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REMARKS ON TOPOLOGICAL SOLITONS

Vieri Benci — Donato Fortunato — Lorenzo Pisani

Dedicated to Louis Nirenberg on the occasion of his 70th birthday

1. A generalization of the sine-Gordon equation

In this paper we deal with soliton solutions of Lorentz invariant equations.
Roughly speaking, a soliton is a solution of a field equation whose energy travels
as a localized packet and which preserves its form under perturbations. In this
respect soliton solutions have a particle-like behaviour and they occur in many
questions of mathematical physics, such as classical and quantum field theory,
nonlinear optics, fluid mechanics and plasma physics (see [7], [8], [11], [13]).

In general the solitonic behaviour arises when one of the following circum-
stances occurs:

• existence of infinitely many first integrals of motion (e.g. KdV equation);
• existence of topological constraints which characterize the solutions.

In this paper we deal with the second case, namely we shall study topological
solitons which are solutions of Lorentz invariant equations in more than one space
dimensions. A classical interesting one-dimensional model is the sine-Gordon
equation
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utt − c2uxx + sinu = 0,(1.1)

lim
x→−∞

u(x, t) = 0,(1.2)

lim
x→∞

u(x, t) = 2kπ,(1.3)

c being the light velocity and k ∈ Z. The asymptotic conditions allow to have
solutions with finite energy

E(u) =
∫

R

[
1
2 (u2

t + c2u2
x) + (1− cosu)

]
dx.

Any static solution u(x, t) = ϕ(x) of (1.1) solves the elliptic equation

−c2ϕ̈+ sinϕ = 0,(1.4)

lim
x→−∞

ϕ(x) = 0,(1.5)

lim
x→∞

ϕ(x) = 2kπ.(1.6)

These static solutions give rise to the travelling solutions with velocity v ∈ R,
|v| < c,

u(x, t) = ϕ

(
x− vt√
1− |v/c|2

)
of (1.1). The length contraction factor

√
1− |v/c|2 is related to the Lorentz

invariance of the equation itself.
Observe that the solutions of (1.4) are the critical points of the energy func-

tional

E(ϕ) =
∫

R

(
c2

2
(ϕ̇(x))2 + V (ϕ)

)
dx

with V (ϕ) = 1− cosϕ.
The function space Λ on which E is defined can be divided into infinitely

many connected components according to the asymptotic conditions (1.5), (1.6):

Λ =
⋃
k∈Z

Λk, Λk = {ϕ | lim
x→−∞

ϕ(x) = 0, lim
x→∞

ϕ(x) = 2kπ}.

The existence of local minima of E in the connected components Λ±1 can be
proved. These solutions exhibit a solitonic behaviour.

Now consider the analogous case of a scalar equation with three space di-
mensions:

utt − c2∆u+ V ′(u) = 0.

Then the energy functional for the static solutions is

(1.7) E(ϕ) =
∫

R3

(
c2

2
|∇ϕ|2 + V (ϕ)

)
dx.
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If V is bounded from below, it is not difficult to show, by a rescaling argu-
ment, that any ϕ minimizing (1.7) is necessarily trivial, i.e. it takes a constant
value which is a minimum point of V (Derrick’s Theorem, [7]).

On the other hand, if we consider a nonpositive potential, we are forced to
seek saddle points, instead of minima, and for these static solutions we have lack
of stability. As an example we recall that, if we take

V (ξ) = 1
2ξ

2 − 1
4ξ

4,

then the critical points of the energy functional

E(ϕ) =
∫

R3

(
c2

2
|∇ϕ|2 +

1
2
ϕ2 − 1

4
ϕ4

)
dx

have been found in [6] and [10] and for more general potentials in [5], [12]; but
in [1] and [4] it has been proved that these static solutions are not stable.

So we are forced to study systems of nonlinear wave equations with a suitable
correction. In the following we derive, by means of some heuristic arguments,
one model equation.

We are interested in maps

u : R3+1 → Rn, u = (u1, . . . , un).

We refer to the target space Rn as an internal parameter space. Since we
require Lorentz invariance, we shall consider Lagrangian densities of the form
L = L(u, %) where % = (%1, . . . , %n) and

%j = c2|∇uj |2 − (uj
t )

2.

We shall consider

(1.8) L(u, %) = − 1
2α(%)− V (u),

where α : Rn → R and the potential function V is defined in an open set Ω ⊂ Rn.
The action functional related to (1.8) is

S(u) =
∫

R3+1
L(u, %) dx dt =

∫
R3+1

(
− 1

2
α(%)− V (u)

)
dx dt.

