = cmj . If c = 2d is even, then k1 = k + dnmj and D′

l = Dl,
while if c = 2d + 1, then k1 = k + (2d + 1)nmj/2 (hence nmj must be even) and

D′
l = Dl − (2d + 1)mjK ′

j/M
′ + 2(El − E′

l) = Dl + mjK ′
j/M

′ + 2E,

since mjK ′
j/M

′ is integer-valued. Thus, 〈D′
l, Lj〉 = 〈Dl, Lj〉+ 1 + 2e.

Let kl = minA0
l , where A0

l = {k ∈ Al : 〈Dl, Lj〉 even} and Dl be its cor-
responding element. Note that this subset A0

l of Al is not empty, due to the
alternating parity of 〈Dl, Lj〉, unless nmj is odd. In this last case, we shall take
kl = minAl and then 〈Dl, Lj〉 has always the same parity. Thus, any k in A0

l

is of the form k = kl + dnmj with the same Dl or, in the complement, of the
form k = k′l + dnmj with D′

l = Dl + mjKj/M and k′l = kl + nmj/2. Hence,
in all cases, Kl = (2kl/n)Kj/2 + DlM/2 + ElM and any k in Al is given by
k = kl + dnmj/2, where the parity of d decides the class of kj (d even if nmj is
odd).

Let rl = 2kl/n + 〈Dl, Lj〉mj , that is, rj = 2 and rl = 2kl/n if the lth
coordinate is in V jn. Then the action of Γ on the l-coordinate of Xk is given
by exp[2πi(crl/(2mj) + ddl/2 + kφ/(2π))], where d = 0 unless nmj is odd and
〈Dl, Lj〉 is even for all l, in which case dl = 〈Dl, L0〉. Hence, rl = 2kl/m if nmj

is even and rl = 2kl/m + 〈Dl, Lj〉mj if nmj is odd. Note that if, for some k, the
pair (l, k) contributes to V jn, then for that pair one has 2k/n even and Dl = 0,

that is, rl = 2kl/n is even. On the other hand, a coordinate will not contribute to
V jn if A0

l 6= ∅,mj is even and rl = 2kl/n is odd, or if A0
l = ∅, hence nmj is odd,

and rl is odd (in this case 2kl/n is always even), or if nmj is odd, A0
l = Al, rl is

even but dl = 1.

Note that if Γ0 = {e}, then mj = 1 and rl = 2kl/n is even, since the action
has to be trivial. Let γ0 be the matrix corresponding to c = 1 and d = 0, and γ1

be the matrix corresponding to c = 0 and d = 1. Then the action of Γ0 on RN

is generated by γ0 and γ1. Since γ2mj

0 = Id, one has a natural splitting of RN as
RN0 × RN1 , where γmj

0 acts as (−1)i Id on RNi , i.e. RN0 corresponds to even rl

and RN1 to odd ones. If nmj is odd and rl is even for all l’s, then the splitting
of RN corresponds to the action of γ1, since γ2

1 = Id . Thus, if X(t) is in V jn,
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one has

X(t) =
∑

Xkeikt =
∑ ∑

l

e2πirl/(2mj)(Xk)le
ik(t−2π/(nmj))

where the first sum is over k’s with k = kl + dnmj and even rl = 2kl/n. Hence,
X(t) = γ0X(t − 2π/(nmj)) and X(t) = γ1X(t). Conversely, any X(t) which
satisfies these relations is in V jn, where the components of X(t) are restricted
to those for which rl is 2kl/n and even, i.e. in RN0 . In fact, there γmj

0 = Id and
X(t) is 2π/n-periodic and the only modes present in the Fourier expansion of
X(t) are those for which k is a multiple of n and k = kl + dnmj .

For V K , the same arguments yield that, if nmj is even,

X(t) = γ0

( ∑
even

∑
l

(Xk)le
ik(t−2π/(nmj)) −

∑
odd

∑
l

(Xk)le
ik(t−2π/(nmj))

)
where the first sum is over k’s for which k = kl + 2dnmj/2 and the second over
k’s with k = ll + (2d + 1)nmj/2. Then

X(t) = X0(t) + X1(t) = γ0(X0(t− 2π/(nmj))−X1(t− 2π/(nmj))).

Now, X(t) = γ2
0X(t − 4π/(nmj)) and since γ2mj

0 = Id, one sees that X(t)
is 4π/n-periodic. Conversely, any X(t) with that periodicity will have modes
k with 2k/n an integer and X(t) can be split as above: In fact, by changing
mj to 2mj , one finds as above that 2k/n is an integer and 2k = 2kl + dnmj .

According to the parity, one will have X0 or X1. Note that X(t), X0 and X1 have
a spatial splitting on the coordinates of RN , i.e. on RN0× RN1 , even and odd
rl’s. The components of X0 in RN0 are 2π/n-periodic, while those in RN1 are
2π/n-antiperiodic. The behavior of the components of X1(t) differs by a factor
(−1)mj

. Since we are working with 2π-periodic functions this implies that X(t)
is in RN0 if n is odd and mj even.

If nmj is odd, then the only modes are those of the form k = kl + dnmj .

One then has a spatial splitting, with X(t) = X+(t) + X−(t), with X+ in RN0

and X− in RN1 . Then X(t) = γ0(X+(t− 2π/(nmj))−X−(t− 2π/(nmj))), and
both X± are 2π/n-periodic. The converse is clear. Finally, if nmj is odd and rl

is even for all l, then X(t) = X+(t) + X−(t) = γ0X(t − 2π/(nmj)), i.e. X(t) is
2π/n-periodic and one has γ1X±(t) = ±X±(t). Hence, we get

Lemma 3.1. (a) The elements of V jn are those X(t) = γ0X(t− 2π/(nmj))
with components in the subspace RN0 of RN where γmj

0 = Id and γ1 = Id.
(b) The elements of V K are such that X(t) = γ2

0X(t − 4π/(nmj)). If nmj

is odd, then X(t) is as above, with a spatial splitting induced by γmj

0 and γ1.

Let then X(t) be in V jn and a solution of X ′(t) = f(X(t), ν0). Let B(t) =
Df(X(t), ν0). Then, since γDf(X, ν) = Df(γX, ν)γ for any γ in Γ0, for γmj

0

and γ1 which fix X̄(t), one has a structure of B(t) of the form diag(B+(t), B−(t))
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where B± acts on RN± and B±(t) are 2π/n-periodic. Let Φ(t) be the funda-
mental matrix, i.e. dΦ/dt = B(t)Φ and Φ(0) = I. From the flow invariance
it is easy to see that Φ(t) = diag(Φ+(t),Φ−(t)). Note that X ′(t) belongs to
ker(d/dt−B(t)) and that, as seen in [7, Appendix] and [9, Proposition 4.16], the
eigenvalues of Id−FX are related, including the algebraic multiplicities, to the
X(t) in V jn or V K such that d

dtX(t)−B(t)X + λX = 0, λ > 0, which are given
by X(t) = e−λtΦ(t)W with W in ker(Φ(2π)−e2πλI), so that X(t) is 2π-periodic,
i.e. e2πλ is a Floquet multiplier for the Poincaré return map Φ(2π).

Now, if X(t) is in V jn, then X(2π/(nmj)) = γ0X(0) and γ−1
0 A+W =

eλ2π/(nmj)W, where Φ(2π/(nmj)) = diag(A+, A−). Similarly, if X(t) is in V K

then γ−2
0 BW = eλ4π/(nmj)W with B = Φ(4π/(nmj)). Let Ψ(t + 2π/(nmj)) =

γ0Φ(t)γ−1
0 . It is easy to see that Ψ is also a fundamental matrix, hence Ψ(t) =

Φ(t)C with C = A−1. Then Ψ(2πs/(nmj)) = γ0Φ(2π(s − 1)/(nmj))γ−1
0 =

Φ(2πs/(nmj))A−1. Thus, Φ(2πs/(nmj)) = γs
0(γ

−1
0 A)s. In particular,

Φ(2π) = γnmj

0 (γ−1
0 A)nmj

. Hence, Φ+(2π) = (γ−1
0 A+)nmj

, Φ−(2π) =
(−1)nmj

(γ−1
0 A−)nmj , γ−2

0 B = (γ−1
0 A)2, Φ±(2π/n) = ±(γ−1

0 A±)mj

,Φ±(4π/n)
= (γ−1

0 A±)2mj

and the generalized spectra of these matrices are easily related.
Since we are interested in the eigenvalues of γ−1

0 A+ which are real and larger
than 1, for V jn, and in the eigenvalues of (γ−1

0 A)2 which are real and larger
than 1, for V K , let σε

+ = number of real eigenvalues λ of γ−1
0 A+ with ελ > 1

and likewise for σε
− and A−. If nmj is odd, then X+(t) = γ0X+(t− 2π/(nmj)),

hence γ−1
0 A+X+(0) = eλ2π/(nmj)X+(0), while X−(t) = −γ0X−(t − 2π/(nmj)),

hence γ−1
0 A−X−(0) = −eλ2π/(nmj)X−(0). If γ1 6= Id, then one has a splitting

according to the eigenvalues of γ1. We have proved

Proposition 3.3. If the orbit X(t) is hyperbolic, then iH = (−1)σ+
+ε, where

ε depends on how f depends on ν (ε = 1 for f(x, ν) = f(x)/ν). We have iK =
(−1)σ+

++σ+
−+σ+

−+σ−−ε if nmj is even. If nmj is odd and γ1 = Id, then iK =
(−1)σ+

++σ−−ε, and if nmj is odd and γ1 6= Id, then iK = (−1)σ+
++σ+

−ε.

Remark 3.4. (a) If nmj is even, then iH = i′H and iK = i′K , where i′H is
given by the number of eigenvalues of Φ+(2π) which are larger than 1, and i′K
by those eigenvalues of Φ(2π) which are of absolute value larger than 1. The
same interpretation can be given in the cases of nmj odd.

(b) One may also use the fact that for any X(t) in V K , one has X(t) = X0(t)+
X1(t) with X0(t) = γ0X0(t − 2π/(nmj)) and X1(t) = −γ0X1(t − 2π/(nmj));
then one may look at the Floquet multipliers, larger than 1, for the problem
X(t + 2π/n) = aX(t), γ0X(t) = bX(t + 2π/(nmj)), where |a| = |b| = 1 (see [4,
Definition 6.1]). Write σa

fb for the number of these eigenvalues (counted with
multiplicity). Then, if b = 1, X(t) = X0(t), if b = −1 then X(t) = X1(t), if
a = 1 one has to look at positive eigenvalues of γ−1

0 A, and if a = −1 at negative
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eigenvalues. Hence σ+
f+ = σ+

+ , σ−f+ = σ−− , since in the first case X0(t) is in RN0

and in the second in RN1 . If b = −1 and a = 1, then σ+
f− is σ+

+ if mj is even
(then X1 is in RN0) and σ+

− if mj is odd (then X1 is in RN1). If b = −1 and
a = −1, then σ−f− is σ−− if mj is even (X1 is in RN1) and σ−+ if mj is odd (X1 is

in RN0). Thus iK = (−1)σ+
f++σ−f++σ−++σ+

− , where σ−+ + σ+
− = σ+

f− + σ−f− if mj is
odd.

(c) As in [9, Chapter VII], one may define an orbit index as (iH + iK)/2.

Example 3.2 (Time dependent equations). Consider the problem of finding
2π-periodic solutions to the problem dX/dt = f(X, t), where f(X, t + 2π/p) =
f(X, t) for some integer p. By writing X(t) =

∑
Xneint, one has inXn − fn(X)

= 0, where fn(X) = (2π)−1
∫ 2π

0
f(X(t), t)e−intdt. Replacing X(t) by X(t + ϕ)

gives fn(X(t + ϕ)) = einϕ
∫ 2π

0
f(X(t), t−ϕ)e−intdt, where one has used the 2π-

periodicity of X and 2π/p-periodicity in t. Hence fn(X(t+ϕ)) = einϕfn(X(t)) for
ϕ = 2kπ/p, k = 0, . . . , p−1, giving a natural Zp-action on these functions. If X(t)
is a 2π/p′-periodic solution with p a multiple of p′, then the linearization near
X will solve the problem dX/dt−Df(X(t), t)X = 0, where B(t) = Df(X(t), t)
is 2π/p′-periodic. It is then easy to compute the indices and relate them to the
Poincaré index of the linearization. We leave this task to the reader.

4. Borsuk–Ulam results

In this section we shall show how many of the extension ideas given implicitly
in [10] can be proved, with less stringent hypotheses, in the case when there are
no extra parameters (in [10] the main interest was on the parameter case where
obstructions are not primary). For the moment the only hypothesis is that V

and W are representations of the compact abelian group Γ, with a special first
coordinate t in V Γ and WΓ.

Lemma 4.1. Let Iso(V ) be the set of all isotropy subgroups of Γ for V and let
A = {H ∈ Iso(V ) : ∃K ∈ Iso(V ),K ≤ H and dim V K > dim WK + dim Γ/K}.

(a) Let F0 be an equivariant map from
⋃

H∈A SV H

into
⋃

H∈A WH \ {0}.
Then F0 has an equivariant extension F from SV into W \ {0}.

(b) Let A′ be the subset of Iso(V ) defined as A but with dim V K ≥ dim WK +
dim Γ/K instead of strict inequalities. Then if F ′

0 and G′
0 are Γ-homotopic maps

on
⋃

H∈A′ S
V H

, any two extensions F ′ and G′ are Γ-homotopic on SV .

(c) If F0 is as in (a) and dim V < dim W, then any extension F is, non-
equivariantly, deformable to a constant.

Proof. For (a) it is enough to follow the arguments of [10, Theorem 3.1(a)]
on the set C∩SV , where C is the fundamental cell, which has the right dimension
for the extension. Note that

⋃
H∈A SV H

can be replaced by any invariant set
which contains this union.
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For (b), replace V by I × V and repeat the above argument. Or, consider
[F ′]Γ− [G′]Γ in ΠΓ

SV (SW ) (recall that the addition is done on the first variable).
This map is Γ-homotopically trivial on

⋃
H∈A′ S

V H

, i.e. it has a Γ-extension to⋃
H∈A′ B

H . One may apply directly [10, Theorem 3.1(a)] to get a Γ-extension
to B, i.e. [F ′]Γ − [G′]Γ = 0. The same extension problem on A would meet
obstructions given by the extension degree of [10, Theorem 3.1(b)].

(c) is trivial since ΠSV (SW ) = 0 in this case. �

Our next result will be used for the construction of the generators in the Hopf
theorem.

Lemma 4.2. (a) If H is not in A and dim V H = dim WH+ dim Γ/H then
there is an equivariant map FH such that FH is (1, 0) on any BK when K is
not a subgroup of H, and FH has extension degree 1.

(b) If furthermore the following hypothesis holds:

(H0) ∀γ ∈ Γ, Sign det γ Sign det γ̃ > 0,

and dim V H = dim WH and Γ/H is finite, then deg(FH
H ;BH) = |Γ/H| and

FH can be constructed in such a way that deg(FK
H ;BK) = βKH |Γ/H| for some

integer βKH , for any K < H with dim V K = dim WK and Γ/K finite, while
this degree is 0 if K is not a subgroup of H.

Proof. Define FH as (1, 0) on all the balls BK with K as above. Consider
the fundamental cell CH for BH , as in [10, Section 3], CH = {xj : 0 ≤ |xj | ≤
R, 0 ≤ Arg xj < 2π/kj}, where kj are defined in [10]. Then CH is a ball of
dimension equal to dim WH . For kj > 1 and xj = 0, extend FH as (1, 0), as well
for Arg xj = 0 and 2π/kj , if 2 ≤ kj < ∞, with xj complex if kj = 2. On the rest
of ∂CH , construct a map of degree 1 with respect to CH (one may always localize
such a map in a neighborhood of any point of a sphere). This map is clearly
equivariant with respect to the symmetries of ∂CH (in fact, it is invariant). One
extends this map, by the free action of Γ/H, to an equivariant map on BH which
is non-zero on ∂BH . Since H 6∈ A, one may extend this last map to SV , by using
Lemma 4.1(a) on A ∪ K, for all K’s which are not subgroups of H. Note that
this construction implies that Π(H,K) in [10, Theorem 4.2] is Z in this case.

If (H0) holds, then, from [10, Theorem 4.1], one sees that deg(F̃H ;BK) =∏
kj degE(F ) and, in the particular case of H with dim V H = dim WH and

Γ/H finite, deg(FH
H ;BH) = |Γ/H|degE(F ) = |Γ/H|. In this case any element in

Π(H), as defined in [10], is uniquely determined by its extension degree.
For (b), if K is not a subgroup of H, then FH = (1, 0), with zero degree,

while, if K < H, let x⊥j be the components in the orthogonal complement of
V H in V K . Then CK = CH × {x⊥j

: 0 ≤ |x⊥j
| < R, 0 ≤ Arg x⊥j

< 2π/kj} and
BK is |Γ/H| images of CH cross the ball {X⊥ : ‖X⊥‖ ≤ R} ≡ B⊥. Now, FH

H
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was defined as (1, 0) on ∂CH ∩ {X : ‖X‖ < R}. By defining FK
H as (1, 0) on this

last set crossed by B⊥, one obtains, from the dimension arguments of Lemma
4.1(a), an equivariant map FH , which is (1, 0) on ∂CH ∩ {X : ‖X‖ < R}. Since
(H0) holds, deg(FK

H ;BK) is the sum of the degrees on CH ×B⊥, and all of them
are equal. Hence deg(FK

H ;BK) = |Γ/H| deg(FK
H ; CH ×B⊥). �

Remark 4.1. (a) If there is an equivariant map FK
⊥ from the orthogo-

nal complement of V H in V K to the orthogonal complement of WH in WK ,

with zero only at 0, then one may take for FK
H the couple (FH

H , FK
⊥ ) for which

deg(FK
H ;BK) = |Γ/H|deg(FK

⊥ ;B⊥). If one has the same situation for another
isotropy subgroup L < K, then one would have

deg(FL
H ;BL) = deg(FK

H ;BK) deg(FK
⊥ ;B′

⊥),

where B′
⊥ is a ball in the orthogonal complement of V K in V L. This is the case

of hypothesis (H2′) in [10] and, in particular, for hypothesis (H) of the present
paper. However, this is not true in general: if one takes the example of Section 0,
then any map G with dΓ = 1 will have deg GH = p(1 + pdH), a multiple of p,

and deg G = 1 + kp, which is not a multiple of the previous degree.
(b) As pointed out above, (H0) implies that the extension degree, if dim V H =

dim WH , is independent of previous extensions, contrary to the case where
dim Γ/H > 0, where one has to add new hypotheses.