So the Euler–Lagrange equations are

(1.9)
∂

∂t

(
∂α

∂ξj
(%)uj

t

)
− c2 div

(
∂α

∂ξj
(%)∇uj

)
+
∂V

∂ξj
(u) = 0 (1 ≤ j ≤ n).

When

(1.10) α(ξ1, . . . , ξn) = ξ1 + . . .+ ξn

the equations (1.9) reduce to a classical system of n nonlinear wave equations

uj
tt − c2∆uj +

∂V

∂ξj
(u) = 0 (1 ≤ j ≤ n).
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In this paper we consider a simple correction of (1.10), namely

α(ξ1, . . . , ξn) =
n∑

j=1

(
ξj +

ε

3
ξ3j

)
,

where ε > 0. Then (1.9) can be written

∂

∂t
((1 + ε(%j)2)uj

t )− c2 div((1 + ε(%j)2)∇uj) +
∂V

∂ξj
(u) = 0 (1 ≤ j ≤ n),

or

(1.11) �uj + ε�6u
j +

∂V

∂ξj
(u) = 0 (1 ≤ j ≤ n)

where

�6u
j =

∂

∂t
[(c2|∇uj |2 − (uj

t )
2)2uj

t ]− c2 div[(c2|∇uj |2 − (uj
t )

2)2∇uj ].

So the static solutions ϕ solve the system of equations

(1.12) −c2∆ϕj − εc6∆6ϕ
j +

∂V

∂ξj
(ϕ) = 0 (1 ≤ j ≤ n)

where

∆6ϕ
j = div(|∇ϕj |4∇ϕj).

Then the energy functional becomes

(1.13) E(ϕ) =
∫

R3

(
c2

2
|∇ϕ|2 + ε

c6

6
|∇ϕ|6 + V (ϕ)

)
dx.

As to the potential V and the open set Ω = Rn \ Σ where it is defined, we
make the following assumptions:

• Ω is connected and 1 = minξ∈Σ |ξ|;
• V ∈ C2(Ω,R);
• V (ξ) ≥ V (0) = 0 for every ξ ∈ Ω;
• there exist c, r > 0 such that

(1.14) dist(ξ,Σ) < r ⇒ V (ξ) > c/dist(ξ,Σ)6.

Of course we can consider our evolution equation (1.11) as a dynamical sys-
tem. The configuration space for this system is given by

Λ = {ϕ ∈ H | ∀x ∈ R3 : ϕ(x) ∈ Ω}

where H denotes the completion of C∞0 (R3,Rn) with respect to the norm

‖∇ϕ‖L2 + ‖∇ϕ‖L6 .
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Since the functions in H are continuous and decay to 0 at infinity, by means of
a suitable topological invariant, the algebraic structure of π3(Ω) is reflected in a
decomposition of the configuration space:

Λ =
⋃

α∈π3(Ω)

Λα.

About the structure of π3(Ω) we can say that, in many cases (e.g. when it is
finitely generated and torsion free) it has the structure π3(Ω) = Zk with k ∈ N.
For example this situation occurs when Ω = R4 \ {ξ1, . . . , ξk} and it has been
studied in [3] in the particular case k = 1.

Here we state the existence and, in some cases, multiplicity results for the
static solutions of system (1.11).

Theorem 1.1. Let

A = {α ∈ π3(Ω) | E attains its minimum in Λα}.

Then the subgroup of π3(Ω) generated by A coincides with π3(Ω) itself.

Since every local minimum of E gives rise to a weak solution of system (1.12),
if π3(Ω) is not trivial, then there exists at least one nontrivial solution of (1.12)
in the class

Λ∗ =
⋃
α6=0

Λα,

i.e. in the class of configurations which are not homotopic to zero.
On the other hand, in the case π3(Ω) = Zk, Theorem 1.1 implies that there

exist at least k homotopically distinct static solutions of (1.11).
The paper is organized as follows. In Section 2 we give the topological classi-

fication of the maps ϕ ∈ Λ. More precisely, we introduce a homotopic invariant
with suitable “localization” properties; this means, roughly speaking, that it de-
pends on the compact regions where ϕ is concentrated. Such an invariant allows
us to split each configuration ϕ ∈ Λ in two parts which we call “particles” (the
regions where the invariant is not trivial) and “radiation”.

In Section 3 we give the proof of our results.
In Section 4 we recall the stability properties stated in [3].

2. Topological classification of configurations.
Particles and radiation

For the sake of simplicity we consider the function space

C = {ϕ : R3 → Ω continuous | lim
|x|→∞

ϕ(x) = 0},

which contains our configuration space Λ.
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First of all we define a “global homotopic invariant”. To this end we consider
a homeomorphism π : S3 → R3 ∪ {∞} such that π(∗) = ∞, where ∗ is the
base point. Now, for every function ϕ ∈ C, we can define the continuous map
ϕ ◦ π : S3 → Ω. We denote by ϕ# the homotopy class of ϕ ◦ π, that is,

ϕ# = [ϕ ◦ π] ∈ π3(Ω).

This invariant is stable under uniform convergence.

Lemma 2.1. For every ϕ ∈ C, if ϕ# 6= 0, then there exist x ∈ R3, ξ ∈ Σ,
and λ ∈ ]0, 1[ such that

λϕ(x) = ξ.

It follows that |ϕ(x)| > 1 so we also have

(2.1) sup
x∈R3

|ϕ(x)| > 1.

Proof. Arguing by contradiction, assume that for every x ∈ R3, ξ ∈ Σ, and
λ ∈ ]0, 1[, we have λϕ(x) 6= ξ, that is, λϕ(x) ∈ Ω. Since this fact is also true for
λ = 0 and λ = 1, we deduce that ϕ is homotopic to 0 in Ω, and then ϕ# = 0.

The second part of the assertion follows from minξ∈Σ |ξ| = 1. �

Definition 2.2. For every ϕ ∈ C the support of ϕ is the compact set defined
as follows:

K(ϕ) = {x : |ϕ(x)| > 1}.

From Lemma 2.1 it follows that

ϕ# 6= 0 ⇒ K(ϕ) 6= ∅.

We notice that ϕ# is localized in K(ϕ) in the following sense. If we have
two functions ϕ,ψ ∈ C such that K(ϕ) = K(ψ) = K and ϕ(x) = ψ(x) for every
x ∈ K, then ϕ# = ψ#; indeed, the functions ϕ and ψ are homotopic in Ω, so
ϕ ◦ π and ψ ◦ π are homotopic too.

2.1. Definition of a local invariant. Now we want to “localize” the
topological invariant in a more precise fashion, by evaluating the contribution
coming from a fixed compact set in R3; in other words, if ϕ ∈ C and K ⊂ R3,
we would like to define

(ϕ|K)# ∈ π3(Ω)

with suitable properties (finite additivity and so on). Having in mind, as model
case, the topological degree, we notice that this kind of object can be defined
only for a class of admissible subsets K.

Fix ϕ ∈ C, we propose the following class of admissible sets:

K(ϕ) = {K ⊂ R3 closed | |ϕ(x)| ≤ 1 on ∂K}.
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This set is obviously not empty; indeed, it contains K(ϕ), each connected com-
ponent of K(ϕ) and every ball with radius sufficiently large.

Before introducing the local invariant we need some notation; let

Ω1 = {ξ ∈ Ω | |ξ| ≤ 1}.

Lemma 2.3. For every ξ ∈ Ω1, there exists % > 0 such that sη ∈ Ω for every
η ∈ B%(ξ) (open ball) and for every s ∈ [0, 1].

The proof is trivial.
Now we set

U =
⋃

ξ∈Ω1

B%(ξ).

Then U is open and, by the previous lemma, it is a subset of Ω star-shaped with
respect to 0.

Fix ϕ ∈ C and let K ∈ K(ϕ). Since ϕ is continuous, there exists an open
neighbourhood N of ∂K such that ϕ(x) ∈ U for every x ∈ N . Now consider the
open neighbourhood of K

Ñ = K ∪N.
By the Urysohn lemma, there exists a continuous function c : R3 → [0, 1]

such that

c(x) =

{
1 on K,

0 on R3 \ Ñ .
Now we consider ϕ̃ : R3 → Rn defined as follows:

ϕ̃(x) = c(x)ϕ(x).

We show that ϕ̃(x) ∈ Ω:

• if x ∈ K, then ϕ̃(x) = ϕ(x) ∈ Ω;
• if x /∈ Ñ , then ϕ̃(x) = 0 ∈ Ω;
• if x ∈ Ñ \ K ⊂ N , since ϕ(x) ∈ U and c(x) ∈ [0, 1], we have ϕ̃(x) =
c(x)ϕ(x) ∈ Ω.

Definition 2.4. We set

(ϕ|K)# = ϕ̃#.

We have to show that this definition is correct, i.e. it does not depend on
ϕ̃. If we consider analogous N1, c1 and ϕ̃1, then ϕ̃ and ϕ̃1 are homotopic in Ω.
Indeed, we set

H(λ, x) = ϕ̃(x) + λ(ϕ̃1(x)− ϕ̃(x)) = [c(x) + λ(c1(x)− c(x))]ϕ(x).