(c) If (H0) holds, then if V ′H denotes the orthogonal complement of V Γ in
V H , it is easy to see that |dim V ′H − dim W ′H | is even (see [10, p. 376]). In
particular, |dim V H − dim WH | has the parity of |dim V Γ − dim WΓ|.

We are now ready for the Hopf classification theorem, which should be com-
pared to [10, Theorems 5.2 and 6.1] with a different set of hypotheses, and to
[12] and the references therein, in our particular case of a linear action of an
abelian group.

Theorem 4.1. Let Ã = {H ∈ Iso(V ) : ∃K ∈ Iso(V ),K ≤ H, and dim V K >

dim WK when |Γ/K| < ∞ or dim V K ≥ dim WK +dim Γ/K when |Γ/K| = ∞},
i.e. A ⊂ Ã ⊂ A′. Assume (H0) holds. Then if F and F0 are two equivariant maps
which are Γ-homotopic on

⋃
H∈ eA SV H

, one has integers dH such that

[F ]Γ = [F0]Γ +
∑

I

dH [FH ]Γ in ΠΓ
SV (SW ),

where the sum is over the set I of all H’s not in Ã with dim V H = dim WH and
|Γ/H| < ∞, and FH is the generator constructed in Lemma 4.2(b). If Ã = ∅,
then F0 is not present.

Proof. Let Π(Ã) = {[F ]Γ : F :
⋃

H∈ eA SV H →
⋃

WH \ {0}} (Π(Ã) =
[(1, 0)]Γ if Ã = ∅). As in [10], it is easy to see that Π(Ã) is a group. Let Π :
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ΠΓ
SV (SW ) → Π(Ã) be the map induced by restriction on the isotropy subgroups

in Ã. From Lemma 4.1, Π is a morphism onto Π(Ã) and kerΠ corresponds to
those elements F which have an equivariant non-zero extension to all BH for
H in Ã. Note that if |dim V Γ − dim WΓ| is odd, then, from Remark 4.1(c),
|dim V H − dim WH | is odd for all H. In that case Ã = A′ and, from Lemma
4.1(b), Π is one-to-one, i.e. ΠΓ

SV (SW ) = Π(Ã), and the theorem is proved.
Let H0 be maximal among the isotropy subgroups not in Ã with finite Weyl

group and equal dimensions for the corresponding isotropy subspaces, i.e. if
H > H0, then either H is in Ã, or dim V H < dim WH+ dim Γ/H. Let F0 be
in kerΠ. Then F0 is extendable to all BH with H > H0, i.e. FH0

0 belongs to
Π(H0), as defined in [10], and its extendability to BH0 will be characterized by its
extension degree, given by the relation deg(FH0

0 ;BH0) = |Γ/H0|degE(F0). Let
dH0 = degE(F0) and FH0 be the generator of Lemma 4.2(b). Then FH0 is also in
ker Π and [F0]Γ−dH0 [FH0 ]Γ ≡ [F1]Γ, which has zero extension degree, is in Π(H)
and is extendable to BH0 . Let A0 = Ã∪{H : H ≥ H0}. One may define, as before,
Π(A0) and the projection Π0 from ΠΓ

SV (SW ) onto Π(A0). It is clear that [F1]Γ
belongs to kerΠ0 and one may repeat the construction with another maximal
H1. After a finite number of steps, one will arrive at [F0]Γ −

∑
I dH [FH ]Γ = 0.

In general, if F and F0 are as in the statement of the theorem, then [F ]Γ− [F0]Γ
is in kerΠ and the result follows. �

We leave to the reader the task of verifying that the generators of the example
in Section 0 are the appropriate ones. From the above theorem, one may obtain
Borsuk–Ulam results.

Theorem 4.2. Let V and W be two arbitrary representations of Γ with
dim V = dim W , and let F : V \ {0} → W \ {0} be an equivariant map. Then:

(a) deg(F ;B) = 0 if (H0) does not hold or if dim V T n 6= dim WT n

.

(b) If (H0) holds and the above subspaces have the same dimension, then
deg(F ;B) = β deg(FT n

;BT n

), where β is the non-zero integer given in Theo-
rem 1.1.

(c) Let Ã′ = {H ∈ Iso(V ) : ∃K ∈ Iso(V ), Tn ≤ K ≤ H with
dim V K > dim WK}. Let F0 be any equivariant extension of F, restricted to⋃

H∈ eA′ S
V H

, from V T n \ {0} into WT n \ {0}. Assume the hypothesis of (b)
holds. Let I = {H ∈ Iso(V ) : H 6∈ Ã′, Tn ≤ H, dim V H = dim WH}. Then, for
any H0 ∈ I, one has

deg(FH0 ;BH0) = deg(FH0
0 ;BH0) +

∑
I

dHβH0H |Γ/H|,

where βH0H = 0 if H0 is not a subgroup of H, βHH = 1, βH0H are integers
independent of F and F0, and dH are integers which depend only on F and F0.
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If Ã′ = ∅, then F0 is absent. If, furthermore, WΓ = {0}, hence V Γ = {0} (from
the existence of F ), then one has to add, on the right, a term βH0Γ.

Proof. Let us recall that Tn ∈ Iso(V ), since V T n

= {X : |Γ/ΓX | < ∞} (see
[10, p. 371]). Also, if (H0) does not hold, then deg(F ;B) = 0 [10, Remark 4.1].
The fact that deg(F ;B) = 0 if the dimensions of V T n

and WT n

are different
was noted after the proof of Theorem 1.1. If WΓ = {0}, hence V Γ = {0}
since FΓ maps the first space into the second, one may replace V and W by
R × V and R × W and suspend the map F by the trivial map 2t − 1 with
0 ≤ t ≤ 1, with the same degrees. This implies (b). Furthermore, in this case
Iso(R× V ) = Iso(V ) ∪ Γ, Ã′ remains the same and, if Ã′ = {0}, the set I has to
be supplemented by Γ. Then deg(2t− 1; RΓ) = 1 = dΓ.

(c) follows from Theorem 4.1 applied to V T n

, after noting that if Tn ≤ H,

then V H ⊂ V T n

and |Γ/H| < ∞. �

Remark 4.2. (a) If one takes the usual decreasing order on the elements of I,

then, as in [10], one has a matrix relation (deg(FH0 ;BH0) − deg(FH0
0 ;BH0)) =

B(d), where B is a lower triangular matrix with |Γ/H0| on the diagonal. In
particular, B is invertible. Thus, if F and F0 have the same degrees on all BH0

with H0 in I, one has [FT n

]Γ = [FT n

0 ]Γ.

(b) Note also that if H ∈ Ã′ with dim V H = dim WH , then deg(FH
K ;BH) = 0

for all the generators FK with K in I, by construction.
It would be interesting to know under what circumstances one may construct

F0 such that deg(FH0
0 ;BH0) = 0 for all H0 in I, or at least for Tn, besides the

case where Ã′ is empty, so that deg(F ;B) would be a multiple of the greatest
common divisor of the |Γ/H|’s for H in I.

Corollary 4.1. (a) Assume that Ã′ has a unique minimal element K. If
K is not Γ, assume furthermore that there is an equivariant map F⊥ from
(V K)⊥T n \ {0} into (WK)⊥T n \ {0}. Then one may construct F0 such that
deg(FH

0 ;BH) = 0 for all H in I with H < K, in particular for Tn.

(b) If K = Γ the last hypothesis is not necessary.
(c) For any minimal element K of Ã′, one has

deg(FH0 ;BH0) =
∑
IK

dK
HβK

H0H |K/H|

for all H0 in I with H0 < K, where IK is the set of all H in I with H < K, and
βK

H0H = 0 if H0 is not a subgroup of H.

(d) If for all minimal Kj in Ã′, one has a complementing map F j
⊥, then

one may construct F0 with deg(F0;BT n

) = 0. Note that F j
⊥ exists if for all

H ∈ Iso((V Kj )⊥) one has dim V H ∩ (V Kj )⊥ ≤ dim WH ∩ (WKj )⊥.
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Proof. If K is minimal, then dim V K > dim WK and dim V H ≤ dim WH

for all H with Tn ≤ H < K. If K is unique, then
⋃

H∈ eA′ S
H = SK and one may

define F0 as (FK , F⊥). If H is in I with H < K, then, from Lemma 4.1(c), FH
⊥ is

deformable (non-equivariantly) to a constant and deg(FH
0 ;BH) = 0. If Ã′ = Γ,

then dim (V Γ)⊥H < dim (WΓ)⊥H for all H with Tn ≤ H, and one may construct
F⊥ as above.

For (c), for each minimal K, consider F as a K-equivariant map. The isotropy
subgroups are those elements H of Iso(V ) with H < K. The corresponding Ã′

reduces to K and I to IK . One then applies (b).
For (d), let K1 be a minimal element, and let [F0] be Π(F ) in Π(Ã′). Define

F1 in Π(Ã′) by the relation [F0] = [FK1
0 , F 1

⊥] + [F1] with FK1
1 = (1, 0). If K2

is another minimal element, define F2 in Π(Ã′) by [F1] = [FK2
1 , F 2

⊥] + [F2] with
FK2

2 = (1, 0). Since [FK2
1 , F 2

⊥]K1 = [F1|V K1∩V K2 , (F 2
⊥)K1 ] = [(1, 0, (F 2

⊥)K1)] is
Γ-deformable to (1, 0) one may use the equivariant Borsuk extension theorem
and assume that FK1

2 = (1, 0). One will arrive at a final map Fs with Fs = (1, 0)
on

⋃
H∈ eA′ S

V H

. Hence,

[F0] =
s∑

j=1

[FKj

j−1, F
j
⊥] in Π(Ã′).

Since the maps on the right have obvious extensions to SV , one may con-
struct F0 in this way. If H is in I and H < Kj , then dim (V Kj )⊥ ∩ V H <

dim (WKj )⊥ ∩ V H and (F j
⊥)H is a non-zero equivariant map between these

spaces. Thus, deg([FKj

j−1, F
j
⊥]H ;BH) = 0. In general deg(FH

0 ;BH) will be the
sum of the degrees of the maps on the right for those j’s such that H is not a sub-
group of Kj . In particular, deg(F0;BT n

) = 0. Note that deg((FKj

j−1, F
j
⊥)H ;BH) =

0 unless dim V Kj∩V H = dim WKj∩WH , in which case this degree is the product
of deg(F jH

⊥ ; (V Kj )⊥∩BH) and deg((FKj

j−1)
H ;V Kj∩BH). This last degree is again

0 if V Kj ∩ V H ⊂ V Ki for some i ≤ j − 1, since there Fj−1 is (1, 0). Otherwise,
one could repeat the above argument on V H and its corresponding Ã′. �

One has the following extension of [13, Theorem 2.5].

Corollary 4.2. Assume that Γ/Tn is a p-group, i.e. |Γ/Tn| = pk for
some prime number p. If V and W are two arbitrary representations of Γ with
dim V = dim W and F : V \{0} → W \{0} is an equivariant map, then deg(F ;B)
is a multiple of p unless hypothesis (H) for V T n

holds, in which case

deg(FH0 ;BH
0 ) =

∑
H0≤H

dH(ΠH,H0 li)|Γ/H|

for all H0 in Iso(V ) with Tn ≤ H0, where the li’s are given in Lemma 0 and the
product corresponds to the variables in (V H)⊥H0 . Here, |Γ/H| is a multiple of p

except for H = Γ, and dΓ = deg(FΓ;BΓ).
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Proof. If (H0) does not hold, or if dim V T n 6= dim WT n

, then deg(F ;B)
= 0. Otherwise, if Ã′ 6= ∅, take any minimal element K. Then Tn < K and
for any H in IK , |K/H| is a non-zero power of p. Thus, deg(F ;B) would be a
multiple of p (from Corollary 4.1(c)).

Hence, if this degree is not a multiple of p, then (H0) must hold, dim V T n

=
dim WT n

and Ã′ = ∅, in particular dim V H ≤ dim WH for all H with Tn ≤ H.

Now, if there is K such that dim V K < dim WK , then viewing FT n

as a K-map,
one should have

deg(FT n

;BT n

) =
∑

H<K

dK
HβK

H0H |K/H| for H in IK ,

hence a multiple of p. Thus, for all H in Iso(V T n

), one has dim V H = dim WH .

Now, if K and H in Iso(V T n

) are such that dim V H ∩ V K and dim WH ∩WK

are different, consider FK , from V K into WK , as an H-equivariant map. The
fixed point subspaces for the action of H on these spaces are V H ∩ V K and
WH ∩ WK . From the preceding arguments, deg(FK ;BK) is a multiple of p.

Now, regarding FT n

as a K-map one has, from Corollary 4.1, deg(FT n

;BT n

) =
adeg(FK ;BK)+ bp, hence, in this case, a multiple of p. In conclusion, (H) holds
for V T n

and [FT n

]Γ =
∑

dH [FH ]Γ, where each generator FH can be chosen of
the form (FH

H , x
lj
j ) as in Lemma 0, with deg(FH

H ;BH) = |Γ/H|. �

For instance an even map on Rd has degree 0 if d is odd ((H0) does not hold)
and has even degree if d is even (dΓ = 2d).

Example 4.1. One may wonder if Corollary 4.1(d) depends really on the
existence of the complementing maps. Here is an example to the contrary, which
is inspired by [1, Example 3.21]. Let Z12 act on two copies of C6 in the following
way. On the first copy, as e2πik/4 on x1, x2, x3, x4 and as e2πik/6 on y1 and y2.

On the second copy, as e2πik/2 on ξ1, ξ2, ξ3 and as e2πik/12 on η1, η2, η3. The
elements of Iso(V ) are K = Z3 (for k a multiple of 4) with V K = {x1, x2, x3, x4}
and WK = {ξ1, ξ2, ξ3},H = Z2 (for k a multiple of 6) with V H = {y1, y2} and
WH = WK , and {e} (and Γ if one adds a dummy variable t). Here the set I is
reduced to {e}, and Ã′ = {K, Γ}. Note that there is no equivariant map F⊥ from
(V K)⊥ \ {0} into (WK)⊥ \{0}, since any such map should map (V K)⊥ = V H

into WH . If the conclusion of Corollary 4.1(a) still holded, any equivariant map
F from V \ {0} into W \ {0} would have a degree which should be a multiple of
12. However, the following map has degree 6:

F = (x2
1−x2

2−y3
1, x

2
3−x2

4−y3
2,Re x1x2+iRe x3x4+y2

1y2, x1y
2
1 , x3y

2
2 , x2y

2
1+x4y

2
2).

The equivariance of F and the fact that the only zero is at the origin are
clear. In order to compute the degree, subtract ε > 0 from the last equation.
The zeros of the perturbed map are at A = (0, 0, 0, ε3/7, 0,−ε2/7) and B =
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(0, ε3/7, 0, 0,−ε2/7, 0) (at a zero one needs y1y2 = 0; if y1 = 0, then x1 = ±x2 = 0;
y2 6= 0 if ε > 0, hence x3 = 0, x4y

2
2 = ε and x2

4 + y3
2 = 0, i.e. −|y2|6y2 = ε2).

Near A one may deform linearly x3y
2
2 to x3ε

4/7 and to x3. Then x3 can be
deformed to 0 in the other equations. Then y2

1y2 is deformed to y2
1 and the term

x2y
2
1 to 0. One obtains a product of three maps: x3 with index −1, (x2

1 − x2
2 −

y3
1,Re x1x2 + y2

1 , x1y
2
1) and (−x2

4 − y3
2, x4y

2
2 − ε). In order to compute the index

of the second map at its only zero, the origin, perturb the second equation by
−iε. The zeros of the perturbed map are for x1 = 0, y2

1 = iε. One may deform
x1 in the first two equations to 0 and y2

1 to iε in the last. The degree will be
−deg(−x2

2 − y3
1, y

2
1 − ε). Taking ε to 0 and y3

1 to 0, one obtains −(−2)(2) = 4.

For the third map, with a unique zero, one may deform ε to 0 and consider the
map (x2

4 + y3
2 − ε, x4y

2
2) with 3 zeros of the form (x4 = 0, |y2|3 = ε), each of

index (−1)(−1) = 1, and two zeros of the form (|x2|2 = ε, y2 = 0), each of index
(−1)(2) = −2. The degree of the third map is −1. Hence, the index of F at A

is 4.
For B, one follows the same steps, except that the term y2

1y2 which was
deformed to y2

1 is now deformed to y2. The index of the second map is now 2,
instead of 4, and the index of F at B is 2. Thus, deg(F ;B) = 6.

Note that, as a K-map, any equivariant map may be written as

[2t− 1, F ]K = [2t− 1, FK , y2
1 , y2

2 , 0]K

+ d[2t + 1− 2|y1|2, x1, x2, x3, y
2
1(y3

1 − 1), y2
1(y1y2 − 1), y2

1x4]K ,

which shows that deg(F ;B) = 3d. Viewing F as an H-map, using Corollary
4.1(a), one has

[2t− 1, F ]H

= e[2t + 1− 2|x1|2, y1, y2, x1x2 − 1, x1(x2
1 − 1), x1(x1x3 − 1), x1(x1x4 − 1)]H ,

which gives deg(F ;B) = 2e. Hence, deg(F ;B) is a multiple of 6. The same result
may be obtained by considering the action of Z6.

On the other hand, if F and F0 coincide on V K , then [2t − 1;F ]Γ = [2t −
1, F0]Γ + f [Fe]Γ, where

Fe = (2t + 1− 2|x1y1|2, x2
1(x

4
1 − 1), x2

1(x1x2 − 1), x2
1(x1x3 − 1), x1y

2
1(x2

1y
3
1 − 1),

x1y
2
1(y1y2 − 1), x1y

2
1(x1x4 − 1)).

Then deg(F ;B) = deg(F0;B) + 12f.

By taking for F0 the map of the example, one generates, for maps from R×V

into R×W , all odd multiples of 6 and by taking off [Fe]Γ, all even multiples of
6. Hence, for Γ-maps from R×V into R×W, all multiples of 6 are achieved. By
replacing, in the example, the term y2

1y2 by y2+6n
1 y2, where a negative exponent

means conjugation, the index of A is changed to 2(2 + 6n), while that of B is
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unchanged. Hence, any odd multiple of 6 is achieved as the degree of a Γ-map
from V into W.

Example 4.2. In order to understand better the problems involved in the
construction of equivariant maps with zero degree, let us study the simplest case
where the coordinates of V have only two isotropy types K and H with K∩H =
{e}, dim V K > dim WK , dim V = dim W. If K = Γ or H = {e}, then one may
construct a complementing map and [2t− 1, F ]Γ = [2t− 1, FK , F⊥]Γ + d[Fe] and
deg(F ;B) = d|Γ| (in this case Γ ∼= Zn). Thus, assume that H 6= {e} and K < Γ.