We prove that H(λ, x) takes its values in Ω. First we notice that

c(x) + λ(c1(x)− c(x)) ∈ [0, 1],

because c(x), c1(x) ∈ [0, 1]. Clearly we have
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• if x ∈ K, then H(λ, x) = ϕ(x) ∈ Ω;
• if x 6∈ Ñ ∪ Ñ1, then H(λ, x) = 0 ∈ Ω;
• if x ∈ (Ñ ∪ Ñ1) \K, then ϕ(x) ∈ U , so H(λ, x) ∈ Ω.

The natural connection between the global and the local homotopic invariant
is

(2.2) (ϕ|K(ϕ))# = ϕ#,

where on the left and the right hand sides we are using respectively the local
and the global invariant. Indeed, for any choice of ϕ̃ in the previous definition,
since ϕ and ϕ̃ coincide on their common support, we have ϕ̃# = ϕ#.

We also notice that for every closed set K such that K(ϕ) ⊂ K, we have
K ∈ K(ϕ) and (ϕ|K)# = ϕ#.

The local invariant has the finite additivity property. Let K1,K2 ∈ K(ϕ)
with K

◦

1 ∩K
◦

2 = ∅. Then

(ϕ|K1∪K2)
# = (ϕ|K1)

# + (ϕ|K2)
#

(the sum is meant, of course, in the group π3(Ω)).

2.2. Some suggestive terminology. In this subsection we report on some
terminology (quantum numbers, particles, . . .) which can be useful to interpret
the notions and the model introduced. However, this terminology does not refer
to any specific model in field theory.

If π3(Ω) has the structure Zk, then, after fixing a set of generators {α1, . . .

. . . , αk}, every configuration ϕ ∈ C is characterized by a k-tuple of integers,
which we call quantum numbers of ϕ: if ϕ# = m1α1 + . . .+mkαk, then we set

ν(ϕ) = (m1, . . . ,mk).

In our model, for a fixed configuration ϕ ∈ C, every connected, admissible
set K ∈ K(ϕ) represents an isolated system. We say that an isolated system
K ∈ K(ϕ) contains at least one particle if (ϕ|K)# 6= 0.

In other words, in the configuration ϕ, a particle is defined by

σ = ϕ|K ,

where K is a connected component of K(ϕ) such that (ϕ|K)# 6= 0. So each
particle has its quantum numbers, which are the coefficients of (ϕ|K)# for a
fixed system of generators.

The state ϕ will be said a radiation field if ϕ# = 0.
On the other hand, every configuration can be written, in some sense, as the

disjoint union of a set of particles and a radiation field. Indeed, we can write

ϕ =
( ∨

σi

)
∨ %
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where σi and % are the restrictions of ϕ respectively to the admissible sets Ki

and R (with disjoint interiors) such that

R3 =
( ⋃

Ki

)
∪R, (ϕ|Ki

)# 6= 0, (ϕ|R)# = 0.

3. Functional framework. Existence of minima

Let H denote the closure of C∞0 (R3,Rn) with respect to the norm

(3.1) ‖ϕ‖ = ‖∇ϕ‖L2 + ‖∇ϕ‖L6

where

‖∇ϕ‖L2 =
( n∑

j=1

‖∇ϕj‖2
L2

)1/2

, ‖∇ϕ‖L6 =
( n∑

j=1

‖∇ϕj‖6
L6

)1/6

.

By this choice of H, the energy functional is coercive, namely

lim
‖ϕ‖→∞

E(ϕ) = ∞.

Moreover, by the Sobolev inequalities the space H is continuously embedded in
W 1,6(R3,Rn). From this embedding we get other useful properties we will use
several times.

1. There exist two constants C0, C1 > 0 such that, for every ϕ ∈ H,

(3.2) ‖ϕ‖∞ ≤ C0‖ϕ‖,

and

(3.3) |ϕ(x)− ϕ(y)| ≤ C1|x− y|1/2‖∇ϕ‖L6 .

2. For every ϕ ∈ H,

(3.4) lim
|x|→∞

ϕ(x) = 0.

3. If {ϕn} ⊂ H converges weakly in H to ϕ, then it converges uniformly
on every compact set contained in R3.

Moreover, as an immediate consequence of the continuous embedding of H
in L∞ (see (3.2)), we have the following property.

Proposition 3.1. There exists ∆∗ > 0 such that, for every ϕ ∈ Λ,

(3.5) ‖ϕ‖∞ ≥ 1 ⇒ E(ϕ) ≥ ∆∗.

Now consider the configuration space Λ. It is an open subset of H; in fact,
if ϕ ∈ Λ, then by (3.4) we have

0 < d = inf
x∈R3

dist(ϕ(x),Σ);
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then, by using (3.2), we deduce that there exists a small neighbourhood of ϕ in
H contained in Λ. The boundary of Λ is given by

∂Λ = {ϕ ∈ H | ∃x ∈ R3 such that ϕ(x) ∈ Σ}.

We find that Λ has a rich topological structure, more precisely, it reflects
the structure of π3(Ω). The connected components are identified by the global
homotopic invariant we have introduced in the last section:

Λ =
⋃

α∈π3(Ω)

Λα, Λα = {ϕ ∈ Λ | ϕ# = α}.

Now we can study the second piece of the energy functional,∫
R3
V (ϕ) dx.

First we are going to study the behaviour of this integral when ϕ approaches the
boundary of Λ.

Lemma 3.2. Let {ϕn} ⊂ Λ be bounded in the H norm and weakly converging
to ϕ ∈ ∂Λ. Then ∫

R3
V (ϕn) dx→∞.

Proof. Since ϕ ∈ ∂Λ, there exists x ∈ R3 such that ϕ(x) = ξ ∈ Σ; since V
is nonnegative, it is sufficient to show that there exists a small ball centred at x
such that

(3.6)
∫

B%(x)

V (ϕn) dx→∞.

By the uniform convergence on compact sets we have

(3.7) lim
n→∞

ϕn(x) = ξ.

Now we show that there exists % > 0 such that, for every x ∈ B%(x) and for
n sufficiently large,

(3.8) |ϕn(x)− ξ| < r,

where r has been introduced in (1.14).
Since {ϕn} is bounded in H, in particular {∇ϕn} is bounded in L6. Using

(3.3) and the boundedness of {∇ϕn} in L6, we have

(3.9) |ϕn(x)− ϕn(x)| ≤ const |x− x|1/2,

for every x ∈ R3. Then (3.8) easily follows from (3.7) and (3.9). We also have

(3.10) |ϕn(x)− ξ| ≤ const |x− x|1/2 + o(1).
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Now, using (3.8) and (1.14), for every x ∈ B%(x), we have

V (ϕn(x)) ≥ c

|ϕn(x)− ξ|6
;

then, using (3.10), we obtain

V (ϕn(x)) ≥ c

const|x− x|3 + o(1)
.

Integrating on B%(x), we get (3.6). �

From this lemma we immediately deduce that the sublevels of E are complete
and that the following proposition holds.

Proposition 3.3. Let {ϕn} ⊂ Λ be weakly converging to ϕ and such that
E(ϕn) is bounded. Then ϕ ∈ Λ.

Moreover, it is not difficult to prove the following proposition (see [3]).

Proposition 3.4. The energy functional E is weakly lower semicontinuous
and its minimum points are weak solutions of (1.12).

The proof of our main result is based on the following proposition, in the
spirit of the concentration-compactness principle for unbounded domains (see
[2], [9]). We recall that

Λ∗ =
⋃
α6=0

Λα.

Proposition 3.5. Let {ϕn} ⊂ Λ∗ be such that

(3.11) E(ϕn) ≤ a.

There exists l ∈ N with

(3.12) 1 ≤ l ≤ a/∆∗

(∆∗ has been introduced in Proposition 3.1) and there exist ϕ1, . . . , ϕl ∈ Λ,
{x1

n}, . . . , {xl
n} ⊂ R3, and R1, . . . , Rl > 0 such that, up to a subsequence,

ϕn(·+ xi
n) ⇀ ϕi,(3.13)

‖ϕi‖∞ ≥ 1,(3.14)

|xi
n − xj

n| → ∞ for i 6= j,(3.15)
l∑

i=1

E(ϕi) ≤ lim inf
n→∞

E(ϕn),(3.16)

∀x ∈ C
( l⋃

i=1

BRi
(xi

n)
)

: |ϕn(x)| ≤ 1.(3.17)
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(Here C denotes complement in R.) Then we also have

ϕ#
n =

l∑
i=1

ϕ#
i ;(3.18)

lim sup
n→∞

∥∥∥∥ϕn −
l∑

i=1

ϕi(· − xi
n)

∥∥∥∥
∞
≤ 1.(3.19)

Remark 1. We notice that, from (3.14), it follows that

(3.20) E(ϕi) ≥ ∆∗.

Remark 2. Using the terminology introduced in Subsection 2.2, by Propo-
sition 3.5 we can say that every sequence in Λ∗ with bounded energy has (a sub-
sequence with) the following behaviour:

• the global homotopic invariant stabilizes;
• the particles concentrate in a finite set of diverging balls.

Furthermore, it may be of interest to write ϕn in the following form:

(3.21) ϕn = ψn + %n

where

ψn =
l∑

i=1

ϕi(· − xi
n) ∈ Λ,(3.22)

%n = ϕn −
l∑

i=1

ϕi(· − xi
n) ∈ Λ.(3.23)

Then, by (3.19), %n is a radiation field. On the other hand, ψn is a finite
superposition of configurations with diverging supports. Unfortunately, we are
not able to prove that every term in the sum (3.22) has nonzero homotopic
invariant; in this sense the decomposition (3.21) is not “canonical”. We suspect
that it is canonical if {ϕn} is a minimizing sequence.