Then V K and V H are orthogonal, since V Γ = {0}. Let V K = {x1, . . . , xn} and
V H = {y, . . . , ym}. Let {ξ1, . . . , ξr} be the coordinates of WK and {η1, . . . , ηs}
the other coordinates of W.

Now, Γ/K ∼= Zu acts freely on V K as e2πimj/u, with mj and u relatively
prime, on xj and as e2πikl/ul on ξl, with kl and ul relatively prime and ul a
divisor of u. If one changes xj to Xj with action e2πi/u and if qlkl ≡ 1 (mod ul),
then from an equivariant map F from V to W one constructs a new equivariant
map F ql

l (Xm1
1 , . . . , Xmm

m , . . .) with degree equal to
∏

mj

∏
ql deg(F ;B). Hence,

one may assume that mj = ql = 1, without affecting the congruences mod u or
mod |Γ|. If V ′K is a subspace of V K with the dimension of WK , one obtains

deg(FK |V ′K ;B ∩ V ′K) = 0 =
∏

(u/ul) + du,

from [10, Theorem 6.2]. If, for simplicity, we assume ul = p and u = vp, then
d = −vr−1/p. Thus, r ≥ 2 and any prime factor of p divides v, while its square
divides u. The simplest case is u = p2.

Remark 4.3. (a) At this point, there is the question of the existence of
a Zp2-equivariant map from V K into WK (and hence its extension to V, using
Lemma 4.1). The map (xp

1(x
p2

1 −1), xp
2((x1x2)p+1−1)) has degree 0 (its zeros are

(0, 0) with index p2, (x1 = p2-root of unity, 0) each of index p, (x1 = one of these
roots, |x2|p+1 = 1) each of index −1, with total degree p2 + p3 − p2(p + 1) = 0).
By repeating the map for (x3, x4) and using the homotopies to a constant map,
one may obtain an equivariant map from C5 into C4, by using the homotopies
on the sector {0 ≤ |x5| ≤ R, 0 ≤ Arg x5 < 2π/p2}. See [1, Theorem 3.22]. See
also [1, Corollary 5.9] for the conditions on the dimensions of V and W.

(b) If one is willing to use different ul’s, one may use the construction of [1,
Proposition 3.8], by taking p1 and p2 relatively prime with 1 = αp1 + βp2. Then
the map

f ≡ (z1(z
αp1
1 − 1), z2(z

βp2
2 − 1)(zαp1

1 zβp2
2 − ε))

with |ε| 6= 1 is equivariant for the group Zp1p2 from C2 into itself, with action on
z1 given by e2πik/p1 and on z2 by e2πik/p2 . The degree of f is 0. If the group acts
on z as e2πik/(p1p2), then one may define, using the homotopy to a constant, an
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extension for the set Arg z = 0, 0 ≤ z ≤ R and by equivariance, on the boundary
of the fundamental cell for z. By composing the map with f again, one gets an
extension to the cell itself and an equivariant map F from C3 to C2. Then, if
Zp1p2 acts on (x1, x2, x3) in the standard way, one may look at F (xp2

1 , xp1
2 , x3).

Now, Γ/H ∼= Zv acts freely on V H . As before one may assume that the action
is by e2πik/v. If WK ∩WH = {0}, then one is in the situation of Corollary 4.1
and there is a complementing map, given by FH , which as a map into (WK)⊥

is non-equivariantly trivial, i.e. the map (FK , FH) has degree 0. On the other
hand, if WK ∩ WH 6= {0}, then since action on all ξ’s is the same, it follows
that WH contains WK . This implies that v is a multiple of p, say v = qp. If
Γ ∼= Zn, the condition H ∩ K = {e} implies that n = p2q. For simplicity, we
shall assume that p and q are relatively prime, i.e. there are α and β such that
αq + βp = 1. Then, if the action on ηl is of the form e2πiku/(p2q) and ηl is in
WH , one has u = u0p and the map yu0 may be used to build a complementing
map. Thus, we shall assume that u = 1 and WH = WK . Then n + m = r + s,
n > r and we have the above standard actions of Zp2q. Now, if m > r, then
deg(FH ;BH ∩ {yr+1 = . . . = ym = 0}) = 0 = qr + dpq (from [10, Theorem 6.2]),
which is not possible since p and q are relatively prime. Thus, m ≤ r.

Note that the expression xαyβ is equivariant into (WH)⊥. In general if Γ is a
finite group, H =

⋂s−1
j=1 Hj an isotropy subgroup with Hj the isotropy subgroup

of the coordinate zj , and η a coordinate in WH , then H < Γη. If one considers the
space V H ⊕{η}, Lemma 7.2 of [10] gives the existence of an invariant monomial
zα1
1 . . . z

αs−1
s−1 η, since ks = |H/H ∩Γη| = 1. By taking η = 1 and changing αj into

−αj (i.e. conjugates) one obtains a similar equivariant monomial. In order to
complete the example, one has the following:

Proposition 4.1. For the above situation, one has:

(a) If m < r, then deg(F ;B) = apq.

(b) If m = r, then deg(F ;B) = αq + apq, hence not a multiple of pq, in
particular not 0.

(c) If m ≤ r− 2, then for any FK , one has an extension F̃0 of (2t− 1, FK)
with deg(F̃0; I ×B) = 0 or equivalently deg(F ;B) = ap2q.

(d) If m = r−1, then for any FK , there is an extension F0 with deg(F0;B) =
αn−mpq + ap2q, in particular non-zero and not a multiple of p2q.

Proof. Viewing F as a K-map, one may use Corollary 4.1(b) to prove that
deg(F ;B) is a multiple of q. If we view it as an H-map, the corresponding Ã′ is
empty and the degree is a multiple of p if m < r, while if m = r, one has

deg(F ;B) = deg((FH , xα
1 , . . . , xα

m);B) + dp = αm deg(FH ;BH) + dp.
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But viewing F as a Γ-map yields deg(FH ;BH) = deg(2t−1, yq
1, . . . , y

q
m)+epq =

qm + epq. Hence, deg(F ;B) = (αq)m + d1p = 1 + d2p (by using αq = 1 − βp).
Since deg(F ;B) = cq = 1 + d2p = αq + (d2 + β)p, it follows that c = α + ap and
one obtains (b).

Note that if m = r, then [2t − 1, F ]Γ = [2t − 1, F0]Γ + dH [FH ]Γ + de[Fe]Γ,

where

FH = (2t + 1− 2|y1|2, yq
1(y

pq
1 − 1), yq

1(y1y2 − 1), . . . , yq
1(y1ym − 1),

xα
1 yβ

1 , . . . , xα
nyβ

1 ),

Fe = (2t + 1− 2|x1y1|2, yq
1(y

pq
1 − 1), . . . , yq

1(y1ym − 1),

xα
1 yβ

1 (xp
1y

q
1 − 1), xα

1 yβ
1 (x1x2 − 1), xα

1 yβ
1 (x1xn − 1)).

It is easy to see that deg(FH
H ;BH) = pq, deg(FH ;B) = αnpq, deg(FH

e ;BH) = 0
and deg(Fe;B) = p2q.

For (c), assume first that m = 1 and let V ′k = {x1, . . . , xr}, which has the
dimension of WK . Now, from Lemma 4.1, F |V ′K has an equivariant extension
G(x1, . . . , xr, y1) from V ′K ×C \ {0} into WK ×C \ {0}, with this last C corre-
sponding to η1. Let G̃(x1, . . . , xn, y1) be an equivariant extension of FK and G,

which will have zeros. Let F0 = (G̃, xα
r+1y

β
1 , . . . , xα

nyβ
1 ), which has no zeros but

the origin. In order to compute the degree of F0, perturb the last component of
G̃ (on η1) by −ε. Since this last component must be 0 for y1 = 0, the zeros of the
perturbed map are those of G(x1, . . . , xr, y1) − (0, . . . , 0, ε) = Gε. For the com-
putation of the degree of F0, one may deform xj to 0 in G̃ε, for j = r + 1, . . . , n.

Then deg(F0;B) = deg((Gε, x
α
r+1y

β
1 , . . . , xα

nyβ
1 );B ∩{|y1| > η}) for some η small

enough. One may perturb Gε to a regular map on the above set. Near each zero
(x1, . . . , xr, y1 6= 0), one may deform xα

j yβ
1 to xα

j and get an index equal to αn−r

times the index of the zero of Gε. Thus,

deg(F0;B) = αn−r deg(Gε;B′K × {|y1| > η}) = αn−r deg(G;B′),

where B′ is the ball in V ′H × C.

Now [2t− 1, G]Γ = [2t− 1, G⊥]Γ + dK [F ′
K ]Γ + de[F ′

e]Γ where

G⊥ = (xp
1 + yq

1, x
p
2, . . . , x

p
r , x

α
1 yβ

1 ),

F ′
K = (2t + 1− 2|x1|2, xp

1(x
p2

1 − 1), xp
1(x1x2 − 1), . . . , xp

1(x1xr − 1), xα
1 yβ

1 ),

F ′
e = (2t + 1− 2|x1y1|2, xp

1(x
p2

1 − 1), . . . , xp
1(x1xr − 1), xα

1 yβ
1 (xp

1y
q − 1)).

One has deg(GK
⊥ ;B′K) = pr, deg(G⊥;B′) = pr−1, deg(F ′K

K ;B′K) = p2,

deg(F ′
K , B′) = βp2, deg(F ′K

e ;B′K) = 0 and deg(F ′
e;B

′) = p2q. Hence,
deg(GK ;B′K) = pr + dKp2, deg(G;B′) = pr−1 + dKβp2 + dep

2q. Now, GK

extends to FK , hence the first degree is 0. Thus,

deg(F0;B) = αn−r(pr−1 − βpr + dep
2q) = αn−rqp2(αpr−3 + de).
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If r ≥ 3, choose de such that this last term is 0. Then [2t−1, G⊥]Γ+dK [F ′
K ]+

de[F ′
e] = [F̂0] has degree 0 and [F̂K

0 ] = [2t−1, GK ] = [2−1, F |V ′K ]. (Note that F̂0

is not necessarily of the form [2t−1, G], but, from the Borsuk extension theorem,
one may assume that F̂K

0 = (2t−1, F |V ′K ).) Extend F̂0 and FK , as was done for
G, to a map F1(t, x1, . . . , xn, y1) and define F̃0 = (F1, x

α
r+1y

β
1 , . . . , xα

nyβ
1 ). Then

F̃K
e = (2t − 1, FK) and [2t − 1, F ]Γ = [F̃0]Γ + d[Fe]Γ with deg(F̃0; I × B) = 0

and Fe = (F ′
e, x

α
1 yβ

1 (x1xr+1 − 1), . . . , xα
1 yβ

1 (x1xn − 1)) with deg(Fe, I ×B) = pq.

If r = 2, then deg(F0;B) = αn−1pq + ap2q.

For m ≥ 1, we shall use the following induction argument:
For all k with 0 ≤ k ≤ n− r, there is an equivariant map with a unique zero

at the origin and t = 1/2:

F̃k,m : {t, x1, . . . , xr+k, y1, . . . , ym} ≡ V ′
k,m

→ R× {ξ1, . . . , ξr, η1, . . . , ηk+m} ≡ W ′
k,m

such that F̃K
k,m = (2t − 1, FK |V ′

k,m
) and deg(F̃k,m;B′

k,m) is zero if m ≤ r − 2

and αk+1pq + dk,mp2q if m = r − 1. For m = 1, one may take F̃k,1 = F̃0|V ′
k,1

,

which is an extension of (2t− 1, FK |V ′
k,0

). Furthermore, as we have seen above,

deg(F̃k,1;B′
k,1) = αk deg(F1;B′

k,1) = αkp2q(αpr−3 +de), with the required prop-
erties.

If we assume the induction hypothesis for m− 1, take any equivariant exten-
sion of F̃1,m−1|V ′

0,m
to a map F̃0,m : V ′

0,m \ {0} → W ′
0,m \ {0}, which exists by

Lemma 4.1. Then [F̃0,m] = [2t− 1, G0,m
⊥ ] + dK [F ′0,m

K ] + de[F ′0,m
e ] where

G0,m
⊥ = (xp

1 + yq
1, . . . , x

p
m + yq

m, xp
m+1, . . . , x

p
r , x

α
1 yβ

1 , . . . , xα
myβ

m),

F ′0,m
K = (2t + 1− 2|x1|2, xp

1(x
p2

1 − 1), xp
1(x1x2 − 1), . . . , xp

1(x1xr − 1),

xα
1 yβ

1 , . . . , xα
1 yβ

m),

F ′0,m
e = (2t + 1− 2|x1y1|2, xp

1(x
p2

1 − 1), . . . , xp
1(x1xr − 1), xα

1 yβ
1 (xp

1y
q
1 − 1),

xα
1 yβ

1 (y1y2 − 1), . . . , xα
1 yβ

1 (y1ym − 1)).

As before, deg(G0,mK
⊥ ) = pr, deg(G0,m

⊥ ) = pr−m, deg(F ′0,mK
K ) = p2,

deg(F ′0,m
K ) = βmp2 and deg(F ′0,m

e ) = p2q. Hence, since F̃K
0,m = FK

V ′
0,m

with ex-

tension FK , one has 0 = deg(F̃K
0,m) = pr +dKp2, deg(F̃0,m) = pr−m +dKβmp2 +

dep
2q = pr−m(1− (βp)m) + dep

2q. Thus,

deg(F̃0,m) = αqpr−m(1 + βp + . . . + (βp)m−1) + dep
2q.

Then, if r − m ≥ 2, one may choose de such that this degree is 0, while if
r = m+1, this degree is αpq+d0,mp2q. For any choice of de, the right hand side,
when restricted to V K , is Γ-homotopic to F̃K

0,m, i.e. to (2t − 1, FK |V ′
0,m

), and

when restricted to V ′
0,m−1, it is Γ-homotopic to any extension of F̃K

0,m, from the
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dimension condition and Lemma 4.1(b). Thus, as above one may still assume
that the right hand side extends F1,m−1|V ′

0,m
.

Take now any equivariant extension F ′
1, with possibly non-trivial zeros, of

F̃1,m−1 and F̃0,m, from V ′
1,m into W ′

0,m = W ′
1,m−1. Define F̃1,m = (F ′

1, x
α
r+1y

β
m).

Now, since deg(F̃1,m−1) = 0 (one has m − 1 < r − 1), one may extend, non-
equivariantly, F̃1,m−1 from the sphere in V ′

1,m−1 into the ball, without zeros.
Hence, one may assume that F̃1,m has an extension without zeros for ym = 0.

By perturbing this map on |ym| ≥ η to a regular map, one shows as before that
deg(F̃1,m) = α deg(F̃0,m), proving the induction hypothesis for k = 1.

For a general k, take F̃k,m−1 and construct an equivariant extension F̃k−1,m

from V ′
k−1,m into W ′

k−1,m = W ′
k,m−1 by using Lemma 4.1. Then define F ′

k as
any equivariant extension, with possibly non-trivial zeros, of F̃k,m−1 and F̃k−1,m

from V ′
k,m into W ′

k−1,m. Define F̃k,m = (F ′
k, xα

r+kyβ
m). Since deg(F̃k,m−1) = 0,

one may perturb F ′
k as above and prove that deg(F̃k,m) = α deg(F̃k−1,m) and

one gets the result by induction on k. By taking k = n − r, F̃0 = F̃n−r,m, one
has completed the proof. �

Remark 4.4. (a) One has [2t− 1, F ]Γ = [F̃0]Γ + d[Fe]Γ, where

Fe = (F ′0,m
e , xα

1 yβ
1 (x1xr+1 − 1), . . . , xα

1 yβ
1 (x1xn − 1)).

(b) In order to avoid the case m = r − 1, one could suspend the map F

by xp
n+1, increasing r to r + 1. Then [2t − 1, F, xp

n+1]Γ = [F̂0]Γ + d̂[F̂e] with
deg(F̂0) = 0. Thus, deg(F ) = p−1d̂p2q = d̂pq, recovering Proposition 4.1(a).
This suspension argument could be used to study the general case but it is not
clear that it could be useful.

We conclude this section by having a closer look at the case where the stand-
ing hypothesis (H) holds on V T n

, that is, there are complementing maps of the
form x

lj
j for all isotropy subgroups. Then

deg(FH) = βHΓ deg(FΓ) +
∑

T n≤H≤K<Γ

dKβHK |Γ/K|

for any H in Iso(V T n

), and βHK =
∏

lj for xj in (V K)⊥ ∩ V H , βHH = 1.

By reducing Γ to Γ/Tn and V to V T n

, we may assume that Γ is a finite group
(see Theorems 4.1 and 4.2). Define m = g.c.d.(|βT nK | · |Γ/K| for K < Γ), where
βT nΓ will be denoted by β and βT nK by βK . Then, from the Darboux theorem,
since the dK are arbitrary, one gets

Proposition 4.2. deg(F ) = β deg(FΓ) + dm and any integer d is achieved.
The term deg(FΓ) is replaced by 1 if V Γ = {0}.

Let m0 = g.c.d.(|Γ/K| for K < Γ). Then clearly m0 divides m. Since any
isotropy group H is of the form H =

⋂
Hj where Hj is the isotropy of the
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coordinate xj in V H , one sees that |Γ/H| is a multiple of m̃j ≡ |Γ/Hj | for
all such j’s, and of course a multiple of the g.c.d.(m̃j ,∀j) (i.e. including all
the coordinates of (V Γ)⊥). Thus, this last greatest common divisor divides
m0. On the other hand, Hj ∈ Iso((V Γ)⊥), hence m0 divides this g.c.d. and
m0 = g.c.d.(m̃j = |Γ/Hj |, Hj the isotropy group of xj in (V Γ)⊥).

Now, the action of Γ = Zm1 × . . . × Zmn
on a coordinate is of the form

exp(2πia) with a =
∑

kjrj/mj =
∑

k̃jrj/m̃j , where 0 ≤ rj < mj , and k̃j

and m̃j are relatively prime. If m̃ = l.c.m.(m̃j : j such that kj 6= 0) and
R = (r1, . . . , rn), then a = 〈K, R〉/m̃ and, as seen in [10, Lemma 1.1], there is an
R0 such that 〈K, R0〉 ≡ 1 (mod m̃). For any vector R, let k ≡ 〈K, R〉 (mod m̃)
with 0 ≤ k < m̃ and Q = R − kR0. Then 〈K, Q〉 ≡ 0 (mod m̃). The isotropy
subgroup H for the variable corresponds to these Q’s and |Γ/H| = m̃. Now,
if ξ is a coordinate of WH , with the corresponding action a′ =

∑
k′jrj/mj =

〈K ′, R〉/m̃′, with m̃′ = l.c.m.(m̃′
j with k′j 6= 0), k′j/mj = k̃′j/m̃′

j , the last pair
relatively prime, then by taking rj a multiple of m̃j , and the others to be 0, one
concludes that m̃′

j divides m̃j or k′j = 0. Hence, m̃′ divides m̃ since if kj = 0
one needs k′j = 0. Of course m̃ divides M = l.c.m.(m1, . . . ,mn), which in turn
divides |Γ|.