Proof of Proposition 3.5. The proof is essentially the same as in [3]; for
the sake of completeness we repeat it here.

First we introduce some notation. For every A ⊂ R3 and every ϕ ∈ Λ, we
set

E|A(ϕ) =
∫

A

(
c2

2
|∇ϕ|2 + ε

c6

6
|∇ϕ|6 + V (ϕ)

)
dx.

Whenever necessary, we shall tacitly consider a subsequence of {ϕn}.
First of all we arbitrarily choose γ ∈ ]0, 1[.
Let x1

n ∈ R3 be a maximum point for |ϕn|; by (2.1) we have |ϕn(x1
n)| > 1.

We set
ϕ1

n = ϕn(·+ x1
n)
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and we obtain

(3.24) ‖ϕ1
n‖∞ = |ϕ1

n(0)| > 1.

Since E(ϕ1
n) = E(ϕn) and the functional E is coercive, the sequence

{
ϕ1

n

}
is bounded in H and we have

(3.25) ϕ1
n ⇀ ϕ1 ∈ H.

From (3.24) it follows that ‖ϕ1‖∞ ≥ 1.
Since {ϕ1

n} ⊂ Λ and E(ϕ1
n) is bounded, by (3.25) and Proposition 3.3, we

get ϕ1 ∈ Λ.
Since E is weakly lower semicontinuous, we have

(3.26) E(ϕ1) ≤ lim inf
n→∞

E(ϕ1
n) = lim inf

n→∞
E(ϕn).

Now, using (3.4), we consider R1 > 0 such that

(3.27) ∀x ∈ CBR1(0) : |ϕ1(x)| ≤ γ;

for simplicity we set B1
n = BR1(x

1
n).

Now we distinguish two cases: either

A1) for n sufficiently large

∀x ∈ CB1
n : |ϕn(x)| ≤ 1;

or

B1) possibly passing to a subsequence,

∃x ∈ CB1
n such that |ϕn(x)| > 1.

In the case A1) the first part of Proposition 3.5 is proved with l = 1; let us
consider the case B1).

Let x2
n be a maximum point for |ϕn| in R3 \ B1

n; we have |ϕn(x2
n)| > 1. We

set
ϕ2

n = ϕn(·+ x2
n)

and we obtain
‖ϕ2

n‖∞ = |ϕ2
n(0)| > 1.

Just as for
{
ϕ1

n

}
, we have

(3.28) ϕ2
n ⇀ ϕ2 ∈ Λ,

with

(3.29) ‖ϕ2‖∞ ≥ 1.

Now we have to show that

(3.30) |x2
n − x1

n| → ∞.
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We set yn = x2
n−x1

n and, arguing by contradiction, we assume that the sequence
{yn} is bounded in R3; then, up to a subsequence, yn → ỹ. Since |yn| = |x2

n −
x1

n| ≥ R1, we have |ỹ| ≥ R1; then, using (3.27),

(3.31) |ϕ1(ỹ)| ≤ γ < 1.

On the other hand, we have

1 ≤ |ϕn(x2
n)| = |ϕn(yn + x1

n)| = |ϕ1
n(yn)|;

then, by (3.31),

0 < 1− |ϕ1(ỹ)| ≤ |ϕ1
n(yn)| − |ϕ1(ỹ)| ≤ |ϕ1

n(yn)− ϕ1(ỹ)|
≤ |ϕ1

n(yn)− ϕ1(yn)|+ |ϕ1(yn)− ϕ1(ỹ)|
≤ ( sup

|y−ey|≤1

|ϕ1
n(y)− ϕ1(y)|) + |ϕ1(yn)− ϕ1(ỹ)|.

Taking the limit as n→∞ we get a contradiction.
Now we show that

(3.32) E(ϕ1) + E(ϕ2) ≤ E(ϕn).

For a fixed η > 0, there exists % > 0 such that

E|CB%(0)(ϕ1) < η/2 and E|CB%(0)(ϕ2) < η/2.

From (3.30) it follows that the spheres B%(x1
n) and B%(x2

n) are disjoint for n
sufficiently large. Then we get

lim inf
n→∞

E(ϕn) ≥ lim inf
n→∞

(E|B%(x1
n)(ϕn) + E|B%(x2

n)(ϕn))

≥ lim inf
n→∞

E|B%(x1
n)(ϕn) + lim inf

n→∞
E|B%(x2

n)(ϕn)

= lim inf
n→∞

E|B%(0)(ϕ1
n) + lim inf

n→∞
E|B%(0)(ϕ2

n)

≥ E|B%(0)(ϕ1) + E|B%(0)(ϕ2) > E(ϕ1) + E(ϕ2)− η.

From the arbitrariness of η, we get (3.32).
Finally, just as for ϕ1, from (3.4) we get R2 > 0 such that

∀x ∈ CBR2(0) : |ϕ2(x)| ≤ γ

and we set
B2

n = BR2(x
2
n).

Also in this second step we have an alternative: either

A2) for n sufficiently large,

∀x ∈ C(B1
n ∪B2

n) : |ϕn(x)| ≤ 1;

or



Remarks on Topological Solitons 363

B2) up to a subsequence,

∃x ∈ C(B1
n ∪B2

n) such that |ϕn(x)| > 1.

If the case A2) holds true, the first part of Proposition 3.5 is proved with
l = 2; in the case B2) we consider a maximum point of |ϕn| in C(B1

n ∪B2
n) and

we repeat the same argument used in the case B1).
This alternative process terminates in a finite number of steps. Indeed, using

(3.20), (3.16) and (3.11), we get (3.12).
Now we prove (3.18). We consider n sufficiently large so that (3.17) holds

and

(3.33) Bi
n ∩Bj

n = ∅ for i 6= j.

Then we have, by the additive property of the local homotopic invariant,

(3.34) ϕ#
n = (ϕn|Sl

i=1Bi
n
)# =

l∑
i=1

(ϕn|Bi
n
)# =

l∑
i=1

(ϕi
n|BRi

(0))
#.

On the other hand, for every i ∈ {1, . . . , l}, since {ϕi
n} converges uniformly

to ϕi on BRi(0) and

∀x ∈ CBRi
(0) : |ϕi(x)| ≤ γ < 1,

we obtain, for n large enough,

(ϕi
n|BRi

(0))
# = (ϕi

|BRi
(0))

# = ϕ#
i .

Then, substituting in (3.34), we obtain (3.18).
Finally, in order to prove (3.19), we assume that, for every i ∈ {1, . . . , l},

(3.35) ∀x ∈ Bi
n : |ϕn(x)− ϕi(x− xi

n)| < γ.

We shall prove that, for n large enough,

(3.36) ∀x ∈ R3 :
∣∣∣∣ϕn(x)−

l∑
i=1

ϕi(x− xi
n)

∣∣∣∣ < 1 + lγ.

Indeed, if x ∈
⋃l

i=1B
i
n, then, by (3.33), there exists a unique index j ∈ {1, . . . , l}

such that x ∈ Bj
n. Then∣∣∣∣ϕn(x)−

l∑
i=1

ϕi(x− xi
n)

∣∣∣∣ ≤ |ϕn(x)− ϕj(x− xj
n)|+

∑
i 6=j

|ϕi(x− xi
n)|(3.37)

< γ + (l − 1)γ = lγ < 1 + lγ.

On the other hand, if x /∈
⋃l

i=1B
i
n, then, by (3.17),∣∣∣∣ϕn(x)−

l∑
i=1

ϕi(x− xi
n)

∣∣∣∣ ≤ |ϕn(x)|+
l∑

i=1

|ϕi(x− xi
n)| ≤ 1 + lγ.
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Now fix η > 1; choosing γ sufficiently small we have

(3.38) 1 + lγ < η

(taking into account (3.12), this kind of choice can be made a priori in the proof).
Substituting (3.38) in (3.36), we get

∀x ∈ R3 :
∣∣∣∣ϕn(x)−

l∑
i=1

ϕi(x− xi
n)

∣∣∣∣ < η,

and, by the arbitrariness of η > 1, we obtain (3.19). �

Finally, we can give the proof of our main theorem. For every α ∈ π3(Ω), we
set Eα = inf E(Λα).

Theorem 3.6. The group π3(Ω) is generated by

A = {α ∈ π3(Ω) | Eα is attained in Λα}.

Proof. Denote by G the subgroup of π3(Ω) generated by A, and, arguing
by contradiction, assume that B = π3(Ω) \G 6= ∅. Then we set

ΛB =
⋃

β∈B

Λβ , EB = inf E(ΛB).