Note that the action on ξ is given by a′ = k〈K ′, R0〉/m̃′ = kl/m̃, where
l = 〈K ′, R0〉m̃/m̃′ is the integer given in Lemma 0 (the term 〈K ′, Q〉/m̃′ is
an integer for Q in H, since ξ is in WH). For a general R, 〈K, R〉 = k + dm̃

and m̃〈K ′, R〉/m̃′ = kl + d′m̃. Hence, l = (m̃〈K ′, R〉/m̃′ + d0m̃)/〈K, R〉 for
d0 = ld − d′. If one has a right hand side with d0 replaced by d1 and giving an
integer l1, then, if k and m̃ are relatively prime, one has l1 ≡ l (mod m̃). Note
that 〈K ′, R0〉 and m̃′ are relatively prime, since Γ/Γξ

∼= Z
em′ . (Again, a negative

power means conjugation.)

Now, let n be the least common multiple of some of the m̃j ’s (say k of them)
and let H =

⋂
Hj , where j is taken over all indices for which the coordinate xj

has isotropy Hj and |Γ/Hj | = m̃j divides n. Then H is an isotropy subgroup
and |Γ/H| is a multiple of n (equal to n if Γ is a cyclic group). Furthermore,
if V H is larger than the space generated by the xj ’s, then there is a coordinate
x with |Γ/Γx| = m̃ which does not divide n and Γx >

⋂
Hj . As above, let the

action on x be given by 〈K, R〉/m̃, with R = kR0 + Q. Take R = nR0: since m̃

does not divide n, R does not belong to Γx. However, on xj , 〈Kj , R〉/m̃j is an
integer, i.e. R is in

⋂
Hj and V H = {xj ’s}.

Conversely, if H0 is an isotropy subgroup, let n = l.c.m.(m̃j ’s : xj coordi-
nate in V H0) and H be constructed as above. Then H < H0, V H0 ⊂ V H and
βH0 |Γ/H0| and βH |Γ/H| have the common factor (

∏
In

lj)n, where j in In corre-
sponds to xj such that m̃j does not divide n. Now, this factor would be the factor
one would obtain by considering a cyclic group Z

fM
with M̃ = l.c.m.(m̃j) (or a
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non-effective action of ZM ) given by exp(2πi/m̃j) on xj and exp(2πikj/m̃′j) on
ξj , with kj and m̃′j relatively prime, m̃j = sjm̃

′j and lj = kjsj .

Proposition 4.3. Let m̂ = g.c.d.((
∏

In
lj)n for all l.c.m.’s n of the m̃j’s).

Then:

(a) m0 divides m̂ which divides m.

(b) If sj = 1 for all j’s, then m0 = m̂ and β and m0 are relatively prime, in
particular, if m0 > 1 then β 6≡ 0 (mod m0) and if deg FΓ = 1, then deg F 6= 0.

Proof. Since m0 = g.c.d.(m̃j ’s),m0 divides all n’s and hence m̂. Further-
more, any term βH |Γ/H|, for m, has a factor (

∏
In

lj)n for some of the n’s, and,
as such, is a multiple of m̂.

For (b), let m̂ = m0A and let p be a prime factor of A. Let Ip = {j : m0p

divides m̃j}. From the definition of m0, the complement of Ip is non-empty. Let
m0N = l.c.m.(m̃j : j not in Ip). Then p does not divide N (if not, p would divide
at least one m̃j/m0). Now, in m̂, the term (

∏
lj)n for n = m0N is (

∏
Ip

kj)m0N.

But, for j in Ip,m0p divides m̃j , hence p cannot divide kj , since kj and m̃′j = m̃j

are relatively prime. Thus, the only possibility is p = 1 and m0 = m̂. Finally, if
p is a prime factor of m0, then p divides m̃j for all j’s, and hence does not divide
any kj nor β. The rest of (b) is clear. �

It is not difficult to construct examples where one has strict inequalities
in (a). We leave to the reader the task of comparing the above results to the
vast literature on the subject (some of which is incorrect).

Remark 4.5. A curious application of Theorem 4.2 and Corollary 4.2 is the
following classical result of Jane Cronin: let f : Cn → Cn, or Rn → Rn, be such
that f(x) = P (x) + g(x), where Pj(x) is a homogeneous polynomial of degree
kj , P (x) has an isolated zero at the origin and g(x) is small with respect to P

near the origin. Then Index(f) = Index(P ) =
∏

kj in the complex case and
modulo 2 in the real case. The first equality is clear. For the second put the
standard S1-action on the first copy of Cn and the action given by eikjϕ on
the second copy (in the real case replace S1 by Z2). The map P (x) is clearly
equivariant. In the first case, from Theorem 4.2, Index(P ) = β, independently
of P, and

∏
kj for P̃j(x) = x

kj

j . In the second case, either all kj are odd and
Index(P ) is odd, or otherwise, from Corollary 4.2, this index is a multiple of 2.

5. Index of a loop of stationary points

Let F : R × U → W be an equivariant map such that F has a simple
loop P of zeros in R × UΓ on which F is regular, with the usual compactness
if U is infinite-dimensional. Hence DF has a one-dimensional kernel, at each
point of P , generated by the tangent vector to P. This situation forces U and
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W to be equivalent representations (see [6, Chapter IV]). Furthermore, if Ω is
a small invariant neighborhood of P such that FΓ has only P as zeros in ΩΓ

and DX⊥F⊥ is invertible, where X is written as XΓ ⊕X⊥, F = (FΓ, F⊥), then
degΓ(F ; Ω) = degΓ(FΓ(XΓ), DX⊥F⊥(XΓ)X⊥; Ω), as is now standard.

For a general P one follows the steps of [9, Proposition 6.1]. In order to
stress the main point of this index computation, we shall avoid repeating the
arguments of the previous reference and study the case of the Hopf bifurcation
where P = {(µ, ν) : µ2 + ν2 = %2} and FΓ(XΓ) = (µ2 + ν2 − %2, F0(µ, ν,X0)),
with F (µ, ν, 0) = 0. Then DX0F0 has to be invertible on the loop and

degΓ(F ; Ω) = degΓ(µ2 + ν2 − %2, DX0F0(µ, ν)X0, DX⊥F⊥(µ, ν)X⊥); Ω)

= Σ0J
Γ(DX0F0, DX⊥F⊥),

where Σ0 is the suspension by 2t − 1, which is an isomorphism, and JΓ is the
JΓ-homomorphism from the set [S1 → GLΓ(V )]Γ of all Γ-homotopy classes from
S1 into GLΓ(V ), where V corresponds to (X0, X⊥) (see [6, Chapter 2, Remark
4.2]).

Again, by standard arguments, one may assume that V is finite-dimensional
and DF has a diagonal structure diag(DX0F0, DYj

Fj , . . . , DZl
Fl, . . . , DZk

Fk),
where Yj are made of real coordinates where Γ/Γyj,s

∼= Z2 for all s, Zl are made
of complex coordinates with Weyl group of the form Z

eml , and Zk corresponding
to coordinates where the action of Γ is that of S1 (see [6, Chapter VI, Theorem
1.2]).

In [6, Chapter VI, in particular Theorem 6.1], one has a complete study of
JΓ as a morphism from Π1(GLΓ

+(V )) into ΠΓ
SR2×V

(SR×V ), where Π1(GLΓ
+(V ))

is the subset of the previous set of Γ-homotopic maps where det(DX0F0) and
det(DYj Fj) are positive. It is clear that one may change the sign of such a
determinant by multiplying one equation by −1, but, in order to be able to
compare the indices, we shall give the full Γ-index of the loop.

Let I0 be the linear map which changes the first component of X0 into its
opposite and Ij the similar map for Yj . Since the addition in ΠΓ

SR2×V
(SR×V ) is

defined on t, the map Ij induces two morphisms on this group by [f(IjX)]Γ =
I∗j [f(X)]Γ and [Ijf(X)]Γ = I ′∗j [f(X)]Γ.

Since I2
j = I, one has I∗2j = I ′∗2j = I and it is easy to see that the I∗j ’s and

I ′∗k ’s all commute. It is easy to see (since the addition is defined on the first
variable) that I∗0 [f ]Γ = I ′∗0 [f ]Γ = −[f ]Γ.

Also, if Hj is such that Γ/Hj
∼= Z2, then I∗j [JΓA(µ, ν)]Γ = I ′∗j [JΓA(µ, ν)]Γ

for dim V Hj −dim V Γ 6= 2: in fact [µ2 +ν2−%2, AIjYj ]Γ = [µ2 +ν2−%2, IjAYj ]Γ,
since this is clearly true if Yj reduces to one dimension, while if A is an n × n

matrix, then A is homotopic to diag(I, Ã) with Ã an (n − 1) × (n − 1) matrix.
If n = 2, then it is easy to see that I∗j [JΓ(A)]Γ = −[JΓ(A)]Γ = −I ′∗j [JΓ(A)]Γ,
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by looking at AY given by λz with λ = µ + iν, z = z1 + iz2, which generates
Π1(SO(2)) and J(A) is the Hopf map. (Note that Theorem 8.5 of [10] asks for
n ≥ 3.)

Now for any A = A(µ, ν) = diag(A0, Aj , Bl, Ck), where A0 corresponds to
X0, Aj to Yj , Bl to Zl and Ck to Zk, let εj = Sign detAj for j = 0, 1, . . . , r (if
there are r different isotropy subgroups Hj with Γ/Hj

∼= Z2). Let A∗
j = AjI

αj

j

with αj = (1− εj)/2 (i.e. A∗
j = Aj if εj = 1 and A∗

j = AjIj if εj = −1) and let
A∗ = diag(A∗

0, A
∗
j , Bl, Ck). Then A∗(µ, ν) belongs to Π1(GLΓ

+(V )). Now, A∗ can
be written as a product of matrices of the form diag(I,Aj , I, I) (similarly for Bl

and Ck) and, since JΓ is a morphism on the fundamental group of GLΓ
+(V ),

JΓ[A∗] = ΣΓJΓ[A∗
0] +

∑
j

ΣΓJΓ[A∗
j ] +

∑
l

ΣΓJΓ[Bl] +
∑

k

ΣΓJΓ[Ck],

where ΣΓ is the suspension by the corresponding identity. The above argument
was used in [6, Chapter VI, Proposition 5.3] to study kerJΓ. Here one has

JΓ[A] =
( r∏

j=0

I
∗αj

j

)[
I∗α0
0 ΣΓJΓ[A0] +

∑
j

I
∗αj

j ΣΓJΓ(Aj)

+
∑

l

ΣΓJΓ[Bl] +
∑

k

ΣΓJΓ[Ck]
]
.

It remains to identify I∗j on each term and to compute JΓ[Aj ], JΓ[Bl], JΓ[Ck]
in terms of the generators of ΠΓ, as given in [10], in order to prove the following

Theorem 5.1. Assume for simplicity dim V Γ,dim V Hj − dim V Γ ≥ 3,
dimC Vl ≥ 2, for Vl generated by the variables zs with Weyl group of the
form Zp. Then

degΓ((|λ|2 − %2, F (µ, ν,X0, Yj , Zl, Zk); Ω))

=
( r∏

j=0

I
∗αj

j

)[
d0[F0]Γ +

∑
j

djI
∗αj

j [Fj ]Γ +
∑

l

( ∑
s

nsds

)
[Fl]Γ +

∑
k

dk[Fk]Γ
]

where d0η is the class of DX0F0 in Π1(GL(V Γ)) and η is the Hopf map (d0 is
an element of Z2), djη is the class of DYj Fj in Π1(GL(V Γ)⊥Hj ) (dj is in Z2). If
Γ/Hl acts as Zp (p not necessarily prime) on Z = (Z1, . . . , Zl) in the following
form: on the coordinate Zs as exp(2πims/p) with ms and p relatively prime,
then ds is the winding number of det(DZsFs) as a mapping from S1 into C\{0}.
The number |ns| is an odd integer such that nsms ≡ 1 (mod p). Finally, dk is
the winding number of det(DZk

Fk), where Γ/Hk acts as exp(2πimkϕ).
The maps [Fu]Γ, u = 0, j, l, k, are independent generators of ΠΓ

SR2×V
(SR×V )

of the form ΣΓ(1−|z|2, λz), where λ = µ+ iν and z is a complex coordinate with
isotropy H (equal to Γ,Hj ,Hl,Hk) and z is taken as x1 + ix2 for H = Γ and as
y1 + iy2 for one of the Hj’s.
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Furthermore, I∗0 [Fu]Γ = −[Fu]Γ and I∗j [Fu]Γ = [Fu]Γ − [Fuj ]Γ, where

Fuj = (1− |yj | · |z|, 2t− 1, X ′
0, Yi, (y2

j − 1)yj , λz, . . . , zs, . . .).

If j 6= k, then I∗k [Fuj ]Γ = [Fuj ]Γ − [Fujk]Γ with

Fujk = (1− |yj | · |yk| · |z|, 2t− 1, X ′
0, Yi, (Y 2

j − 1)yj , (y2
k − 1)yk, λz, . . . , zs, . . .),

while I∗j [Fuj ]Γ = −[Fuj ]Γ.

If H is not a subgroup of Hj (always if Γ/H is not finite), then [Fuj ] is
a generator for the part of the degree corresponding to H ∩ Hj and one has
p([Fuj ]Γ + [F̃uj ]Γ) = 0 with 2[F̃uj ]Γ = 0. If H is not a subgroup of Hj and
Hk, then [Fujk]Γ is a generator for the part corresponding to H ∩Hj ∩Hk with
p([Fujk]Γ + [F̃ujk]Γ) = 0 and 2[F̃ujk]Γ = 0. If Γ/H ∼= S1, then [Fuj ]Γ is the
generator corresponding to H ∩ Hj and [Fujk]Γ the one for H ∩ Hj ∩ Hk. If
H = Hj , then [Fuj ]Γ is the second generator for Hj with 2[Fuj ]Γ = 0. Finally, if
H < Hj (hence Γ/H ∼= Zp with p even), then [Fuj ]Γ = 2[Fu]Γ+d[F̃u]Γ with d = 1
if p = 2k with k odd and 2[F̃u]Γ = 0, F̃u = (ε− |zp− 1|, 2t− 1, X ′

0, yj , λ(zp− 1)z)
with 0 < ε < 1. We have I∗j [F̃u]Γ = [F̃u]Γ. The action of I∗k follows from the
above.

Proof. It is known that ΣΓJΓ[DX0F0] = d0[1−|z|2, 2t−1, λz,X ′
0, Yj , Zl, Zk]

is the suspension of the Hopf map η (the change from |λ|2 − %2 to 1 − |z|2 is a
linear deformation). Since (Ση)2 = 0, the action of I∗0 on it is the identity. The
same happens for [Fj ] = [1 − |z|2, 2t − 1, X0, λz, Y ′

j , . . .]: since one is in Z2, the
orientations play no role.

For Hl, it was proved in [6, Chapter VI, Theorem 6.1 and Remark 6.9] that
each DZs

Fs gives ds[Fs], where Fs is built on the same model. Furthermore, it
was proved in the above reference, p. 447, that [Fs] = ns[Fl]+(ns−1)[F̃l], where
[Fl] and [F̃l] generate this part of the group which is, from [10, Theorem 8.3],
Zp × Z2 if p is even and Z2p if p is odd, with the relations p([Fl] + [F̃l]) = 0 and
2[F̃l] = 0 (the action for Fl is taken as exp(2πi/p)). Hence the contribution of
all Zs’s is (

∑
dsns)[Fl] +

∑
ds(ns − 1)[F̃l]. However, if p is even, then ms and

ns are odd and the last term is 0 (in Z2). While, if p is odd and ns is even, then
(ns − p)ms ≡ nsms ≡ 1 (mod p) with ns − p odd. For Hk, we refer to [8] and [6,
Chapter VI].

It remains to study the effect of the isomorphisms I∗j on each of the above
generators. If Fu = (1 − |z|, 2t − 1, X ′

0, Yi, yj , λz, zk) with λ = µ + iν, on the
ball B = {0 ≤ t ≤ 1, |zi| ≤ 2, |X0| ≤ 2, |Yi| ≤ 2, |yj | ≤ 2} one may use the
deformation yj(1 − τ + τ(y2

j − 1)) in the computation of degΓ(Fu;B) = [Fu]Γ,

since the suspension is an isomorphism. But

degΓ(Fu;B) = degΓ(Fu;B ∩ {|yj | < 1/2}) + degΓ(Fu;B ∩ {|yj | > 1/2}).
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For the first degree, one may deform y2
j to 0 and obtain I∗j [Fu]. For the second,

one may use the deformation 1 − (1 − τ + τ |yj |)|z| on the set {|yj | > 1/2},
and then the second degree is [Fuj ]Γ, where Fuj = (1 − |yj | · |z|, 2t − 1, X ′

0, Yi,
(y2

j − 1)yj , λz, zk). Thus, I∗j [Fu]Γ = [Fu]Γ − [Fuj ]Γ.

By using I∗2j = I, it is then easy to see that I∗j [Fuj ]Γ = −[Fuj ]Γ. Furthermore,
by repeating the above argument, one has [Fuj ]Γ = I∗k [Fuj ]Γ + [Fujk]Γ, as stated
in the theorem. Further applications of I∗l are built on the same scheme.

Let H = Γz and Hj = Γyj
with Γ/Hj

∼= Z2 and Γ/H ∼= Zp or S1. Now, either
H < Hj or there is h in H such that hyj = −yj , in which case Γ/H ∩ Hj =
Γ/H × Z2, since h2 is in H and acts as the identity on yj . If H < Hj and
Γ/H ∼= S1, then the action of Γ on z is exp[2πi(〈N,Φ〉 + 〈K, L〉/m̃)] (see [10,
Lemma 1.1]). Hence, for any L there is a Φ0 such that the exponential is 1.

On yj , the action is of the form exp(2πi〈Kj , L〉/2). Thus, if H < Hj , this last
expression should be 1 for any L, which is impossible since Γ/Hj

∼= Z2. Since Hj

is maximal, the only case where H is a subgroup of Hj is for Γ/H ∼= Zp, with p

even, with a generator γ such that γz = exp(2πi/p), γyj = −yj .

Now, if H is not a subgroup of Hj and Γ/H is finite, then Fuj is one of the
generators for H ∩Hj with p([Fuj ]Γ + [F̃ ]Γ) = 0 (see [10, Theorem 8.4; there are
two other generators in this case, [Fju]Γ and [F̃ ]Γ, both of order 2). Similarly
if Hk and Hj do not contain H, then [Fujk]Γ is a generator for H ∩ Hj ∩ Hk.

The congruences are given in [10, Theorem 8.4]. If Γ/H ∼= S1, then the usual
degree of Fuj on the fundamental cell for H ∩ Hj , i.e. for 0 < yj < 2, z in R+,
is −1 (because the equation for 2t − 1 is in the second place). If H = Hj then
the fundamental cell reduces to 0 < yj < 2 and it is easy to see that Fuj , on
that cell, is the suspension of the Hopf map, hence the second generator for the
group [10, Theorem 8.1].

Finally, if H < Hj , then one may construct a fundamental cell for H in two
ways. The first, as the set characterized by {0 ≤ |z| ≤ 2, 0 ≤ Arg z < 2π/p}
with the generators [Fu]Γ and [F̃u]Γ with p[Fu]Γ = 0, 2[F̃u]Γ = 0, from [10,
Theorem 8.4] (here p is even). The second, with p = 2k, a fundamental cell
of the form {0 ≤ yj < 2, 0 ≤ |z| ≤ 2, 0 ≤ Arg z < 2π/k}, with the generators
η1 = (1−|Y |·|z|, 2t−1, X ′

0, λY, (Y zk−|Y |)z) with Y = y1+iy2 and ΓY = Hj , η2 =
[Fuj ]Γ and η̃ = [F̃u] and the relations 2η1 + d2η2 + d̃η̃ = 0, k(η2 + η̃) = 0, 2η̃ = 0
(see [10, Theorem 8.2]). Now, since deg(I∗j [Fu]; z in R+) = −deg([Fu]; z in R+)
(here these are ordinary degrees) and deg([Fuj ]; z in R+) = 2 deg([Fu]; z in R+),
one has I∗j [Fu]Γ = −[Fu]Γ + dη̃ and [Fuj ]Γ = 2[Fu]Γ + dη̃ (the same d because
of the relations between the three maps). Furthermore, in η1 one may perform
the rotation ((τλ− (1− τ)(Y zk − |Y |))Y, ((1− τ)λ + τ(Y zk − |Y |))z). The term
|Y |Y − |Y |2zk is deformed linearly to |z|Y − zk, then 1 − |Y | · |z| is deformed
linearly to 1 − |z|k and finally Y |z| − zk to Y. Thus, η1 = [Fu]Γ, d2 = −1 and
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d = d̃. If k is odd, the relation k(η2 + η̃) = 0 implies that d = 1. Since η̃ has the
class of the Hopf map on the fundamental cell, we have I∗j η̃ = η̃. One may apply
I∗k to the previous case and study the case where H is a subgroup of Hj ∩Hk or
not. We leave out the determination of d when k is even. �

Remark 5.1. One could have proved Theorem 3.2 by using generators as
above. Note also that the easier part of the above theorem, i.e. for Γ/Hk

∼= S1,
has been proved in various papers, as [6] or [15, Theorem 2.1.1].

Example 5.1. Consider the Hopf bifurcation problem for the equation

(ν + ν0)
dX

dt
= L(µ)X + g(X, µ, ν), X in RN ,

where X(t) is 2π-periodic, (µ, ν) is close to (0, 0) and g(X, µ, ν) = o(|X|), and
L(µ) and g(X, µ, ν) are Γ0-equivariant. Then the problem is equivalent to in(ν+
ν0)Xn−L(µ)Xn−gn(X) = 0, where (Xn)j has isotropy Hjn, as in Example 3.1.
The representations of Γ on (Xn)j and (Xk)l are equivalent only if k = n, Nj =
Nl and Kj/M ≡ Kl/M, where the action of Γ is given by exp(2πi(〈Kj/M,L〉+
〈Nj ,Φ〉+nϕ/(2π)). Since we need that in(ν+ν0)I−L(µ) is invertible for µ2+ν2 =
%2, this implies that L(µ) is invertible for |µ| ≤ %. This fact implies that if Γ/Hjn

is finite, then n = 0, Nj = 0 and the corresponding dj0 = 0. If Γ/Hj0
∼= S1, then

again one has dj0 = 0. Thus, the bifurcation degree degΓ(ν2 + µ2 − %2, X −
F (ν, µ,X)) is

∏
I∗αk

k (
∑

n≥1 djn[Fjn]Γ), where [Fjn] = Σ(ε2 − |zjn|2, λzjn).
Now, L(µ) = diag(L0(µ), Lk(µ), . . . , Ll(µ)), since it is Γ0-equivariant, where

Γ0 acts trivially on L0, as − Id on Lk and as Zm or S1 on Lk(µ). Since djn is
given by the winding number of in(ν +ν0)I−L(µ)|V Hj , where Hj is the isotropy
of the variables in V Hj , it follows that L(µ) is one of the above matrices. It is well
known that the winding number djn is the net crossing number of eigenvalues,
counted with multiplicity, of Lj(µ) at inν0 (see [9] for instance). Note that if
djn 6= 0, one has a Hopf bifurcation in V jn, as defined in Example 3.1, i.e. with
X(t) = γ0X(t − 2π/(nmj)): see [6] or restrict the bifurcation problem to that
invariant space where the Γ-degree keeps all dkl with Hjn < Hkl. In order to
determine αk, it is enough to see which subgroups H of Γ give Γ/H ∼= Z2: this is
possible only if n = 0, Nj = 0 and Γ0 acts as − Id . Hence αk = (1−Sign det Lk)/2
while α0 = (1 − Sign det L0)/2. Then I∗k [Fjn]Γ = [Fjn] − [Fkjn], where Fkjn

represents the resonance of the stationary part Lk(µ), with action of Γ0 as − Id,

on the nth mode with component zjn. Note that there are at most N/2 djn’s
which are non-zero. Compare with [4] and [15].

Example 5.2 (Hopf bifurcation for time-dependent differential equations).
Consider the problem of Hopf bifurcation for the equation

(ν + ν0)
dX

dt
= L(µ)X + g(X, µ, ν) + εh(X, µ, ν, t), X in RN ,
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where X(t) is 2π-periodic, (ν, µ) is close to (0, 0), g(X, µ, ν) = o(|X|) and
h(0, µ, ν, t) = 0. If h has a linear part in X, then ε is chosen so small that,
assuming L(µ) invertible for |µ| ≤ % and without pure imaginary eigenvalues
for µ 6= 0 close to a multiple of ν0 (that is, in(ν + ν0)I − L(µ) is invertible on
µ2+ν2 = %2) then the Fredholm operator (ν+ν0)d/dt−L(µ)−εDh is invertible,
for µ2 +ν2 = %2, on the space of 2π-periodic C1-functions into the corresponding
space of C0-functions.

Thus, for ε = 0, one has an S1-action, while for ε 6= 0 the action is reduced,
as seen in Example 3.2, to a Zp-action. The hypothesis on ε implies that, for
µ2 + ν2 = %2, one may Zp-deform the equation to (ν + ν0)dX/dt − L(µ)X,

considered, when ε 6= 0, as a Zp-equivariant linear map. While for ε = 0,

any non-zero winding number dn of in(ν + ν0)I − L(µ) will give rise to a Hopf
bifurcation of 2π-periodic solutions (not necessarily least periodic: see [9]), for
ε 6= 0 we have to study the isotropy subgroups H of Zp for its action on Fourier
series, that is, on Xm, as exp(2πimk/p), 0 ≤ k < p, and H is the isotropy of
Xn. Now, two representations of Zp will be equivalent (i.e. on Xn and Xm) if
and only if m ≡ n (mod p). Furthermore, if n/p = n′/p′ with n′ and p′ relatively
prime, then H = {k = 0, p′, 2p′, . . . , (p/p′−1)p′}, i.e. H ∼= Zp/p′ and Γ/H ∼= Zp′ .

In order to apply Theorem 5.1, we need to identify the modes Xm for which
the isotropy is exactly H, i.e. the action of Γ is of the form exp(2πimsk/p′) for
k = 0, . . . , p′ − 1, with ms and p′ relatively prime. Then ms = mj + ap′ and
m = mjp/p′+ap where 1 ≤ mj < p′ is relatively prime to p′ (this has to happen
for ms = n′ and m = n). If p′ is prime, then any integer between 1 and p′ − 1
is allowed. Clearly, if nj , with |nj | odd, is such that mjnj ≡ 1 (mod p′), then
msnj ≡ 1 (mod p′). If H = Γ, then m = kp and mj = nj = p′ = 1. Finally, since
Γ acts only on the non-trivial modes, I∗k is not present, except for I∗0 where it is
ε = Sign det L(0). We have proved the following:

Proposition 5.1. Under the above assumptions, the bifurcation degree has
the following components:

(a) dΓ ≡ ε
∑∞

k=1 dkp (mod 2),
(b) dH ≡ ε

∑
j nj

∑∞
k=1 dmjp/p′+kp (mod 2p′) if p′ is odd and (mod p′) if p′ is

even, where ε = Sign det L(0), dm is the winding number of im(ν + ν0)I − L(µ)
for µ2 + ν2 = %2, |Γ/H| = p′ and 1 ≤ mj < p′ is relatively prime to p′ and |nj |
is odd such that njmj ≡ 1 (mod p′).

If dΓ is odd, then one has Hopf bifurcation of 2π/p-periodic solutions, while
if dH is not congruent to 0, one has Hopf bifurcation of 2πp′/p-periodic solutions.

Remark 5.2. Note that a mode m belongs to just one p′, since if m1p/p1 +
k1p = m2p/p2 + k2p, then m1p2−m2p1 = kp1p2, where mj and pj are relatively
prime. But then p2 = p1. Thus, it is convenient to list the divisors of p in
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increasing order and begin with the smallest (1 corresponds to dΓ). Then, for a
given integer j < p′, either j is relatively prime to p′ or the corresponding modes
jp/p′ + kp have already been assigned to a smaller divisor of p. Note also that
if mjnj ≡ 1 (mod p′), with mj and p′ relatively prime, then this is also true for
m1 = p′−mj and nj = −nj : that is, there is a natural pairing in the congruence
classes of the modes. Finally, note that if p′ is an odd prime (if p′ = 2 then
mj = 1 = nj), then, due to the pairing, one has to consider all integers between
1 and (p′− 1)/2, with n1 = 1, n2 = (1 + p′)/2 if this number is odd or (1− p′)/2
if the first number is even and n, for (p′ − 1)/2, can be taken to be p′ − 2.

For instance, for p = 2, the components of the bifurcation index will be

dΓ =
∑

d2k (mod 2), d{e} =
∑

d2k+1 (mod 2).

For p = 3, one has

dΓ =
∑

d3k (mod 2), d{e} =
∑

(d3k+1 − d3k+2) (mod 6).

For p = 4, one has

dΓ =
∑

d4k (mod 2), d2 =
∑

d4k+2 (mod 2),

d{e} =
∑

(d4k+1 − d4k+3) (mod 4).

For p = 5, one has

dΓ =
∑

d5k (mod 2),

d{e} =
∑

(d5k+1 − d5k+4) + 3
∑

(d5k+2 − d5k+3) (mod 10).

For p = 6, one has

dΓ =
∑

d6k (mod 2), d3 =
∑

d6k+3 (mod 2) for p′ = 2,

d2 =
∑

(d6k+2 − d6k+4) (mod 6) for p′ = 3,

d{e} =
∑

(d6k+1 − d6k+5) (mod 6).

Finally, for p = 7, one has

dΓ =
∑

d7k (mod 2),

d{e} =
∑

(d7k+1 − d7k+6)− 3
∑

(d7k+2 − d7k+5)

+ 5
∑

(d7k+3 − d7k+4) (mod 14).

Recall that if the bifurcation index is 0, then, given a linear part, there is
a non-linear part at the level of Fourier series (not necessarily coming from a
differential equation) such that there is no bifurcation (see [6, Chapter VI, The-
orem 6.1]). Here we shall give an example, which generalizes the examples of [9,
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p. 156], showing how one may force a linear system which has a Hopf bifurcation
with a linear time-periodic perturbation which destroys the bifurcation.

Take p any integer larger than 1 and consider the following system for 2π-
periodic functions:

x′′ − λx′ + µx + ε((p + 1) cos pty + sin pty′) = 0,

y′′ − (p− 1)2λy′ + (p− 1)2µy − (p− 1)ε((2p− 1) cos ptx + sin ptx′) = 0.

For ε = 0, λ close to 0 and µ close to 1, one has a vertical Hopf bifurcation
for (x, 0) with n = 1 and for (0, y) with n = p− 1. The winding numbers are all
0 except d1 = dp−1 = 1.

For ε 6= 0, the system is equivalent to

(−n2 − inλ + µ)xn + (ε/2)((n + 1)yn−p − (n− 1)yn+p) = 0,

(−n2 − i(p− 1)2λ + (p− 1)2µ)yn

−(ε/2)(p− 1)((p + n− 1)xn−p − (n− p + 1)xn+p) = 0.

Taking the first equation for n = 1 and the second for n = p− 1, one has the
pair ((µ−1−iλ)x1 +εyp−1, (p−1)2[(µ−1−iλ)yp−1−εx1]) with only zero giving
x1 = yp−1 = 0, except if µ = 1, λ = 0, ε = 0. For ε 6= 0, the remaining equations
form a closed system with invertible diagonal, that is, the only solution for ε 6= 0
and (λ, µ) close to (0, 1) is x = y = 0. For p = 1, one takes out the factors p− 1
in the second equation and one has d1 = 2 and the same result holds.

It would be interesting to have similar simple examples for, say, p = 3, d1 =
6, dj = 0 for j > 1 or p = 5, d1 = 3, d2 = −1 and dj = 0 otherwise. See [6,
Chapter VI, Theorem 6.1 and Remark 6.8]. For obvious reasons of space, we
leave to another paper the study of forcing a loop of non-stationary solutions by
a Zp-action (see [9, p. 122]).

6. Operations

In this last section we study the basic properties of the following operations
for the Γ-degree: reduction of the group, or symmetry breaking, products and
composition of maps. We leave applications of these results to subsequent papers.

(A) Symmetry breaking. Let Γ0 be a subgroup of Γ. If a map is Γ-
equivariant it is also Γ0-equivariant and one has a morphism P∗ : ΠΓ

SV (SW ) →
ΠΓ0

SV (SW ). Under hypothesis (H2)′ for Γ and Γ0 in [10, Theorem 5.3] or under
hypothesis (H) of the present paper, these groups are of the form

∏
Π̃(H) for

all isotropy subgroups H and Π̃(H) is the suspension by F⊥
H of the group Π(H)

given by the equivariant homotopy classes of maps from SV H

into SW H

which
have equivariant extensions from BK into WK \ {0} for all K > H. It is thus
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important to determine the relation between the isotropy subgroups for Γ and
Γ0,Π(H) for Γ, and Π0(H0) for Γ0.

Lemma 6.1. (a) Any isotropy subgroup H0 for Γ0 is of the form H ∩ Γ0

with H an isotropy subgroup for Γ. For a given H0, there may be several H’s.
Let H be the minimal one. Then V H = V H0 , dim Γ0/H0 ≤ dim Γ/H, and if
one has equality of the above dimensions, then |H̃0

0/H0| divides |H̃0/H|, where
H̃0 is the maximal isotropy subgroup with Weyl group of the same dimension as
Γ/H, given in Theorem 2.1, i.e. Γ/H̃0

∼= T k. In this case, if hypothesis (H0)
of Section 4 holds for F in Π(H), then F belongs to Π0(H0) and degΓ0

E (F ) =
(|H̃0/H|/|H̃0

0/H0|) degΓ
E(F ) if WH = WH0 and 0 otherwise.

(b) If there is a complementing map F⊥
H for all H’s, then this is also true for

all H0’s. In this case P∗ maps Π̃(H) into Π̃0(H0).
(c) If hypothesis (H′) holds for Γ, it will hold for Γ0, where (H′) is (H) together

with the condition WH = WH0 for all H0’s, which holds if V = Rk ×W.

Proof. If H0 = Γ0X = {γ ∈ Γ0 : γX = X}, then clearly H0 = ΓX ∩ Γ0.

Hence H is the intersection of all such H’s and the isotropy subgroup for V H0 .

If zi is a coordinate in this space with the subgroups H̃i−1 = H1 ∩ . . . ∩ Hi−1

and H̃i = H̃i−1 ∩Hi, as in Section 0, and the corresponding subgroups H̃0
i−1 =

H̃i−1 ∩ Γ0, then either ki = |H̃i−1/H̃i| is infinite and the corresponding k0
i is

infinite or not, or ki is finite. In this case, any γ in H̃i−1 can be written as
γ = γα

i γHi
with 0 ≤ α ≤ ki, and γki

i is in H̃i as is γHi
. For γ in Γ0, γki is in

H̃i ∩ Γ0, that is, k0
i is finite and divides ki. If xl is the last coordinate in V H ,

then H̃l = H. Thus, H̃0
l = H0 and k0

i = 1 for i > l. Since there are at most
k = dim Γ/H coordinates with k0

i infinite, dim Γ0/H0 ≤ dim Γ/H and, in case
of equality, |H̃0/H0| =

∏
k0

i divides |H̃0/H| =
∏

ki. Thus, the fundamental cell
C0 for H0 is made of

∏
ki/

∏
k0

i copies of the fundamental cell C for H. Thus,
if K > H and FK 6= 0, one has FK0 6= 0 for K0 = K ∩ Γ0 ≥ H0. Conversely,
if K0 > H0, then as above K0 = K ∩ Γ0 with K minimal, i.e. K0 =

⋂
Hi ∩ Γ0,

for Hi the isotropy subgroup of the coordinate xi in V K0 , and K =
⋂

Hi.

Thus, K > H and FK0 6= 0. In other words, the extension degree is defined
for H and H0 and the equality of the lemma comes from [10, Theorem 4.1], by
computing deg(FH ;Bk): in fact, since dim V H = dim WH +dim Γ/H and, from
H0 = H ∩Γ0 < H, one has WH ⊂ WH0 , it follows that, if WH = WH0 , one has
the same equality of the dimensions for H0, while if one has a strict inclusion,
then any map in Π(H0) has a non-trivial extension.

For (b), any complementing map for H will also work for H0. Thus, if H < H,

the map (FH , FH
⊥ )H , which does not belong to Π(H) if H is a strict subgroup

of H, has the following property: if K0 > H0, hence as above, K0 = K ∩Γ0 with
K > H, then if (FH , FH

⊥ )K0(X) = 0, then X is in V H and FH(X) = 0. But
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X ∈ V K , thus K and H are subgroups of ΓX . Hence, if FH is in Π(H) and H

is a strict subgroup of ΓX , one has FH(X) 6= 0. That is, ΓX = H and K ≤ H.