Let {ϕn} ⊂ ΛB be such that E(ϕn) → EB . Since 0 ∈ A, we have ΛB ⊂ Λ∗,
so we can apply Proposition 3.5. There exist l ∈ N and ϕ1, . . . , ϕl ∈ Λ such that,
up to a subsequence,

E(ϕi) ≥ ∆∗ > 0,(3.39)
l∑

i=1

E(ϕi) ≤ lim inf
n→∞

E(ϕn) = EB ,(3.40)

ϕ#
n =

l∑
i=1

ϕ#
i .(3.41)

For simplicity we set

(3.42)
l∑

i=1

ϕ#
i = σ;

substituting in (3.41), we get

(3.43) ϕ#
n = σ;

then, since {ϕn} ⊂ ΛB , it follows that

(3.44) σ ∈ B.
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Then, since Λσ ⊂ ΛB and using (3.43), we get EB ≤ Eσ ≤ E(ϕn). So we
conclude that {ϕn} is a minimizing sequence in Λσ.

Now we study two cases.
If l = 1, then from (3.42) we get ϕ#

1 = σ, which implies E(ϕ1) ≥ Eσ. On
the other hand, by (3.40),

Eσ = lim inf
n→∞

E(ϕn) ≥ E(ϕ1).

So we get Eσ = E(ϕ1). In this way we obtain σ ∈ A, which contradicts (3.44).
If l ≥ 2, we get again a contradiction. First we notice that, by (3.42) and

(3.44), there exists at least one index (for simplicity i = 1) such that ϕ#
1 ∈ B.

Then, using again (3.40) and (3.39), we conclude

EB ≥ E(ϕ1) +
l∑

i=2

E(ϕi) ≥ EB + (l − 1)∆∗ > EB . �

Corollary 3.7. There exists ϕ ∈ Λ∗ such that E(ϕ) = inf E(Λ∗).

Remark 3. We have already noticed that Theorem 3.6 is, in a wide class of
cases, a multiplicity result, e.g. when π3(Ω) is isomorphic to Zk (see Section 1).
Now we remark that the energy functional E is invariant under the action

ϕ(x) 7→ ϕ(Ax+ b)

where detA = ±1 and b ∈ R3. Then for every nontrivial solution of (1.12) there
exists a manifold of solutions.

4. Remarks on the evolution problem

By Corollary 3.7 we get at least one solution of the Cauchy problem
equations (1.11),

u(·, 0) = ϕ,

ut(·, 0) = 0.

In this section we first recall some stability properties of this solution which
allow us to call it a soliton (for the proofs see [3]). We assume that the Cauchy
problem

(4.1)


equations (1.11),

u(·, 0) = w0,

ut(·, 0) = w1,

is well posed; we conjecture that this is the case under mild assumptions on V .
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Here we confine ourselves to a simple case, namely the case where 0 is a
nondegenerate minimum for the potential V . Then we can assume as “basic”
the function space

W = H ∩ L2(R3,Rn),

equipped with the norm

‖ϕ‖W = ‖ϕ‖+ ‖ϕ‖L2 .

Now, under the nondegeneracy assumption, the proof we have given in H

works also in W . So we can obtain ϕ as a minimum of the energy functional in

M = Λ ∩ L2(R3,Rn).

Now the first stability property of ϕ says, roughly speaking, that if we perturb
the initial data (ϕ, 0), we obtain a solution of (1.11) whose support cannot split
in diverging pieces.

Theorem 4.1. If (w0, w1) is a sufficiently small perturbation of (ϕ, 0), then
the diameter of the support of u(·, t) is uniformly bounded, u(x, t) being the
solution of the perturbed Cauchy problem (4.1).

Now we give a second stability property of ϕ, which is concerned with con-
centration of energy. First we need a definition.

Definition 4.2. If K(ϕ) is not empty, then the barycentre of ϕ is the
barycentre of K(ϕ), that is,

β(ϕ) =
1

µ(K(ϕ))

∫
K(ϕ)

x dx.

The second stability property says that if we perturb the initial data (ϕ, 0),
then we get a solution whose energy is localized in a ball, of fixed radius, centred
at the barycentre of u(·, t).

Theorem 4.3. For every η > 0, if (w0, w1) is a sufficiently small perturba-
tion of (ϕ, 0), then there exists R > 0 such that, for every t ∈ R,

(4.2)
∫
CBR(β(ϕt))

(
c2

2
|∇ϕt|2 + ε

c6

6
|∇ϕt|6 + V (ϕt)

)
dx < η,

where u(x, t) is the solution of the perturbed Cauchy problem (4.1) and ϕt =
u(·, t).

Lastly, we want to remark that the topological nature of the invariant in-
troduced in Section 2 permits us to state a conservation law for the “quantum
numbers”. More precisely, for any solution u(x, t) of (1.11), the global homo-
topic invariant is constant in t. That is, if we set ϕt = u(·, t), then ϕ#

t = ϕ#
0 for

every t ∈ R. This fact immediately follows by observing that the map t 7→ ϕt is
continuous, so it can be regarded as a homotopy in Λ.
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Taking into account the local nature of the topological invariant, the above
conservation law can also be stated in a suitable local framework.
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