But the relation H < K would imply H0 = K0, which is a contradiction. That
is, (FH , FH

⊥ )K0 6= 0 if K0 > H0 and the pair (FH , FH
⊥ ) belongs to Π̃0(H0).

(c) is clear since V H = V H0 and V K = V K0 . �

Proposition 6.1. (a) If (H′) holds and dim Γ0/H0 = dim Γ/H = k, then

P∗[FH , FH
⊥ ]dΓ = dβHH

|H̃0/H|
|H̃0

0/H0|
[FH0

0 , FH⊥ ]Γ0

for the generators of Π̃(H) and Π̃0(H0), where βHH = deg((FH
⊥ )H).

(b) If furthermore k = 0 and Γ0/H0 or Γ/H is not finite, then P∗ = 0.

Proof. From Theorem 2.1, since by construction FH 6= 0 on the set zj = 0
for any j = 1, . . . , k, one has

deg(FHi |
B

Hi
k

;BHi

k ) =
∑

Hi<Hj< eH0

βijdj |H̃0/Hj |

for all Hi’s and Hj ’s with dim Γ/Hi = k. Hence, if F = (FH , FH
⊥ ), the degree

on the left will be 0, since it is a product and FH |
B

Hi
k

corresponds to V H ∩ V Hi

with isotropy larger than H, i.e. there FK 6= 0, unless Hi < H, in which case
the degree for the generator is βHiH |H̃0/H|. On the right hand side, one has
dj = 0 except for dH = 1. In particular, deg((FH , FH

⊥ )H ;BH
k ) = βHH |H̃0/H|.

Now, as a Γ0-map, P∗[FH , FH
⊥ ] = a[FH0

0 , F
H
⊥ ] for some integer a (recall that we

are complementing with the same maps F
H
⊥ ), and deg(FH0

0 ;BH0
k ) = |H̃0

0/H0|.
For (b), it is enough to recall that Π(H) = 0 if dim Γ/H > 0. �

Remark 6.1. In [5] the authors consider the case where V = Rk×W, |Γ/Γ0|
< ∞ and there is an open, bounded, Γ0-invariant set Ω0 such that γΩ0 ∩ Ω0

= ∅ for all γ in Γ \ Γ0. Then they compute the free part of the Γ-degree of a
map with respect to Ω = ΓΩ0, i.e. the one corresponding to isotropy subgroups
with Weyl group of dimension k. If Γ is abelian and x is in Ω0, then Γx is a
subgroup of Γ0, due to the condition γΩ̃0 ∩ Ω0 = ∅. While, if x is in Ω, i.e.
x = γ0x0 with x0 in Ω0, then if γ is in Γx, one has γx = x = γγ0x = γ0x, hence
γ is in Γx0 < Γ0. Thus, all isotropy subgroups for Γ are isotropy subgroups
for Γ0. Then, since dim Γ = dim Γ0, one has dim Γ/H0 = dim Γ0/H0 and one
has the same set of variables with ki = ∞. From Γ/H0 = (Γ/Γ0)(Γ0/H0),
one has |H̃0/H|/|H̃0

0/H0| = |Γ/Γ0|. Hence, for these subgroups, one sees, from
Lemma 6.1(a) and the previous proposition, that P∗[FH ]Γ = |Γ/Γ0|[FH ]Γ0 and
the assignment [FH ]Γ0 → [FH ]Γ is an isomorphism: there are |Γ/Γ0| disjoint
copies of Ω0 in Ω.
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Let V = R × W. Then ΠΓ
SV (SW ) is generated, in its free part, by [FH ]Γ as

above for dim Γ/H = 1, and for H with Γ/H = A = Zp1 × . . . × Zpm by η′j
and η̃′, j = 1, . . . ,m, given in term of an auxiliary space X = (Z1, . . . , Zm) with
action of Γ/H on Zj given by exp(2πi/pj). Then

η′j =
(
1−

∏
|Zi|2, X0, Xi, {(Zpi

i − εi)Zi}i 6=j , λZj

)
,

η̃′ =
(
ε2 −

∏
i<m

|Zi|2|Zpm
m − εm|2, X0, Xi, {(Zpi

i − εi)Zi}i 6=j , λ(Zpm
m − εm)Zm

)
,

with εi, εm of modulus one, such that Zpi

i − εi = 0 has no real root (see [9,
Theorem 8.4]). One has pj(η′j + η̃′) = 0 and 2η̃′ = 0. Similar definitions hold for
Γ0/H0 = A0.

Proposition 6.2. (a) If dim Γ/H = dim Γ0/H0 = 1, then

P∗[FH ]Γ =
|H̃0/H|
|H̃0

0/H0|
[FH0 ]Γ0 .

(b) If dim Γ/H = dim Γ0/H0 = 0, then

P∗[η′j ]Γ = (|A|/|A0|)(p0j/pj)[η′0j ]Γ0 + d̃j [η̃′0]Γ0 ,

where d̃j is 0 or 1 and d̃j = 0 if |A0| or pj are odd. Moreover, P∗[η̃′]Γ =
(|A|/|A0|)[η̃′0]Γ0 for j = 1, . . . ,m.

(c) If dim Γ/H = 1 and dim Γ0/H0 = 0, then

P∗[FH ]Γ = (|H̃0/H|/|A0|)p01[η′01]Γ0 + d̃ [η̃′0]Γ0

with d̃ = 0 if |A0| is odd.

Proof. (a) was already proved in the previous proposition. For (b), notice
that if Γ acts as exp(2πi/pj) on Zj , then Γ0 has to act as exp(2πi/p0j), where
p0j divides pj . Hence |A0| divides |A|. As before, for the minimal H, one has
Γ/H = (Γ/H)(H/H) and Γ0 acts trivially on the variables in V H∩(V H)⊥. Now,
as seen in [10, Theorem 8.4], the components of P∗[η′j ]Γ on η′0i can be computed
via deg(η′j ;B

H0 ∩ (Arg Zi = 0))/
∏

k 6=i p0k. It is then clear that this number is 0
if i 6= j and

∏
k 6=j pk/

∏
k 6=j p0k if i = j. Thus,

P∗[η′j ]Γ =
( ∏

k 6=j

pk/
∏
k 6=j

p0k

)
[η′0j ]Γ0 + d̃j [η̃′0]Γ0 .

Now, if one computes the ordinary class of both sides in Πn+1(Sn), then [P∗[η′j ]]
= [η′j ] =

∏
i 6=j piη, where η is the Hopf map, while on the right hand side one

has the same quantity plus d̃j |A0|η. Hence, if |A0| is odd, one has d̃j = 0. Since
η̃ is the Hopf map based on the fundamental cell for Γ/H and the fundamental
cell for Γ0/H0 is generated by |A|/|A0| copies of the first one, with a suspension
on the variables on XH ∩ (XH)⊥, one has P∗[η̃′]Γ = (|A|/|A0|)[η̃′0]Γ0 . Then, from
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the relation pj(η′j + η̃′) = 0, one has pj d̃j ≡ (|A|/|A0|)(pj − p0j) (mod 2). If pj is
odd, hence p0j which divides pj is also odd, then d̃j is even.

For (c), one has Γ/H ∼= S1×Zp2×. . .×Zpm and, using the auxiliary space X,
one may take FH = (1 −

∏
|Zj |2, X0, Xi, {(Zpi

i − εi)Zi}i 6=j , λZ1), where Γ acts
as exp(iϕ) on Z1 and Γ0 as exp(2πi/p01). Again, the components of P∗[FH ]Γ
on η′0j are given by deg(FH ;BH0 ∩ {Arg Zj = 0})/

∏
k 6=j p0k, i.e. 0 if j 6= 1

and
∏

k≥2 pk/
∏

k≥2 p0k if j = 1. The fact that d̃ is 0 if |A0| is odd is proved as
above. �

(B) Products. Consider the classical problem of a product of maps
(f1(X1), f2(X2)) defined on a product Ω = Ω1 ×Ω2 from V1 × V2 into W1 ×W2,
where f1 and f2 are Γ-equivariant and Ωi are Γ-invariant, open and bounded.
The associated maps, which define the Γ-degree, are Fi(ti, Xi) = (2ti+2ϕi(Xi)−
1, fi(Xi)) and one may consider the pair (F1(t1, X1), F2(t2, X2)) from R×V1×R×
V2 into R×W1×R×W2. Let Φ(X1, X2) = ϕ1(X1)+ϕ2(X2)−ϕ1(X1)ϕ2(X2) =
ϕ2(1 − ϕ1) + ϕ1. Then clearly 0 ≤ Φ ≤ 1 and Φ = 0 on Ω1 × Ω2 and Φ = 1
on the complement of (Ω1 ∪ N1) × (Ω1 ∪ N2). Furthermore, (F1, F2) is lin-
early deformable to (2t1 + 2Φ − 1, f̃1, F2), since f̃i(Xi) 6= 0 on Ni, and then
to (2t1 + 2Φ− 1, f̃1, 2t2 − 1, f̃2).

Lemma 6.2. One has [F1, F2] = Σ0 degΓ((f1, f2); Ω1 × Ω2), where Σ0 is the
suspension by 2t2 − 1.

Note that if [Fi] is in ΠΓ
SVi

(SWi), then [F1, F2] is in ΠΓ
SV1×R×V2 (SW1×R×W2),

which defines a morphism of groups, i.e. [F1 + G1, F2] = [F1, F2] + [G1, F2]
and [F1, F2 + G2] = [F1, F2] + [F1, G2]. (For this last operation, with the sum
defined on t2, one has to translate this sum on t1. This is done as in any text on
homotopy.) Hence, if [F1] and [F2] are expressed as sums, as in several cases in
[10] and above, one may expand [F1, F2] in terms of elementary products. Let
V = V1 × R× V2 and W = W1 × R×W2. We shall incorporate t2 in V2.

Lemma 6.3. (a) Any isotropy subgroup H for V is of the form H1 ∩ H2

with Hi in Iso(Vi). There are minimal isotropy subgroups Hi with H = H1 ∩
H2, V

Hi

i = V H
i and dim Γ/Hi ≤ dim Γ/H ≤ dim Γ/H1 + dim Γ/H2.

(b) If [Fi] is in Π(Hi), then [F1, F2] is in Π(H). If for any Hi, there are
complementing maps, then if [Fi, F

i
⊥] is in Π̃(Hi), then [F1, F

1
⊥, F2, F

2
⊥] is in

Π̃(H).
(c) If hypothesis (H̃) holds for V1 and V2, it also holds for V , where (H̃) is

(H) together with the condition W
Hi

i = WH
i , which is true if Vi = Rki ×Wi.

Proof. If H = Γ(X1,X2), then H = ΓX1 ∩ ΓX2 = H1 ∩ H2, by recalling
that ΓX =

⋂
Hj over the isotropy subgroups of the non-zero variables xj ’s in

X. Then V H = V H
1 × R × V H

2 . If Hi =
⋂

Hj for coordinates xj in V H
i , then
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H < Hi and V
Hi

i = V H
i . Since H = H1 ∩ H2, one has dim Γ/Hi ≤ dim Γ/H.

In the decomposition of Γ/H over the coordinates of V, one obtains the groups
H̃1

i−1/H̃1
i for the first coordinates, corresponding to V

H1
1 with order k1

i , and then
H1 ∩ H̃2

i−1/H1 ∩ H̃2
i , with order k̃2

i . We shall denote by k2
i the order of H̃2

i−1/H̃2
i

corresponding to V
H2
2 . If k2

i is finite, then any γ in H̃2
i−1 can be written as γα

i γHi

with 0 ≤ α ≤ k2
i and γHi

in H̃2
i . In particular, for γ in H1 ∩ H̃2

i−1, γk2
i is in

H1 ∩ H̃2
i , that is, k̃2

i divides k2
i . Thus, the number of ki’s infinite for V H is the

sum of the number of those for V
H1
1 and a quantity less than or equal to the

number of those for V
H2
2 . Note that when H1∩ H̃2

i−1 = H, then k̃2
j = 1 for j ≥ i.

For (b), if K = K1 ∩K2 > H1 ∩H2, then V K = V
K1
1 × R× V

K2
2 is strictly

contained in V H = V
H1
1 × R × V

H2
2 . Then either K1 > H1 or K2 > H2 and

the corresponding F
Hi

i 6= 0, i.e. [F1, F2] is in Π(H). Also, if (F1, F
1
⊥, F2, F

2
⊥) has

a zero at (X1, X2) in V K for K > H, then since F i
⊥ is zero only at the origin,

(X1, X2) must be in V H1
1 × V H2

2 with Γ(X1,X2) ≤ H1 ∩ H2 = H, leading to a
contradiction. Thus, the above map is in Π̃(H).

Finally, if (H̃) holds for Vi = Rki × Ui, let K = K1 ∩K2 and H = H1 ∩H2.

It is then clear that dim UH ∩UK = dim WH ∩WK , since UH = U
H1
1 ×U

H2
2 and

likewise for K and one has W
Hi

i = WH
i . Note that in general W

Hi

i ⊂ WH
i . �

Proposition 6.3. (a) If dim V
Hi

i = dim W
Hi

i + dim Γ/Hi, i = 1, 2, and
dim Γ/H = dim Γ/H1 + dim Γ/H2, then, for [Fi] in Π(Hi), one has

degE(F1, F2) = degE(F1) degE(F2)
∏

(k2
i /k̃2

i )

if W
Hi

i = WH
i and 0 otherwise.

(b) If (H̃) holds and dim Γ/Hi = ki,dim Γ/H = k1 + k2, then, for [Fi, F
i
⊥]

in Π̃(Hi), one has [F1, F
1
⊥, F2, F

2
⊥] = dH [FH ], where FH is the generator for

Π̃(H1 ∩H2) and

dH = βH1H1βH2H2 |H̃0
1/H1| · |H̃0

2/H2|/|H̃0
1 ∩ H̃0

2/H1 ∩H2|.

Here H̃0
i is the maximal isotropy subgroup containing Hi, Γ/H̃0

1
∼= T ki and

βHiHi
= deg(F iHi

⊥ ).
(c) Furthermore, if [Fi]Γ =

∑
di

j [F
i
Hj

]Γ + [F̃i]Γ with dim Γ/Hi = ki and [F̃i]

in Π̃ki−1, then

[F1, F2]Γ =
∑
jk

d1
jd

2
kdHj∩Hk

[FHj∩Hk
]Γ + [F̃ ]Γ,

where the sum is over all (j, k)’s such that dim Γ/Hj ∩Hk = k1 + k2, dHj∩Hk
is

as above and [F̃ ]Γ belongs to Π̃k1+k2−1, defined in [10, Theorem 5.2].

Proof. It is clear that the fundamental cell for H1 ∩ H2 is the product of
the fundamental cell for H1 by the fundamental cell for H1 ∩H2. The dimension
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conditions imply that k̃j
2 = ∞ exactly when kj

2 = ∞, hence, from [10, Theorem
4.1], one has

degE(F1, F2) = deg((F1, F2);Bk1 ×Bk2)
/( ∏

k1
j

∏
k̃2

j

)
if WH = WH1 ×R×WH2 and 0 otherwise. From the degree of the product, one
obtains the result.

For (b), from Lemma 6.3(b), (c), one sees that it is enough to compute dH .

Now, as in Proposition 6.1, the map [F1, F
1
⊥, F2, F

2
⊥] is non-zero if zj = 0 for any

j with k1
j or k2

j (i.e. k̃2
j ) infinite, that is, one may apply Theorem 2.1. Then

βH1βH2 deg(FH1
1 |Bk1

, FH2
2 |Bk2

) = βH1βH2 deg(FH1
1 |Bk1

) deg(FH2
2 |Bk2

)

= βH1βH2 |H0
1/H1|/|H̃0

2/H2|
= βHdH |H̃0

1 ∩ H̃0
2/H1 ∩H2|,

since clearly H̃0
1 ∩ H̃0

2 is the maximal isotropy subgroup for H1 ∩ H2. Here
βHi = deg(F⊥

i ) = deg(F⊥
i |V Hi

i

)βHi . Since one may complement FH by

(F⊥
1 , F⊥

2 )|(V H)⊥ , with degree βH1βH2 , one obtains the result. Note that we
have H̃0

1 ∩ H̃0
2/H1 ∩ H2 = (H̃0

1 ∩ H̃0
2/H1 ∩ H̃0

2 )(H1 ∩ H̃0
2/H1 ∩ H2). The first

group has order
∏

k1
j , since the coordinates coming from H̃0

2 have k2
j = ∞, and

the second group has order
∏

k̃2
j . Thus, (a) and (b) give the same result.

For (c), it is enough to note that if [F̃1]Γ belongs to Π̃k1−1 for instance, i.e. to
subgroups with dim Γ/H < k1, then, from Lemma 6.3(a), [F̃1, F2] is in Π̃k1+k2−1.

Then one applies the bilinearity of the product. �

Remark 6.2. In [5] and [15], the product is defined, also for non-abelian
groups, in the Burnside ring, for the case where V1 = Rk ×W1 and k2 = 0.

Proposition 6.4. If V1 = R × W1 and V2 = W2, then the only relevant
subgroups are of the form (H1,H2) with dim Γ/H1 ≤ 1 and dim Γ/H2 = 0, with
generators η1, if dim Γ/H1 = 1, or η1

j and η̃1 if dim Γ/H1 = 0, η2 for H2 and η

if dim Γ/H = 1 or ηj and η̃ if dim Γ/H = 0.

(a) If dim Γ/H1 = 1, then

[η1, η2]Γ =
|H̃1

0/H1| · |Γ/H2|
|H̃0

1/H1 ∩H2|
[η]Γ.

(b) If dim Γ/H1 = 0, then

[η1
j , η2]Γ = αj(rj/pj)

|Γ/H2|
|H1/H1 ∩H2|

[ηj ]Γ + d̃j [η̃]Γ, [η̃1, η2]Γ =
|Γ/H2|

|H1/H1 ∩H2|
[η̃]Γ,

where pj(η1
j + η̃1) = 0, 2η̃1 = 0, rj(ηj + η̃) = 0, 2η̃ = 0, and pj d̃j − (αjrj −

pj)|Γ/H2|/|H1/H| is even. Here αj = 1 if rj = pj and if pj divides rj , then
αjrj/pj + βjrj/qj = 1, where Γ/H2 has the cyclic subgroup Zqj

and H1/H the
subgroup Z

eqj
with q̃j = rj/pj .
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(c) If [F1]Γ = d1[η1]Γ +
∑

j d1
j [η

1
j ]Γ + d̃1[η̃1]Γ and [F2]Γ = d2[η2]Γ, then

[F1, F2]Γ distributes according to (a) and (b).

Proof. From Lemma 6.3(a), one has dim Γ/H = dim Γ/H0 for the relevant
groups, i.e. those for which the dimension of the Weyl group is less than or equal
to the number of parameters, here only one. Since the β’s are all 1 here, (a) is
a reformulation of Proposition 6.3(b).

For (b), if Γ/H1
∼= Zp1 × . . .×Zpm ,Γ/H2

∼= Zq1 × . . .×Zqn and Γ/H1∩H2
∼=

Zr1 × . . .× Zrs
, then the action of Γ/H on W1 ×W2 is given, on the coordinate

xk, by exp(2πi〈Kk/M,L〉), as seen previously. Here M = (r1, . . . , rs)T . If aj =
g.c.d.(k1

j , . . . , kN
j ) with N = dim W1 + dim W2, then aj and rj are relatively

prime since the action of Γ/H is effective. If bj and cj are defined as aj but on
the coordinates of W1, respectively those of W2, then, if bj and rj are relatively
prime, one has pj = rj , otherwise pj divides rj and bj/rj = djaj/pj with djaj

and pj relatively prime and, likewise, cj/rj = ejaj/qj . Since g.c.d.(bj , cj) = aj ,

one sees that djrj/pj and ejrj/qj are relatively prime, and so are mj = bj/(djaj)
and nj = cj/(ejaj), which are such that mj/rj = 1/pj and nj/rj = 1/qj .

Thus, there are αj , βj such that αjmj + βjnj = 1. For the auxiliary spaces
X1, X2, X of [10, Theorem 8.4], with action of γj on Xj as exp(2πi/rj) and on
Xi, i 6= j, as the identity, and similarly for X1 with coordinate Zj and X2 with
coordinate Yj , one may choose Xj = Zj if pj = rj , while if pj divides strictly rj ,

we shall keep (Zj , Yj , Xj) (just one Yj from the above discussion and one may
have qj = rj). Then one has an equivariant mapping between these variables
given by Zj = X

mj

j , Yj = X
nj

j and Xj = Z
αj

j Y
βj

j . The generators given in [10,
Theorem 8.4 and p. 394] are of the form

η1
j =

(
1−

∏
|Zi|2, X1

0 , {xi}, {(Zpi

i − εi)Zi}i 6=j , λZj

)
,

η̃1 =
(
ε2 −

∏
i<m

|Zi|2|Zpm
m − εm|2, X1

0 , {xi}, {(Zpi

i − εi)Zi}i<m,,

λZm(Zpm
m − εm)

)
,

with λ = µ + i(2t1 − 1). Also η2 = (2t2 + 1 − 2
∏
|Yi|2, X2

0 , {yi}, (Y qi

i − εi)Yi)
and those for X are like η1

j and η̃1 but with Zi replaced by Xi, pi by ri, and
(X1

0 , {xi}) by (X1
0 , X2

0 , {xi}, {yi}). Here |εi| = 1 and ε is small.
We shall make our computations, as in [10, Theorem 8.4], on V1×V2× (X1×

X2 × X)2, where one repeats the variable Xj by X ′
j and where one uses the

suspension. Thus,

[η1
j , η2] =

(
1−

∏
|Zi|2, X0, {xi, yi}, {(Zpi

i − εi)Zi}i 6=j , Z
′
i, λZj , Z

′
j ,

2t2 + 1− 2
∏

|Yi|2, (Y qi

i − εi)Yi, Y
′
i , Xi, X

′
i

)
,
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where Xj = Zj if pj = rj . In this case, [η1
j , η2] = dj [ηj ] + d̃j [η̃], where dj =

deg((η1
j , η2); Arg Xj = 0)/

∏
i 6=j ri. (We shall prove below that the other di’s are

0). It is easy to see that this degree is (
∏

i 6=j pi)(
∏

qi) = p−1
j |Γ/H1| · |Γ/H2|,

giving the result (as seen in (A), |H1/H| divides |Γ/H2| and |Γ/H| = |Γ/H1| ·
|H1/H|).

Now, on the space X1×X2×X and the ball B = {(Zi, Yi, Xi) : |Zi|, |Yi|, |Xi|
≤ 4}, one may take several fundamental cells for the action of Γ/H. We shall
choose two of them:

C = {Xi : 0 ≤ Arg Xi < 2π/ri},
C1 = {Zi, Yi, Yj , Zj : 0 ≤ Arg Zi < 2π/pi, 0 ≤ Arg Yi < 2π/q̃i,

0 ≤ Arg Yj < 2π/qj , 0 ≤ Arg Zj < 2π/p̃j},

where i 6= j, q̃i = qi if Zi and Yi are not related through Xi and pi/qi = p̃i/q̃i,

with p̃i and q̃i relatively prime, otherwise. Note that, in this last case, ri = piq̃i,
and from miαi + niβi = 1 one obtains αiq̃i + βip̃i = 1, p̃i = ni and q̃i = mi.

Let (ξ′i, ζ
′
i, ζ

′
j , ξ

′
j , η̃

′) be the generators with respect to C1, given in [10, p. 399].
Then [η1

j , η2] =
∑

(diξ
′
i + eiζ

′
i) + ejζ

′
j + djξ

′
j + d′η̃′, where (di, ei) are given by

the degree of the map on the section Arg Zi = 0 or Arg Yi = 0, provided the
preceding dk = ek = 0, k < i (see [10, p. 400]). Now, from the choice of εi in the
maps η1

j and η2, it is easy to take them non-real, that is, di = ei = ej = 0 for all i,
and dj

∏
pi

∏
q̃iqj =

∏
pi

∏
qiqj , i.e. dj =

∏
i 6=j(qi/q̃i) = |Γ/H2|/(|H1/H|qj/q̃j).

Thus, [η1
j , η2]Γ = djξ

′
j +d′η̃′, where p̃j(ξ′j + η̃′) = 0 [10, Theorem 8.2 and p. 400],

and

ξ′j =
(
1− |Yj | · |Zj |

∏
|Zi|

∏
|Yi|, (Zpi

i − εi)Zi, (Y
qi

i − εi)Yi, (Z
epi

i Y eqi

i − εi)Yi,

(Y qj

j − εj)Yj , λZj , Y
′
i , Z ′

i, Xi, X
′
i

)
,

where one has qi if Zi and Yi are not related and p̃i, q̃i otherwise, noting that
Z
epi

i Y eqi

i is invariant.
Now ξ′j =

∑
aiηi+aη̃ with respect to the generators given by the fundamental

cell C, where ai

∏
k 6=i rk = deg(ξ′j ;B∩Arg Xi = 0), provided one has deformed ξ′j

to a map which is non-zero for Xi = 0 [10, Theorem 8.4]. Perform first the linear
deformation (Z ′

i−τXmi
i , Y ′

i −τXni
i , (1−τ)Xi+τZ ′αi

i Y ′βi

i ), on the variables which
are related, with only zero at (0,0,0), since miαi+niβi = 1. Replace then |Zi|, |Yi|
by |Zpi

i +(Z ′
i−Xmi

i )pi |, including i = j, |Y eqi

i +(Y ′
i −Xni

i )eqi |, and Zpi

i , Z
epi

i Y eqi

i , Y
qj

j

by Zpi

i +(Z ′
i−Xmi

i )pi , (Z
pi

i +(Z
′
i−X

mi

i )pi)(Y eqi

i +(Y ′
i −Xni

i )eqi), Y
qj

j +(Y ′
j−X

nj

j )qj

respectively. Recall that for the remaining variables one has Xi = Zi or Yi. Then
one makes rotations of the form (Ai((1−τ)Zi+τ(Z ′

i−Xmi
i )),−τZi+(1−τ)(Z ′

i−
Xmi

i )) with Ai = Zpi

i +(Z ′
i−Xmi

i )pi−εi. If Ai 6= 0, then Zi = Z ′
i−Xmi

i = 0 and
the first equation is 1. If Ai = 0 and τ = 0, then |Zi| = 1, Z ′

i = Xmi
i , Z ′

iY
′
i = 0
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on a zero of the map, with Y ′
i − Xni

i = 0, that is, the zeros are inside B. If
Ai = 0 and τ 6= 0, then |Ai + εi| = 1 = |(Z ′

i −Xmi
i )pi |(1 + ((1 − τ)/τ)pi) with

Y ′
i = Xni

i , Z ′
iY

′
i = 0 and |Z ′

i − Xmi
i | ≤ 1, |Zi| ≤ 1, hence the zero is inside B.

Another rotation will bring the pair to (Zi, Ai(Z ′
i −Xmi

i )) and one may deform
Zi to 0 in the remaining equations: one obtains a suspension by Zi, with the
same class, that is, one may replace Z ′

i −Xmi
i by Zi −Xmi

i .

One performs the same deformation for Yi, with Ai replaced by Bi = [Zi −
Xmi

i ]epi [Y eqi

i + (Y ′
i −Xni

i )eqi ]− εi: on a zero of the map, Bi = 0, |Zi −Xmi
i | = 1,

ZiY
′
i = 0 with |Yi|, |Y ′

i − Xni
i | ≤ 1, i.e. the zeros are in the ball of radius 2,

inside B. One may replace Yi by Yi − Xni
i . The same steps are applied to Yj

and Y ′
j with Ai replaced by Y

qj

j + (Y ′
j −X

nj

j )qj − εj , and to Zj and Z ′
j with Ai

replaced by λ: on a zero of the map, one has λ = 0, |Zpj

j + (Z ′
j −X

mj

j )pj | = 1,
|Yj −X

nj

j | = 1, Z ′
jYj = 0, τZj = (1 − τ)(Z ′

j −X
mj

j ) with the results as above.
Thus,

ξ′j =
[
1−

∏
|Xk|

∏
i 6=j

(|Yi −Xni
i ||Zi −Xmi

i |)|Yj −X
nj

j ||Zj −X
mj

j |,

(Xrk

k − εk)Xk, ((Zi −Xmi
i )pi − εi)(Zi −Xmi

i ),

((Zi −X
mi

i )ep(Yi −Xni
i )eqi − ε′i)(Yi −Xni

i ),

((Yj −X
nj

j )qj − εj)(Yj −X
nj

j ), λ(Zj −X
mj

j ), Zαi
i Y βi

i , Z
αj

j Y
βj

j

]
Γ
.

By computing the degree of the above map on the sections Arg Xk = 0 or
Arg Xi = 0, with appropriate choices of εk, εi, ε

′
i, the map has no zeros and a

zero degree, i.e. ai = 0 for i 6= j. For Arg Xj = 0, choose εi and ε′i such that
one cannot have (Zi −Xmi

i )pi = εi, (Zi −X
mi

i )epi(Yi −Xni
i )eqi = ε′i at the same

time for Zi = Yi = 0. Thus, with the equation Zαi
i Y βi , one has, for Zi = 0,

pimiq̃i zeros of index αi, and for Yi = 0, piniq̃i zeros of index βi, i.e. these terms
make a contribution of piq̃i(αimi + βini) = piq̃i = ri to the degree. Choosing εj

non-real, one sees, for (Zj , Yj , Xj), that the zeros are for λ = 0, Zj = 0, Xj = 1
(Xj is real and positive) and (Yj − 1)qj = εj , with a contribution to the degree
of qjαj . Hence, aj

∏
i 6=j ri =

∏
rk

∏
piq̃iqjαj , or else, aj = αjqj .

From [10, Theorem 8.4], one may choose

η̃ =
[
ε2 −

∏
|Xi| · |Xj − εj |, (Xri

i − εi)Xi, λ(Xrj

j − εj)Xj

]
,

η̃1 =
[
ε2 −

∏
|Zi| · |Zj − εj |, (Zpi

i − εi)Zi, λ(Zpj

j − εj)Zj

]
,

η̃′ =
[
ε2 −

∏
|Zi| · |Yi| · |Yj | · |Y

eqj

j Z
epj

j − εj |, (Zpi

i − εi)Zi, (Y
qi

i − εi)Yi,

(Z
epi

i Y eqi

i − ε′i)Yi, (Y
qj

j − εj)Yj , λ(Y
eqj

j Z
epj

j − εj)Zj

]
.
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As before, [η̃1, η̃2] =
∑

(diξ
′
i + eiζ

′
i) + d̃′η̃′. It is clear that, for Arg Zi = 0 or

Arg Yi = 0, including i = j, the map (η̃1, η2) has no zeros, by taking εi non-real
and ε so small that the circle |Zj − εj | = ε2 is inside the cell for X1. Hence
di = ei = 0. Hence, on ∂C1, (η̃1, η2) represents

∏
(qi/q̃i) times the Hopf map, i.e.

[η̃1, η2]Γ = (|Γ/H2|/|H1/H|)η̃′.
Similarly η̃′ =

∑
ãiηi + ãη̃. As before,

η̃′ =
[
ε2 −

∏
|Xk|

∏
(|Zi −Xmi

i | · |Yi −Xni
i |)|Yj −X

nj

j |

× |(Y j −X
nj

j )eqj + (Zj −X
mj

j )epj − εj |, (Xrk

k − εk)Xk,

((Zi −Xmi
i )epi − εi)(Zi −Xmi

i ),

((Zi−X
mi

i )epi(Yi−Xni
i )eqi − ε′i)(Yi−Xni

i ), ((Yj −X
nj

j )qj − εj)(Yj −X
nj

j ),

λ((Y j −X
nj

j )eqj (Zj −X
mj

j )epj − εj)(Zj −X
mj

j ), Zαi
i Y pi

i , Z
αj

j Y
βj

j

]
.

In the rotations, the only new term is the one of the form λ((Y j −X
nj

j )eqj (Zepj

j +
(Z ′

j − X
mj

j )epj − εj) = λDj : since ε � 1, a zero of the map will imply λ = 0,
|Dj | = ε2, |Yj − X

nj

j | = 1, τZj + (1 − τ)(Z ′
j − X

mj

j ) = 0, YjZ
′
j = 0, which is

handled as before. It is then clear that the new map is non-zero for Arg Xi = 0,
including i = j, by choosing εj such that the map is non-zero on ∂C and one
has to compute how many times one gets the Hopf map. As before, one has
contributions of rk for Xk = Zk or Yk, (miαi + niβi)piq̃i = piq̃i = ri for the
couples (Zi, Yi, Xi). For (Zj , Yj , Xj), if Yj = 0, one obtains njqj p̃j points of index
βj and, for Zj = 0, one has mjqj p̃j points of index αj , for a total contribution
of qj p̃j = rj . Since there are

∏
ri copies of C in the ball, one obtains η̃′ = η̃ and

[η̃1, η2]Γ = (|Γ/H2|/|H1/H|)η̃.

Finally,

[η1
j , η2]Γ =

∏
i 6=j

(qi/q̃i)ξ′j + d′η̃′ = αjqj

∏
i 6=j

(qi/q̃i)ηj + d̃j η̃ = αj q̃j
|Γ/H2|
|H1/H|

ηj + d̃j η̃.

From the fact that q̃j = mj = rj/pj one obtains the result. From the relations
pj(η1

j + η̃1) = 0 and rj(ηj + η̃) = 0, one has

pj

[
d̃j +

|Γ/H2|
|H1/H|

(1− αjmj)
]
η̃ = 0.

Note that we are not reaching ηK for k’s corresponding to X2.

Example 6.1. Note that we could have proved Theorem 5.1 by using the
product instead of a direct computation for I∗j : in fact, one had H1 an elementary
isotropy subgroup, with Γ/H1

∼= S1 or Zp, [η1
1 ]Γ = Σ(1− |z|2, λz), a suspension,

H2 with Γ/H2
∼= Z2 and also

[F2]Γ = [2t2 − 1,−y, Y ]Γ = [2t2 − 1, y, Y ]Γ − [2t2 + 1− 2y2, y(y2 − 1), Y ]Γ;
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as in Section 5, the map [2t2− 1, y, Y ]Γ is deformed to [2t2− 1, y3, Y ]Γ and then
to [2t2 − 1, y(y2 − 1), Y ]Γ, whose Γ-degree is decomposed on the set |y| < 1/2,

giving [F2]Γ, and on the set |y| > 1/2, where it is [2t2 + 1− 2y2, y(y2 − 1)y, Y ]Γ.

Hence [F2]Γ = [η0]Γ − [η2]Γ. For η0, one has H1 = H̃1
0 and H2 = Γ. Then

[η1
1 , η0]Γ = [η]Γ. For η2, one has |Γ/H2| = 2, |H1/H| = 2 if H1 is not a subgroup

of H2 (which is always the case if dim Γ/H1 = 1, by the maximality of H2)
and H1/H = {e} if H1 < H2. In both cases, if |Γ/H1| < ∞, one has rj = pj ,

hence αj = 1. Thus, [η1
1 , η2]Γ = [η1]Γ + dη̃′ if H1 is not a subgroup of H2, and

[η1
1 , η2]Γ = 2[η]Γ + d̃η̃ if H1 < H2. It is easy to recognize in the generators η, η1, η̃

and η̃′ the maps of Theorem 5.1.

(C) Composition. Consider three representations V,W and U of the group
Γ and assume f : V → W and g : W → U are equivariant maps. Then g ◦ f is
also equivariant. Assume f : Ω → W is non-zero on ∂Ω, where Ω is bounded,
open and invariant. Let Ω1 = f(Ω). Assume Ω1 is open and that g is non-
zero on ∂Ω1. It is easy to see that Ω1 is invariant and bounded (in infinite-
dimensions this is due to the appropriate compactness) and that f(∂Ω) ⊂ ∂Ω1.

Let B be the ball used for the definition of the Γ-degree of f, with its associated
extension f̃ of f. Then f̃(B) ⊂ B1 for some ball B1 centered at the origin. If
g̃ is the extension of g ◦ f to B, then g̃ ◦ f̃ will be an equivariant extension of
g ◦ f. If N1 is a neighborhood of ∂Ω1 where g̃ is non-zero, then one may choose
the neighborhood of ∂Ω contained in f̃−1(N1) with its associated ϕ. That is,
[2t + 2ϕ(x) − 1, f̃(x)] = [F ]Γ = degΓ(f ; Ω) is well defined in ΠΓ

SV (SW ), as are
degΓ(g ◦ f ; Ω) in ΠΓ

SV (SU ) and degΓ(g; Ω1) in ΠΓ
SW (SU ). Recall that one may

normalize F by F/‖F‖ on SV and, changing t to 2t− 1 = τ, one obtains a map
from the cylinder into another cylinder, with similar characteristics, i.e. one has
a pairing ΠΓ

SV (SW )×ΠΓ
SW (SU ) into ΠΓ

SV (SU ) given by ([F ]Γ, [G]Γ) → [G ◦F ]Γ,

which is well defined on homotopy classes. Furthermore, since F can be taken to
have value (1, 0) on τ = ±1 [8, Proposition A.1], one sees from [14, p. 479] that,
if F (τ,X) corresponds to [F1]Γ + [F2]Γ, then [G ◦ F ]Γ = [G ◦ F1]Γ + [G ◦ F2]Γ.

Also, if F = Σ0f, a suspension by t1, then for

G1 ⊕G2 =

{
G1(2t1 + 1, Z) if −1 ≤ t1 ≤ 0,

G2(2t1 − 1, Z) if 0 ≤ t1 ≤ 1,

one has

(G1 ⊕G2) ◦ (Σ0f) =

{
(2t1 + 1, f(x)) if −1 ≤ t1 ≤ 0,

(2t1 − 1, f(x)) if 0 ≤ t1 ≤ 1,

and [(G1 ⊕ G2) ◦ Σ0f ]Γ = [G1 ◦ Σ0f ]Γ + [G2 ◦ Σ0f ]Γ (see [14, p. 479]; as usual
one may perform the sum on τ or on t1 and here we may assume that F is a
suspension). In particular, if [F ]Γ =

∑
di[F̃i]Γ+d[F̃ ]Γ, with F̃i and F̃ suspensions
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by t1, and [G]Γ =
∑

ei[G̃i]Γ + e[G̃]Γ then

[G ◦ F ]Γ =
∑

diej [G̃j ◦ F̃i]Γ +
∑

die[G̃ ◦ F̃i]Γ +
∑

ejd[G̃j ◦ F̃ ]Γ + de[G̃ ◦ F̃ ]Γ,

and it is enough to compute each component. Note that if F is in Π(H), i.e. FH

has a non-zero extension to
⋃

K>H V K or else FK |SK is Γ-deformable to FK(0)
and to (1, 0), then (G◦F )H is in Π(H). Similarly if GK has a non-zero extension
to WK , this will also be true for G ◦ F |V K . Here, we need to compute G̃j ◦ F̃i.

Lemma 6.4. If V = Rk1+k2 × V ′,W = Rk2 ×W ′ and (H) holds for (V,W )
and (W,U), and furthermore dim V ′H = dim UH for all H in Iso(V ), then (H)
holds for (V,U). If {xli

i } is a complementing map from (V H)⊥ onto (WH)⊥ and
{zqj

j } is a complementing map from (WH)⊥ onto (UH)⊥, then {xliqi} will be a
complementing map from (V H)⊥ onto (UH)⊥.

Proof. Let H and K be in Iso(V ). Then dim WH ∩WK = dim Ṽ H1 ∩ Ṽ H2 ,

where Ṽ = Rk2 × V ′. Let H̃ be the isotropy of WH , i.e. H̃ =
⋂

Z∈W H ΓZ . Then
H < H̃ and W

eH = WH . One has dim W ′ eH ∩ W ′ eK = dim U
eH ∩ U

eK . Now,
U
eH ⊂ UH . From (H), one has dim V H = dim WH + k1 = dim U

eH + k1 + k2,

hence, from the extra hypothesis, one gets dim ŨH = dim UH and U
eH = UH .

Since the spaces (V H)⊥, (WH)⊥ = (W eH)⊥, (UH)⊥ = (U eH)⊥ have the same
dimension and one has equivariant monomials between them, the composition
will be a complementing map. �

Note that the extra dimension condition will be met if Iso(V ) ⊂ Iso(W ),
since then U

eH = UH . If H̃ is in Iso(W ), then, if H is the isotropy of V
eH , one

has H̃ < H, V
eH = V H and WH ⊂ W

eH . In order to compare the Γ-degrees of F̃i

and G̃j , we shall assume that Iso(V ) = Iso(W ); this is the case if V = Rk1 ×W

and W = Rk2 × U.

Proposition 6.5. Assume (H) holds for (V,W ) and (W,U), and Iso(V ) =
Iso(W ). Let FH1 be in Π(H1) and GH2 be in Π(H2). Define F̃ = (FH1 , xli

i ),
G̃ = (GH2 , z

qj

j ) and H = H1 ∩H2. Then:

(a) dim Γ/Hi ≤ dim Γ/H ≤ dim Γ/H1 + dim Γ/H2. The second inequality is
an equality if and only if V H1 ∩ V H2 ⊂ V T n

.

(b) (G̃ ◦ F̃ )H is in Π(H).
(c) If dim Γ/Hi = ki and dim Γ/H = k1 + k2, let F̃ and G̃ be the gen-

erators of Π̃(Hi). Then [G̃ ◦ F̃ ]Γ = d[F̃H ]Γ, where F̃H generates Π̃(H) and
d = βHH1 β̃HH2 |H0

1/H1| · |H0
2/H2|/|H0

1 ∩ H0
2/H|, where βHH1 =

∏
li for xi in

V H ∩ (V H1)⊥ ∩ (V H0
2 )⊥, β̃HH2 =

∏
qj for zj in WH ∩ (WH2)⊥ ∩ (V H0

1 )⊥,H0
i

is the maximal isotropy subgroup containing Hi such that dim Γ/H0
i = ki. More

generally, if FH1 |∂Bk1
6= 0 and GH2 |∂Bk2

6= 0, then (G̃ ◦ F̃ )H |∂Bk1+k2
6= 0 and

degE((G̃ ◦ F̃ )H) = d degE(FH1) degE(GH2).
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Proof. Since H2 is in Iso(V ), H is the isotropy subgroup for the space
generated by V H1 and V H2 . In V H1 ⊂ V H , there are dim Γ/H1 coordinates xj

with Γxj
= Hj and H0

1 =
⋂

Hj maximal such that dim Γ/H0
1 = dim Γ/H1, and

similarly for H2 and H0
2 . Hence dim Γ/Hi ≤ dim Γ/H and for V H the maximal

number of such variables will be dimΓ/H1 + dim Γ/H2, and strictly less if and
only if one of them is in V H1 ∩ V H2 .

Note that G̃ ◦ F̃ = {xliqi

i } on (V H)⊥ and that if H1 < H2, then V H2 ⊂ V H1

and for any K > H1, FK is Γ-deformable to (1, 0), in which case (G ◦F )H1 is in
Π(H1) = Π(H). A similar result holds if H2 < H1. In general,

V = Rk1 × Rk2 × V ′H1 ∩ V ′H2 × V ′H1 ∩ (V ′H2)⊥ × V ′H2 ∩ (V ′H1)⊥ × (V ′H)⊥

with X = (λ1, λ2, X0, X1, X2, Y ) and W = Rk2 ×W0 ×W1 ×W2 ×W, with its
elements of the form W = (λ2,W0,W1,W2,W ), where these subspaces have the
same meaning as for X. Hence

F̃ (X) = (Fλ(λ1, λ2, X0, X1), F0(λ1, λ2, X0, X1), F1(λ1, λ2, X0, X1), X l
2, Y

l)

with F1(λ1, λ2, X0, 0) = 0 and (Fλ, F0)(λ1, λ2, X0, 0) 6= 0 since the isotropy of
V H1 ∩V H2 is strictly larger than H1 and FH1 is in Π(H1). Here (X l

2, Y
l) stands

for {xli
i } and one should normalize F̃ as F̃ /‖F̃‖. Similarly one has G̃ ◦ F̃ (X) =

(G0(Fλ, F0, X
l
2), F

p
1 (λ1, λ2, X0, Xl), G2(Fλ, F0, X

l
2), Y

pq), where G2(λ2,W0, 0)
= 0 and G0(λ0,W0, 0) 6= 0, for GH2 in Π(H2). Thus, (G̃◦F )H1 with X2 = Y = 0
has G2(λ2,W0, 0) deformable to (1, 0). Similarly (G ◦ F̃ )H2 with X1 = Y = 0
has F1 = 0 and (F0, Fλ) independent of Z2 and Γ-deformable to (1, 0). Hence
(G ◦ F )H2 is Γ-deformable to (G0(1, 0, X l

2), 0, G2(1, 0, X l
2), 0) and then to (1, 0).

Thus, if H is a strict subgroup of Hi, i = 1, 2, then G◦F is trivial on V H1 ∪V H2 .

Let now K < H and decompose V K as above. One has a non-zero Γ-extension
of G̃◦ F̃ on V K ∩ (V H1 ∪V H2), i.e. for X2 = 0 or X1 = 0. If V K ∩V H1 is strictly
contained in V H1 , then X1 has components xi = 0 and the remaining variables,
in X1, have isotropy H̃1 containing strictly H1 (if not, V K ∩ V H1 = V

eH1 would
be V H1). Hence, on V K ∩ V H1 one may extend F

eH1 = (Fλ, F0, F1) to a map
trivial at the origin and of norm 1. Then for X in the unit ball of V K one has
either ‖X2‖ = 1 and (G0, G2) 6= 0 or ‖X2‖ < 1, in which case, from ‖F eH1‖ = 1,

either ‖F1‖ = 1 and G̃◦F̃ 6= 0 or ‖F1‖ < 1 and ‖(Fλ, F0)‖ = 1 with (G0, G2) 6= 0.

Hence, in this case one has a non-zero Γ-extension to V K . On the other hand, if
V K ∩V H1 = V H1 , then V K ∩V H2 is strictly contained in V H2 and (G0, G2) has
a non-trivial Γ-extension to WK ∩ WH2 . But (Fλ, F0, F1) has a Γ-extension to
V H1 = V K ∩V H1 with norm one. If F1 6= 0, then (G̃ ◦ F̃ )K 6= 0, while if F1 = 0,

then (Fλ, F0) is in V K ∩ V H2 and (G0, G2) has the non-trivial extension. This
proves (b).
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For (c), let zi
j , j = 1, . . . , ki, i = 1, 2, be the variables in V H0

i . From the
hypothesis on the dimensions, one sees that zi

j are in Xi. Then, from [10, p. 394],
one has

F̃ =
(
τ + 1−

∏
|x1

j |2, λ2, X
0
0 , (λ1

1 + i(|z1
2 |2 − 1))(z1

1)l1 , . . . , (λ1
k1

+ iτ)(z1
k1

)lk1 ,

{(P 1
j (X0, X1)− 1)(x1

j )
lj}x1

j 6=z1
i
, (Qj(y1

j )− 1)y1
j , X l

2, Y
l
)

with τ = t− 1/2 and a similar expression for G̃. Then

G̃ ◦ F̃ =
(
τ + 2−

∏
|x1

j |2 −
∏

|x̃2
j |2, X0

0 ,

(λ1
1 + i(|zq

2 |2 − 1))q1(z1
1)q1l1 , . . . , (λ1

k1
+ iτ)qk1 (z1

k1
)qk1 lk1 ,

(λ2
1 + i(|z2

1 | − 1))l2(z2
1)q2l2 , . . . ,

(λ2
k2

+ i
(
τ + 1−

∏
|x1

j |2
)qk2

z2qk2 lk2 , . . .
)
.

Thus, if z1
j = 0, for some j, one has τ + 1 −

∏
|x1

j |2 = τ + 1 > 1/2 and, on
a zero, one would need z2

k2
= 0 and

∏
|x̃2

j | = 0. Hence G̃ ◦ F̃ is non-zero. If
z2
j = 0, then

∏
|x̃2

j | = 0 (this is where the compositions of terms in X0 are) and
a zero of the map will give |x1

j | = 1 (the terms Pj are designed this way), that
is, the first component is non-zero. Thus, (G̃ ◦ F̃ )H is non-zero on ∂Bk1+k2 =
∂(BH ∩ {Arg zi

j = 0}). In general, if FH1 is non-zero on ∂Bk1 , then (Fλ, F0, F1)
is normalized to 1 on this set and either F1 6= 0 or ‖(Fλ, F0)‖ = 1 and (G0, G2)
is non-zero on it. If GH2 is non-zero on ∂Bk2 , since the z2

j are coordinates of X2,

one has (G0, G2)(λ2,W0,W2) 6= 0 for such W2 and in particular for W2 = X l
2.

Note that F̃H and G̃H have zeros on ∂Bk1+k2 ∩ V H and ∂Bk1+k2 ∩WH , since
(z2

j )lj and (z1
j )ljpj appear as suspensions. However, for the ordinary degree, one

may perturb these terms to (zi
j)

a− ε and have non-zero maps on ∂Bk1+k2 . From
the composition formula,

deg((G̃ ◦ F̃ )H ;Bk1+k2) = degE((G̃ ◦ F̃ )H)|H0
1 ∩H0

2/H|
= deg(F̃H

ε ;Bk1+k2) deg(G̃H
ε ;Bk1+k2 ∩WH)

for the perturbed map. Now,

deg(F̃H
ε ;Bk1+k2) = deg(F̃H1 ;Bk1)

∏
lj = |H0

1/H1|degE(F̃H1)βHH1 ,

deg(G̃H
ε ;Bk1+k2 ∩WH) = deg(G̃H2 ;Bk2)

∏
qj = |H0

2/H|degE(G̃H2)βHH2 ,

since the suspension of the form za
j − ε for Arg zj = 0 has degree 1. Note that

H1
0 ∩ H2

0/H ∼= (H1
0 ∩ H2

0/H1 ∩ H2
0 )(H1 ∩ H2

0/H). The order of the first term
divides |H1

0/H1|, from (A), and the order of the second divides |H2
0/H2|, i.e. d

is an integer. �

In general, if [F ]Γ =
∑

di[F̃i]Γ + [F̃ ]Γ and [G]Γ =
∑

ej [Gj ]Γ + [G̃]Γ with
dim Γ/Hi = k1, dim Γ/Hj = k2 and [F̃ ]Γ in Πk1−1, [G̃]Γ in Πk2−1, then [G◦F ]Γ =
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diej [F̃i ◦ G̃j ]Γ + [K̃]Γ with [K̃]Γ in Πk1+k2−1 and [F̃i ◦ G̃j ]Γ = dij [K̃ij ]Γ,

where dij = βHHi β̃HHj |H0
i /Hi| · |H0

j /Hj |/|H0
i ∩ H0

j /H| with H = Hi ∩ Hj ,

provided Iso(V ) = Iso(W ) and (H) holds for (V,W ) and (W,U), for instance if
V = Rk1 ×W and W = Rk2 × U.

Proposition 6.6. Under the above hypotheses one has

[G ◦ F ]Γ =
∑

fk[K̃k]Γ + [K̃]Γ with fk =
∑

diejdij ,

where the second sum is over all (i, j) such that Hi ∩Hj = Hk.

Remark 6.3. One may prove the same result, either for maps which are such
that FH0

i is non-zero on ∂Bk1 , and GH0
j is non-zero on ∂Bk2 (hence as above

(G ◦ F )K is non-zero on ∂Bk1+k2 for K < H0
i ∩H0

j and dim Γ/K = k1 + k2), or
for the generators Fj and Gj , by using Theorem 2.1: in this case, one has

deg(G̃ ◦ F̃ )K ;Bk1+k2) =
∑

K<H<H0
i ∩H0

j

β̂KHfH |H0
i ∩H0

j /H|,

where β̂KH corresponds to
∏

lkqk for the variables in V K ∩ (V H)⊥ and K =
Hi∩Hj is such that dim Γ/K = k1 +k2. This degree is βKHi deg(FHi ;Bk1)β̃KHj

× deg(GHj ;Bk2). From Theorem 2.1 and the fact that βKHi
βHiHl

= βKHl
for

K < Hi < Hl, this degree is( ∑
Hi<Hl<H0

i

βKHl
dHl

|H0
i /Hk|

)( ∑
Hj<Hk<H0

j

β̃KHk
eHk

|H0
j /Hk|

)

=
( ∑

K<H<H0
i ∩H0

j

∑
Hl∩Hk=H

βKHl
β̃KHk

dHl
eHk

|H0
i /Hl| · |H0

j /Hk|
)

.

By varying all possible K’s, this will yield fH =
∑

Hl∩Hk=H dHl
eHk

dHlHk
, where

dHlHk
is defined in Proposition 6.5, after one recalls that β̂KH = βKH β̃KH and

βKHl
/βKH = βHHl

for K < H < Hl.

Our final result will concern the case where k1 = 1, k2 = 0, V = R × W ,
W = U. The case dim Γ/H1 = dim Γ/H = 1, dim Γ/H2 = 0 was treated in
the preceding proposition. There remains only the case dim Γ/H = dim Γ/Hi

= 0, where Π(H1) is generated by η1
j and η̃1 with relations pj(η1

j + η̃1) = 0,
2η̃1 = 0, Π(H2) is generated by η2 and Π(H) by ηj and η̃ with relations rj(ηj + η̃)
= 0, 2η̃ = 0. Taking the notations of Proposition 6.4, one has the following:

Proposition 6.7. Under the above hypotheses one has

[η2 ◦ η1
j ]Γ = αj(rj/pj)(|Γ/H2|/|H1/H1 ∩H2|)[ηj ]Γ + d̃j [η̃]Γ,

[η2 ◦ η̃1]Γ = (|Γ/H2|/|H1/H|)[η̃]Γ,

where αj and d̃j are as in Proposition 6.4.
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Proof. Take X1, X2 and X as auxiliary spaces, as in Proposition 6.4. Then,
on V × (X1 ×X2 ×X)2, one has

η1
j =

(
1−

∏
|Zi|, X0, xi, (Z

pi

i − εi)Zi, Z
′
i, λZj , Z

′
j , Yi, Y

′
i , Xi, X

′
i

)
,

η2 =
(
2τ + 2− 2

∏
|Yi|, X0, xi, Zi, Z

′
i, (Y

qi

i − εi)Yi, Y
′
i , Xi, X

′
i

)
.

In order to comply with the normalization of η1
j on ∂B, we shall take τ = t−1/2

in [−1/2, 1/2] and |X| ≤ 3/2. Then it is easy to see that

η2 ◦ η1
j =(

4−2
∏

|Zi|−2
∏

|Yi|, X0, xi, (Z
pi

i −εi)Zi, Z
′
i, λZj , Z

′
j , (Y

qi

i −εi)Yi, Y
′
i , Xi, X

′
i

)
.

On the fundamental cell C1, already used in Proposition 6.4, i.e. with Zj in the
last place, one has η2 ◦ η1

j = djξ
′
j + d′η̃′, where dj is computed from deg(η2 ◦ η1

j ;
Arg Xj = 0), which can be calculated either directly or by using the formula
for the ordinary composition. That is, dj =

∏
i 6=j(qi/q̃i). Since we have already

proved that ξ′j = αjqjηj + dη̃, we have proved the first formula. The argument
for η2 ◦ η̃1 follows exactly the same lines and is left to the reader. �
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